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Parametric Power Supply Networks

ShihoMorishita†1,a) Takao Nishizeki†1,b)

Abstract: Suppose that each vertex of a graph G is either a supply vertex or a demand vertex and is assigned a sup-
ply or a demand. All demands and supplies are nonnegative constant numbers in a steady network, while they are
functions of a variable λ in a parametric network. Each demand vertex can receive “power” from exactly one supply
vertex through edges in G. One thus wishes to partition G to connected components by deleting edges from G so that
each component has exactly one supply vertex whose supply is at least the sum of demands in the component. The
“partition problem” asks whether G has such a partition. If G has no such partition, one wishes to find a maximum
number r∗, 0 ≤ r∗<1, such that G has such a partition when every demand is reduced to r∗ times the original demand.
The “maximum supply rate problem” asks to find such a number r∗. In this paper, we deal with a network in which G is
a tree, and first give a polynomial-time algorithm for the maximum supply rate problem for a steady tree network, and
then give an algorithm for the partition problem on a parametric tree network, which takes pseudo-polynomial time if
all the supplies and demands are piecewise linear functions of λ.
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1. Introduction
Consider a graph G in which each vertex is either a supply ver-

tex or a demand vertex and is assigned a supply or a demand. Such
a graph G is called a power supply network. All the supplies and
demands are nonnegative constant numbers in an ordinary net-
work, called a steady network, which has been considered so far
[6], [7], [8], [9], [10]. This paper introduces a parametric power
supply network, in which all the supplies and demands are func-
tions of a parameter λ. The supply of a vertex v is denoted by
sv(λ) and the demand by dv(λ). Figure 1 depicts steady networks;
each supply vertex is drawn by a square, each demand vertex by
a circle, and the supply or demand is written inside. Figure 2(a)
depicts a parametric network, whose variable demands dv3 (λ) and
dv4 (λ) are drawn in Fig. 2(b). Each demand vertex v must receive
an amount dv(λ) of “power” or “commodity” from exactly one
supply vertex through edges in a network G, while each supply
vertex v can supply, to demand vertices, at most an amount sv(λ)
of “power” in total. One thus wishes to partition G into connected
components by deleting edges from G so that each component C
has exactly one supply vertex whose supply is at least the sum of
all demands in C. Such a partition is called a feasible partition
of G. The partition problem asks, for each value of λ, whether
G has a feasible partition. If G has no feasible partition for some
value of λ, one wishes to find a maximum number r∗, 0 ≤ r∗ < 1,
such that G has a feasible partition for the value if every demand
dv(λ) is uniformly reduced to a new demand d′v(λ) = r∗ · dv(λ).
We call r∗ the maximum supply rate, and call the problem of find-
ing r∗ the maximum supply rate problem. The maximum supply
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rate problem for a steady network is a special case of a partition
problem for a parametric network, as will be observed in Section
2.

The steady network in Fig. 1(a) has no feasible partition, and
the maximum supply rate r∗ is 0.7; Fig. 1(b) depicts a new net-
work with d′v = 0.7·dv and illustrates a feasible partition by dotted
lines.

The partition problem and the maximum supply rate prob-
lem have some applications to the power supply problem for
power delivery networks, in which a supply or demand may
depend on a parameter λ such as time, temperature, oil price,
etc.[1], [11], [12], [13]. The partition problem is NP-complete
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Fig. 1 (a) Steady tree network T with no feasible partition, and (b) new
network constructed from T for the maximum supply rate r∗ = 0.7.
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even for a steady network on a series-parallel graph, because the
“set partition problem” [5], p. 47, can be easily reduced to the
partition problem for a steady network on a complete bipartite
graph K2,n−2, which is a series-parallel graph [9]. Therefore, the
maximum supply rate problem is NP-hard even for series-parallel
steady networks. Hence, it is very unlikely that these prob-
lems can be solved in polynomial time even for series-parallel
steady networks. However, the partition problem can be solved
for steady tree networks in linear time [9].

