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On Space Complexity of Self-Stabilizing Leader Election
in Population Protocol Based on Three-interaction
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Abstract: A population protocol is a distributed computing model for passively mobile systems, in which a compu-
tation is executed by interactions between two agents. This paper is concerned with an extended model, population
protocol by interactions of three agents. Leader election is a fundamental problem in distributed systems, to select a
central coordinator. Cai, Izumi, Wada(2011) showed that the space complexity of a self-stabilizing leader election for
n agents is exactly n. This paper shows that the space complexity of the self-stabilizing leader election in a population
protocol by interactions of three agents (SS-LE PP3 for short) is exactly ⌈ n+1

2 ⌉.

1. Introduction
A population protocol is a distributed computing model formed

by mobile agents with limited resource, which interact by a
scheduler and change their own states [1]. Once an initial con-
figuration is given, an execution of the system is determined by
the order of interactions among agents. In this paper, we assume
a scheduler is adversarial but globally fair (see Section 2).

The Leader Election (LE) problem is a problem of designat-
ing a single leader agent as the organizer of some task distributed
among several agents. A PP for SS-LE, from an arbitrary initial
configuration, eventually has to reach a configuration such that
all of its successive configurations contain exactly one leader.
According to the initial configuration, a PP for SS-LE has to
decrease the number of leaders if it begins with more than one
leader, while it has to appoint an agent to be a leader if it begins
with no leader.

Cai et al. [3] showed that for a system of n agents, any PP
for SS-LE requires at least n agent-states, and gave a PP with n
agent-states for SS-LE. Mizoguchi et al. [4] gave an MPP for SS-
LE with ⌈(2/3)n⌉+1 agent-states and two edge-states, and showed
that any MPP for SS-LE with two edge-states requires more than
(1/2) lg n agent-states.

In this paper, we are concerned with population protocol via
three interaction model as an enhancement of the conventional
model under complete graph of network [2]. We show that the
space complexity is ⌈ n+1

2 ⌉.
Organization: This paper is organized as follows. We first give

a definition of PP3 model in section 2. Then we give a PP3 for
SS-LE with ⌈ n+1

2 ⌉ agent-states for the system of n agents in sec-
tion 3. In section 4 we show that any PP3 for SS-LE requires
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⌈ n+1
2 ⌉ agent-states.

2. Models and Definitions
A population protocol by three interactions (PP3) is defined by

(Q, δ), where Q denotes a finite set of states and δ : Q×Q×Q→
Q × Q × Q is an update function of states by an interaction of a
triple of agents.

A transition from a configuration C to the next configuration C′

in an PP3 is defined as follows. At the beginning, the scheduler
chooses a triple of agents u1, u2, u3. We assume that the scheduler
can choose any triple. Suppose the states of the triple agents are
p, q, r respectively and let R : (p, q, r) → (p′, q′, r′) be a transi-

tion rule of δ. Then u1, u2, u3 interact, writing as C
R→ C′, and the

states of agents u1, u2, u3 in C′ are p′, q′, r′ respectively, while all
other agents keep their states in the transition. State of either node
does not get necessarily changed which we call a silent transition.
Transitions other than silent ones are called active.

An execution E is defined as an infinite sequence of configu-
rations and transitions in alternation C0, R0, C1, R1, . . . such that

for each i, Ci
Ri→ Ci+1. Like most of the literature on PP, we as-

sume that the scheduler in an PP3 is adversarial, but satisfying the
strong global fairness, meaning that if a configuration C appears
infinitely often in E then any possible transition from C must ap-

pear infinitely often in E as well. If C
R→ C′ for some R, we write

C → C′. The reflexive and transitive closure of → is denoted
by

∗→. That is, C
∗→ C′ means that a configuration C′ is reach-

able (or can be generated) from a configuration C by a sequence
of transitions of length more than of equal to 0. If any element
in a set of states G can be generated from configuration C, we
say that G can be generated from C, otherwise G cannot. G is
said to be closed if for any element p, q, r ∈ G and any transition
R ∈ δ : (p, q, r)→ (p′, q′, r′) indicates that p′, q′, r′ ∈ G.
⊥ indicates an invalid state in which an agent is unable to join