In this thesis, we first give a polynomial-time algorithm to
solve the maximum supply rate problem for a steady tree network
T . It takes time O(nL), where n is the number of vertices in T and
L is the logarithmic size of T . We then present an algorithm to
solve the partition problem for a parametric tree network. It takes
pseudo-polynomial time if all supplies and demands are piece-
wise linear functions with integer coefficients. More precisely, it
takes time O(nW2), where W is the sum of absolute values of all
integer coefficients of supplies and demands.

2. Maximum Supply Rate Problem
In this section we deal with steady networks in which all sup-

plies and demands are positive integers, and show that the maxi-
mum supply rate problem can be solved for steady tree networks
in polynomial time.

Let G = (V, E) be a steady network, where V is the set of ver-
tices and E is the set of edges of G. Let Vs be the set of all
supply vertices, and let Vd be the set of all demand vertices, then
V = Vs

∪
Vd and Vs

∩
Vd = ∅. Let n = |V | and ns = |Vs|. We de-

note by dv the positive integral demand of a demand vertex v, and
by sv the positive integral supply of a supply vertex v. The par-
tition problem asks whether V can be partitioned to a number ns

of subsets V1,V2, · · · ,Vns such that each, Vi, 1 ≤ i ≤ ns, contains
exactly one supply vertex, say u, and∑
v∈Vi/{u}

dv ≤ su.

We call such a partition of V a feasible partition of G. Ito et al.
[9] gave an algorithm to solve the partition problem in time O(n)
if G is a tree. We call the algorithm Partition. Note that our para-
metric algorithm in Section 3 also runs in time O(n) for a steady
tree network.

The maximum supply rate problem for G asks to find the max-
imum number r(> 0) such that G has a feasible partition if the
demand dv is replaced by a new demand d′v = r · dv for every de-
mand vertex v. We call the maximum value r∗ of such a number
r the maximum supply rate of G. Thus the maximum supply rate
r∗ may be greater than 1. When r∗ < 1, the value 1 − r∗ is called
the minimum power saving rate of G.

The maximum supply rate problem for a steady network G can
be formulated as a partition problem for a parametric network
Gpara, in which the demand of every demand vertex v is a linear
function dv(λ) = dv · λ and the supply of every supply vertex u is
a constant function su(λ) = su. The maximum supply rate r∗ of G
is equal to the maximum value of λ for which Gpara has a feasible
partition.

Obviously, the following lemma holds.
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Fig. 2 (a) Parametric tree network T rooted at v5, (b) variable demands
dv3 (λ) and dv4 (λ), (c) surplus fT (λ), and (d) deficit gT (λ) of T .
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Lemma. 1 Suppose that a steady network G has a feasible
partition when every demand dv is replaced by d′v = r · dv for a
positive real number r. Then, for any number r′ with 0 ≤ r′ ≤ r,
G has a feasible partition when every demand dv is replaced by
d′v = r′ · dv.

One can thus compute r∗ for a steady tree network T by a bi-
nary search on the infinite set of all positive real numbers r with
the aid of the algorithm Partition. However, such a simple bi-
nary search either cannot exactly compute r∗ or does not run in
polynomial time. The idea of our algorithm is to notice that r∗ is
a rational number, as follows.

Lemma. 2 Let r∗ be the maximum supply rate of a steady
network G = (V, E), and let S =

∏
v∈Vs

sv and D =
∑
v∈Vd

dv. Then

r∗ ∈ {S/z| z is an integer and S ·D ≥ z ≥ 1}.

Proof. Since r∗ is the maximum supply rate, there is a parti-
tion of V to subsets V1,V2, · · · ,Vns such that each Vi, 1 ≤ i ≤ ns,
contains exactly one supply vertex, say u, and∑
v∈Vi/{u}

r∗ · dv ≤ su.