an interaction. The size of a configuration C (denoted as |C|) is
size of agents with states other than ⊥. For example, a a configu-
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ration (p, q, r, s) has size 4 and (p,⊥, r,⊥) has size 2.
The Leader Election (LE) in PP3 is the problem of assigning a

special state of Q to exactly on agent, representing the “leader”.
A configuration C ∈ Qn is legitimate if C contains exactly one
agent in the leader state, and so does any configuration C′ sat-
isfying C

∗→ C′. Let L(⊆ Qn) denote the set of all legitimate
configurations. A protocol for LE is Self-Stabilizing (SS) (with
respect to L) if the following condition holds:

For any configuration C0 ∈ Qn and any execution E = C0
R0→

C1
R1→ . . . starting from C0, there is an i ≥ 0 such that Ci ∈ L. We

use the term PP3 for SS-LE to indicate a self-stabilizing popula-
tion protocol by three interactions for leader election.

3. Upper Bound of the Space Complexity
Theorem 3.1. There exists a PP3 using ⌈ n+1

2 ⌉ agent states which
solves the SS-LE for n agents.

To begin with, we give a Protocol 1 corresponding to the situ-
ation n ≡ 1 mod 2 and then we modify the Protocol 1 to suit for
the situation n ≡ 0 mod 2.

m = ⌈ n+1
2 ⌉ =

 n+1
2 if (n ≡ 1 mod 2)

n+2
2 if (n ≡ 0 mod 2)

Protocol 1.
Q = {q0, q1, . . . , qm−1}, where q0 denotes the leader state.
δ ={
R1 : (q0, q0, q)→ (q0, qm−1, q) for q ∈ Q,
R2 : (qi, qi, qi)→ (qi, qi, qi−1), in cases i , 0
R3 : (qi, q j, qk)→ (qi, q j, qk), in cases other than R1 and R2

}
We define a set of configurations L ⊆ Qn, such that C ∈ L if
γ0(C) = 1 and γi(C) = 2 f or i ∈ {1, 2, . . . ,m− 1} where γi(C) de-
notes the number agents in state qi in C for each i = 0, 1, . . . ,m−1.
Lemma 3.2. L is the set of legitimate configurations.

Proof. According to Protocol 1, no agent is able to change its
state after reaching C ∈ L, there would always be a unique agent
with leader state afterwards. □

Lemma 3.3. For any configuration D ∈ Qn, there exists an exe-
cution that satisfies D

∗→ C such that C ∈ L.

Proof. By the definition of Protocol 1, if γi(E) ≥ 2 (i , 0) holds
for E ∈ Qn, then γi(F) holds for any F ∈ Qn such that E

∗→ F. In
case that γ0(D) = 0, then we claim that q0 is generated as follows:
While γ0(D) = 0, there exists qi satisfying that γi(D) ≥ 3, ap-

plying R2(D
R2→ E) results γi(E) = γi(D) − 1 and γi−1(E) =

γi−1(D)+1. Repeated by applying R2, we get an agent with q0 and
the number of agents with q0 would never reduce to 0 again ac-
cording to the transition rules. Finally transform state q0 to qm−1

by applying R1 if more than one agent in state of q0 exist. Then,
replenish the agents of state size less than 2. See Figure 1. We
obtain the claim. □

By combining Lemma 3.2 and Lemma 3.3, we obtain that Pro-
tocol 1 is able to solve SS-LE PP3 problem with size n ≡ 1 mod 2.