The inequality above holds in equality for some i, 1 ≤ i ≤ ns, that
is,

r∗
∑
v∈Vi/{u}

dv = su;

otherwise, r∗ would not be the maximum supply rate. Let z∗ =
S/r∗, then from the two equations above we have

z∗ =
(∏

v∈Vs
sv

su

)
·

∑
v∈Vi/{u}

dv.

Thus z∗ is an integer, and 1 ≤ z∗ ≤ S ·D. Therefore, r∗ (= S/z∗) is
equal to S/z for some integer z, 1 ≤ z ≤ S ·D. □

Thus, one can find the maximum supply rate r∗ of a steady
tree network T = (V, E) by a binary search on the finite set
{S/z| S ·D ≥ z ≥ 1} of rational numbers with the aid of Parti-
tion in time O(n log2(S ·D)).

The logarithmic size L of a steady network T is

L =
∑
u∈Vs

⌈log2(sv + 1)⌉ +
∑
v∈Vd

⌈log2(dv + 1)⌉,

and clearly log2(S ·D) ≤ L.We thus have the following theorem.
Theorem. 1 The maximum supply rate problem can be

solved in time O(nL) for a steady tree network T , where n is the
number of vertices and L is the logarithmic size of T .

3. Parametric Networks
In this section we present an algorithm to solve the partition

problem for a parametric tree network T .

3.1 Definitions
One may assume without loss of generality that a tree T is

rooted at an arbitrarily chosen vertex vroot. We also assume that
all supplies sv(λ) and demands dv(λ) in T are functions of a com-
mon nonnegative real variable λ(≥ 0).

A feasible partition πλ = (V1,V2, · · · ,Vns ) of a rooted tree net-
work T = (V, E) for a value λ is a partition of V to a number ns of
subsets V1,V2, · · · ,Vns such that
(a) the root of T is contained in V1, that is, vroot ∈ V1; and
(b) each Vi, 1 ≤ i ≤ ns, contains exactly one supply vertex, say

u, and∑
v∈Vi/{u}

dv(λ) ≤ su(λ).

The partition problem asks to find every value of λ for which T
has a feasible partition. We actually find every interval of non-
negative real numbers such that T has a feasible partition πλ for
each value λ in the interval.

For the network T in Fig. 2(a), v5 = vroot, sv1 (λ) = sv2 (λ) = 8,
dv5 (λ) = 2, and the variable demands dv3 (λ) and dv4 (λ) are drawn
in Fig. 2(b). A feasible partition of T for 0 ≤ λ ≤ 6 is indicated
by dotted lines in Fig. 2(a). The solution for T is a set of two
intervals [0, 8] and [10,∞).

We find a feasible partition of T by the bottom-up computation
on a rooted tree T . More precisely, we find a feasible partition
and an extended partition, called a “root-feasible partition,” from
those of smaller subtrees.

A root-feasible partition πλ = (V1,V2, · · · ,Vns+1 ) of T for λ is a
partition of V to a number ns + 1 of subsets V1,V2, · · · ,Vns+1 such
that
(a) vroot ∈ V1 and V1 ∩ Vs = ∅; and
(b) each Vi, 2 ≤ i ≤ ns + 1, contains exactly one supply vertex,

say u, and∑
v∈Vi/{u}

dv(λ) ≤ su(λ).

Thus, T has no root-feasible partition for any λ if vroot is a supply
vertex. (A root-feasible partition of T in Fig. 2(a) for 0 ≤ λ ≤ 8
is ({v5},{v1, v3},{v2, v4}).)

Let πλ = (V1,V2, · · · ,Vns ) be a feasible partition of T for a
value λ, and let u be the supply vertex in V1. Then the surplus
surp (πλ) of πλ is

surp(πλ) = su(λ) −
∑
v∈V1/{u}

dv(λ).

We now define a function fT (λ), called the surplus of a paramet-
ric tree network T, as follows:

fT (λ) = max
πλ

surp(πλ)

where the maximum is taken over all feasible partitions πλ of T
for λ. Let fT (λ) = −∞ if T has no feasible partition for λ. In-
tuitively, fT (λ) is the maximum amount of power that can be de-
livered outside T through the root when all demand vertices are
supplied power. (Figure 2(c) depicts fT (λ) for T in Fig. 2(a).)

Let πλ = (V1,V2, · · · ,Vns+1) be a root-feasible partition of T
for a value λ. Then vroot ∈ V1, vroot is a demand vertex, and V1

contains no supply vertex. The deficit def(πλ) of πλ is

def(πλ) =
∑
v∈V1

dv(λ).

We now define a function gT (λ), called the deficit of T , as follows:
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Fig. 3 Rooted subtrees.

gT (λ) = min
πλ

def(πλ)

where the minimum is taken over all root-feasible partitions πλ of
T for λ. Let gT (λ) = +∞ if T has no root-feasible partition for λ.
Thus gT (λ) = +∞ for any λ if vroot is a supply vertex. Intuitively,
gT (λ) is the minimum amount of power that must be delivered
inside T through vroot when vroot and possibly some other demand
vertices are supplied power from outside. (Figure 2(d) depicts
gT (λ) for T in Fig. 2(a).)

We similarly define the surplus fT ′ (λ) and deficit gT ′ (λ) for a
rooted subtree T ′ of T .

For a vertex v of T , we denote by Tv the maximum subtree of
T rooted at v. Let v1, v2, · · · , vl be the children of v in T , and let
ei, 1 ≤ i ≤ l, be the edge joining v and vi. Let Tvi , 1 ≤ i ≤ l,
be the maximum subtree of T rooted at vi. We denote by T i

v the
subtree of Tv which consists of vertex v, edges e1, e2, · · · , ei and
subtrees Tv1 ,Tv2 , · · · ,Tvi . In Fig. 3 Tv and T i

v are surrounded by
dotted lines. Clearly T = Tvroot and Tv = T l

v. We denote by T 0
v the

subtree consisting of a single vertex v.

3.2 Algorithm
Our algorithm computes the surplus fTv (λ) and deficit gTv (λ)

for each vertex v of T from leaves to the root of T by means of
a dynamic programming approach, as described in (i)-(iii) below.
From the surplus fT (λ) of T = Tvroot , one can easily find every in-
terval of nonnegative real numbers such that fT (λ) ≥ 0 for every
value λ in the interval. We output the set of all these intervals as
the solution of the partition problem of a parametric tree network
T .

(i) We first compute the surplus and deficit of T 0
v for each ver-

tex v of T as follows. (Remember that T 0
v consists of a single ver-

tex v.) If v is a supply vertex, then fT 0
v
(λ) = sv(λ) and gT 0

v
(λ) = +∞

for every λ. If v is a demand vertex, then fT 0
v
(λ) = −∞ and

gT 0
v
(λ) = dv(λ) for every λ. Since Tv = T 0

v for every leaf v of
T , we have thus computed fTv and gTv for every leaf v of T .

(ii) We next compute the surplus and deficit of a tree T i
v,

1 ≤ i ≤ l, for each internal vertex v of T from those of its subtrees
T i−1
v and Tvi , where l is the number of the children of Tv. Note

that Tv = T l
v and that T i

v is obtained from T i−1
v and Tvi by joining

v and vi as illustrated in Fig. 4.

(ii-1) We first explain how to compute the surplus fT i
v

of T i
v.

Let ni be the number of supply vertices in T i
v. Assume that

��

�
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Fig. 4 Feasible partitions πλ of T i
v.

fT i
v
(λ) , −∞, that is, T i

v has a feasible partition for λ. Let
πλ = (V1,V2, · · · ,Vni ) be a feasible partition of T i

v such that
fT i
v
(λ) = surp(πλ). Then V1 contains the root v of T i

v, as illus-
trated in Fig. 4 where πλ is indicated by dotted lines and a supply
vertex is drawn by a square. There are the following three cases
to consider.