For situation n ≡ 0 mod 2, we simply modify the Protocol 1 as
following:
δ ={

Fig. 1 Process to reach Legitimate Configuration

R1 : (qi, qi, q) → (qi, q(i−1)mod m, q) for q ∈ Q, in cases i = 0 or
m − 1

R2 : (qi, qi, qi)→ (qi, qi, qi−1), in cases 0 < i < m − 1
R3 : (qi, q j, qk)→ (qi, q j, qk), in cases other than R1 and R2

}
Proofs are similar to the previous case which we would omit

here.

4. Lower Bound of the Space Complexity
Theorem 4.1. No SS-LE PP3 for n agents exists with agent states
size less than ⌈ n+1

2 ⌉.
Lemma 4.2. Let G be a finite subset of states, and suppose that
C is a (sub)configuration of a SS-LE PP3 which cannot generate
G. Then, at least one of the following two conditions holds:

(i) The complement of G (denoted by G) is closed.
(ii) There exists a configuration C′ ⊆ C and a set G′ ⊃ G
such that |C| − 2 ≤ |C′|, |G| + 1 ≤ |G′| and configuration
C′ cannot generate G′.

Proof. We will show that if (i) does not hold then (ii) holds.
Suppose that G is not closed, meaning that there exists a transi-
tion (p, q, r)→ (p′, q′, r′) such that p, q, r ∈ G and at least one of
p′, q′, r′ < G. We consider the following two cases:
Case 1. One element of p, q, r cannot be generated from C. With-
out loss of generality, we may assume p cannot be generated from
C. Then, we obtain the condition (ii) by setting C′ = C and
G′ = G ∪ {p}.
Case 2. All elements of p, q, r can be generated from C. Then we
consider the following three cases:

Case 2.1. All the three elements can be generated from
C at the same time. It implies that G can be generated
from C by (p, q, r)→ (p′, q′, r′). Contradiction.
Case 2.2. It is not the Case 2.1 and only two elements of
p, q, r can be generated from C at the same time. With-
out loss of generality, we may assume p and q are gen-
erated. Now, we mask these two agents with ⊥, and
C′ be the subconfiguration excluding these two agents,
i.e., |C′| = |C| − 2. Then C′ cannot generate setting
G′ = G ∪ {r}, otherwise it is Case 2.1, we obtain condi-
tion (ii).
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Case 2.3. Only one element can be generated at the
same time. Without loss of generality, we may assume
p is generated. Then we obtain the condition (ii) by set-
ting G′ = G∪ {q, r} and |C′| = |C| − 1, with masking the
agent with state p.

□

Lemma 4.3. In a SS-LE protocol, the set of states excluding
leader state would never be closed.

Proof. If such kind of set exists, a configuration initialized by
elements only in the set would be unable to generate the leader
state which results in a contradiction. □

Proof of Theorem 4.1. Suppose problem in n = 2n′ (2n′ + 1
respectively) agents can be solved by a protocol using state set
whose size equals n′ = ⌈ n−1

2 ⌉, we say Q: {q0, q1, ..., qn′−1} where
q0 denotes the leader state. Let C be a legitimate configuration,
which only contains one leader state. We set C0 by masking the
agent with q0 in C with ⊥, thus |C0|=2n′ − 1 (2n′ respectively).
Then set G0 = {q0}. By property of legitimate configuration,
C0 cannot generate G0. Also by Lemma 4.3, we know G is not
closed. By Lemma 4.2, we can obtain a configuration C1 and a
set G1 satisfying |C1| ≥ |C0| − 2, |G1| ≥ |G′| + 1 and configuration
C1 cannot generate G1.

In a similar way, recursively by applying Lemma 4.2 n′ −
1 times, we get that Cn′−1(|Cn′−1| = 1 or 2) cannot generate
Gn′−1(|Gn′−1| = n′) that equals Q. Contradiction. □

5. Conclusions
This paper showed that the space complexity of SS-LE PP3 is
⌈ n+1

2 ⌉. In a similar way, we can show that the space complexity
of SS-LE PPk is ⌈ n−1

k−1 ⌉ + 1.
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