Case (a): vi < V1.
In this case, fTvi (λ) ≥ 0, and πλ induces feasible partitions of

T i−1
v and Tvi . (See Fig. 4(a).) For this case we compute the fol-

lowing function f a
T i
v

from fT i−1
v

and fTvi :
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f a
T i
v
(λ) =

 fT i−1
v

(λ) if fTvi (λ) ≥ 0;
−∞ otherwise.

Case (b): vi ∈ V1, and the supply vertex u in V1 is contained in
T i−1
v .
In this case, fT i−1

v
(λ) ≥ gTvi (λ), and πλ induces a feasible parti-

tion of T i−1
v and a root-feasible partition of Tvi . (In Fig. 4(b) the

arrow attached to edge (v, vi) indicates the direction of power flow
through it.) For this case we compute the following function f b

T i
v
:

f b
T i
v
(λ) =

 fT i−1
v

(λ) − gTvi (λ) if fT i−1
v

(λ) ≥ gTvi (λ);
−∞ otherwise.

Case (c): vi ∈ V1, and the supply vertex u in V1 is contained in
Tvi .

In this case, gT i−1
v

(λ) ≤ fTvi (λ), and πλ induces a root-feasible
partition of T i−1

v and a feasible partition of Tvi . (See Fig. 4(c).)
For this case we compute the following function f c

T i
v
:

f c
T i
v
(λ) =

 −gT i−1
v

(λ) + fTvi (λ) if gT i−1
v

(λ) ≤ fTvi (λ);
−∞ otherwise.

From the three functions f a
T i
v
, f b

T i
v

and f c
T i
v

above, we can now com-
pute fT i

v
as follows:

fT i
v
(λ) = max{ f a

T i
v
(λ), f b

T i
v
(λ), f c

T i
v
(λ)}.

(ii-2) We next explain how to compute the deficit gT i
v

of T i
v. As-

sume that gT i
v
(λ) , +∞, that is, T i

v has a root-feasible partition for
λ. Let πλ = (V1,V2, · · · ,Vni+1) be a root-feasible partition of T i

v

such that gT i
v
(λ) = def(πλ). Then V1 contains the root v of T i

v and
does not contain any supply vertex, as illustrated in Fig. 5. There
are the following two cases to consider.

Case (a): vi < V1.
In this case, fTvi (λ) ≥ 0, and πλ induces a root-feasible partition

of T i−1
v and a feasible partition of Tvi . (See Fig. 5(a).) For this

case we compute the following function ga
T i
v
:

ga
T i
v
(λ) =

 gT i−1
v

(λ) if fTvi (λ) ≥ 0;
+∞ otherwise.

Case (b): vi ∈ V1.
In this case, gTvi (λ) , +∞, and πλ induces root-feasible parti-

tions of T i−1
v and Tvi . (See Fig. 5(b).) For this case we compute

the following function gb
T i
v
:

gb
T i
v
(λ) =

 gT i−1
v

(λ) + gTvi (λ) if gTvi (λ) , +∞;
+∞ otherwise.

From the two functions ga
T i
v

and gb
T i
v

above, we can now compute
gT i
v

as follows:

gT i
v
(λ) = min{ga

Tvi
(λ), gb

Tvi
(λ)}.

(iii) Repeating the computation in (ii) above for each edge (v, vi)
of T , we can compute fT (λ) and gT (λ).

3.3 Computation Time
In this subsection we assume that all the supplies and demands

are piecewise linear functions of a common variable λ(≥ 0), and

��

(a)

��

(b)

Fig. 5 Root-feasible partitions πλ of T i
v.

analyze the computation time of our algorithm.
A breakpoint of a piecewise linear function f is defined to be

a point λ at which the slope of the curve of f changes, and the
number of breakpoints of f is denoted by p( f ). For the sake of
convenience, we assume that λ = 0 is a breakpoint of f . (For
example, p(dv3 (λ)) = 2 and p( fT (λ)) = 5 for dv3 (λ) and fT (λ) in
Fig. 2 where a breakpoint is drawn as a black dot.) Then the size
N of a parametric tree network T = (V, E) is

N =
∑
v∈Vs

p(sv(λ)) +
∑
v∈Vd

p(dv(λ)).

We define P as follows:

P = max
T ′

max{p( fT ′ (λ)), p(gT ′ (λ))}

where T ′ runs over all rooted subtrees of T . Note that fT ′ and gT ′

are piecewise linear functions.
Clearly one can compute the surplus fT 0

v
(λ) and deficit gT 0

v
(λ)

of all vertices v in T in time O(N) as in (i) of Sect. 3.2.
One can compute fT i

v
and gT i

v
for tree T i

v from those for its sub-
trees T i−1

v and Tvi in time O(P) as in (ii) of Sect. 3.2. (Note that
the maximum and minimum of two piecewise linear functions
can be computed by finding the upper and lower envelopes of the
two piecewise linear curves, respectively.) The computation of
(ii) occurs n − 1 times since T has n − 1 edges. Hence, one can
compute fT (λ) and gT (λ) in time O(nP). From fT (λ) one can find,
in time O(P), all intervals such that T has a feasible partition πλ
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for any value λ in each integral. Thus the partition problem can
be solved in time O(nP).

P may be greater than N. (For example, neither the breakpoint
λ = 3 nor λ = 8 of fT (λ) is a breakpoint of any supply or demand
of T in Fig. 2(a).) However, P is often bounded by a polynomial
in N in many practical applications. In particular, if T is a steady
network then P = 1 and hence our algorithm takes time O(n). If
all supplies and demands are staircase functions, then P ≤ N and
hence our algorithm takes time O(nN).

3.4 Bounds on P
In this subsection we assume that all the supplies and demands

of T are piecewise linear functions with integer coefficients.
Let B be the number of breakpoints of supplies and demands,

and let p1, p2, · · · , pB be these points. (For T in Fig. 2(a) B = 3
as indicated by three black dots in Fig. 2(b).) One may assume
that 0 = p1 < p2 < · · · < pB, and let pB+1 = ∞. We now assume
that
(a) if v is a supply vertex and pi < λ < pi+1, 1 ≤ i ≤ B, then

sv(λ) = aviλ + bvi

for some integers avi and bvi (possibly after multiplying them
by the least common multiple of denominators); and

(b) if v is a demand vertex and pi < λ < pi+1, 1 ≤ i ≤ B, then

dv(λ) = aviλ + bvi

for some integers avi and bvi.
Let

W =
∑
v∈V

B∑
i=1

(|avi| + |bvi|).

Then we show that P is bounded by pseudo-polynomial, that is,
P is bounded by a polynomial in W. More precisely, we have the
following lemma.

Lemma. 3 P = O(W2).
Proof. P is the number of breakpoints of fT ′ or gT ′ for some

rooted subtree T ′ of T . Assume that P is the number of break-
points of fT ′ . (The proof for the other case is similar.) Let n′ be
the number of supply vertices in T ′. Let λ be a breakpoint of fT ′
which is none of the breakpoints p1, p2, · · · , pB of supplies and
demands. Then pi < λ < pi+1 for some i, 1 ≤ i ≤ B. Such a
breakpoint λ is a rational number expressed in terms of integer
coefficients of supplies and demands, as follows.
Consider first the case where the function fT ′ is continuous

at λ. Then there are two distinct feasible partitions πλ =
(V1,V2, · · · ,Vn′ ) and π′λ = (V

′

1,V
′

2, · · · ,V
′

n′ ) such that surp(πλ)=
surp(π′λ) and V1 , V ′1; otherwise, λ would not be a breakpoint at
which fT ′ is continuous. (For the continuous breakpoint λ=3 in
Fig. 2(c), πλ = ({v5, v4, v2}, {v3, v1}) and π′λ = ({v5, v3, v1}, {v4, v2}).)
Let u be the supply vertex in V1, and let u′ be the supply vertex in
V ′1. Since surp(πλ) = surp(π′λ), we have

su(λ) −
∑
v∈V1/{u}

dv(λ) = su′ (λ) −
∑

v∈V ′1/{u′}

dv(λ)

Since pi < λ < pi+1, we have

auiλ + bui −
∑
v∈V1/{u}

(aviλ + bvi) = au′iλ + bu′i −
∑

v∈V ′1/{u′}

(aviλ + bvi)

and hence

λ =
−bui + bu′i +

∑
v∈V1/{u} bvi −

∑
v∈V ′1/{u′} bvi

aui − au′i −
∑
v∈V1/{u} avi +

∑
v∈V ′1/{u′} avi

.

Both the numerator and denominator above are integers between
−W and W, and hence the number of such continuous breakpoints
λ is bounded by (2W + 1)2.

Consider next the case where fT ′ is discontinuous at λ. Then
there is a feasible partition πλ = (V1,V2, · · · ,Vn′ ) such that
fT ′ (λ) = surp(πλ) and

su(λ) −
∑
v∈V j/{u}

dv(λ) = 0

for some j, 1 ≤ i ≤ n′, where u is the supply vertex in V j.
(For the discontinuous breakpoint λ = 8 in Fig. 2(c), πλ =
({v5, v3, v1}, {v4, v2}) and j = 2.) Since pi < λ < pi+1, we have

auiλ + bui −
∑
v∈V j/{u}

(aviλ + bvi) = 0

and hence

λ =
−bui +

∑
v∈V j/{u} bvi

aui −
∑
v∈V j/{u} avi

.

Therefore, the number of such discontinuous breakpoints λ is
bounded by (2W + 1)2.

We have thus proved that P ≤ 2(2W + 1)2 + B = O(W2). □

From the lemma above we have the following theorem.

Theorem. 2 The partition problem for a parametric tree net-
work can be solved in time O(nW2) if all supplies and demands
are piecewise linear functions with integer coefficients, where W
is the sum of absolute values of all coefficients of supplies and
demands.

Thus, our algorithm runs in polynomial time if W is polyno-
mial in N.

4. Conclusions
In the paper we first showed that the maximum supply rate

problem for a steady tree network T can be solved in time O(nL),
where n is the number of vertices in T and L is the logarith-
mic size of T . It would be interesting to obtain a strongly
polynomial-time algorithm for the problem, whose computation
time is bounded by a polynomial only in n.

We then gave an algorithm to solve the partition problem
for a parametric tree network. The algorithm runs in pseudo-
polynomial time if all the supplies and demands are piecewise
linear functions with integer coefficients. We assumed for the
sake of convenience that the supplies and demands are functions
of a single variable λ. However, our algorithm in Section 3.2 can
be easily extended to the case where the supplies and demands
are functions of two or more variables.

Kawabata and Nishizeki [10] considered a steady tree network
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in which each edge is also assigned a constant edge-capacity, and
gave a linear algorithm to solve the partition problem. Our al-
gorithm for the maximum supply rate problem in Section 2 can
be easily extended to the case of a steady tree network with con-
stant edge-capacity, and our algorithm for the partition problem
in Section 3.2 can be extended to the case of a parametric tree net-
work in which edge capacity is also a function of λ. Note that our
problems with (constant or functional) edge-capacity cannot be
formulated by the multi-source multi-sink parametric flow prob-
lem or the unsplitable parametric flow problem [2], [3], [4], [11].

If a tree network T = (V, E) has no feasible partition, one would
like to solve the maximum partition problem, which asks to find
a partition of V to subsets such that
(a) each subset contains at most one supply vertex;
(b) if a subset contains a supply vertex, then the supply is no less

than the sum of demands in the subsets; and
(c) the sum of demands in all subsets, each containing a supply

vertex, is maximum among all these partitions of V .
There are fully polynomial-time approximation schemes (FP-
TAS) for the problem on a steady tree network without edge-
capacity [8] and on a steady tree network with constant edge-
capacity [10]. It would be interesting to obtain an FPTAS for
the problem on a parametric tree network with or without edge-
capacity.
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