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Abstract: In this work, we address the topic classification of spoken inquiries in Japanese that are received by a
speech-oriented guidance system operating in a real environment. The classification of spoken inquiries is often hin-
dered by automatic speech recognition (ASR) errors, the sparseness of features and the shortness of spontaneous speech
utterances. Here, we compare the performances of a support vector machine (SVM) with a radial basis function (RBF)
kernel, PrefixSpan boosting (pboost) and the maximum entropy (ME) method, which are supervised learning methods.
We also combine their predictions using a stacked generalization (SG) scheme. We also perform an evaluation using
words or characters as features for the classifiers. Using characters as features is possible in Japanese owing to the
presence of kanji, ideograms originating from Chinese characters that represent not only sounds but also meanings.
We performed analyses on the performance of the above methods and their combination in dealing with the indicated
problems. Experimental results show an F-measure of 86.87% for the classification of ASR results from children’s in-
quiries with an average performance improvement of 2.81% compared with the performance of individual classifiers,
and an F-measure of 93.96% with an average improvement of 1.89% for adults’ inquiries when using the SG scheme
and character features.

Keywords: topic classification, support vector machine, PrefixSpan boosting, maximum entropy, stacked generaliza-
tion

1. Introduction

Improvements in automatic speech recognition (ASR) tech-
nologies have made feasible the implementation of systems that
interact with users through speech. In this work, we address the
topic classification of spoken inquiries in Japanese that are re-
ceived by a speech-oriented guidance system operating in a real
environment. The guidance system is the Takemaru-kun sys-
tem [1], which operates in a public facility and receives daily user
requests for information and collects real data.

The Takemaru-kun system is an open domain system, which
means that the task domain was not set before its operation
started, and users are free to ask the system the information they
want to obtain. Since the system started collecting user’s in-
quiries, they have been analyzed and manually labeled, to define
its task domain. Therefore, we expect the results of the analysis
we present in this work to be applicable to other task domains for
this type of system.

Topic classification has been studied in the field of telephone
call classification for the optimization of call routing [2] and to
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determine the reason for calling [3], [4]. These studies are sim-
ilar to ours since they also deal with speech. In our work, we
study topic classification in the context of an information guid-
ance system, where inquiries tend to be short and the task domain
is wider.

In text-based information retrieval, there have been studies on
the determination of question type in the context of answer se-
lection [5], [6] and also on topic detection and estimation [7], [8].
Since we are using an ASR engine to translate spoken inquiries
into text, these studies share similarities with our work; however,
the classification of spoken inquiries is often hindered by ASR
errors.

In this work, we selected three different types of classifica-
tion methods, (1) a support vector machine (SVM) with a radial
basis function (RBF) kernel, (2) PrefixSpan boosting (pboost)
and (3) the maximum entropy (ME) method, which are super-
vised learning methods, and compared their performance. In the
SVM method, the estimation of a robust boundary known as the
maximum-margin hyperplane is crucial. SVM has successfully
been applied to a wide variety of classification tasks including
speech [3], [5], [6], [9], [10]. The pboost method is for classifica-
tion of sequential data, and it extracts and utilizes discriminative
and sequential patterns in the data [11]. Although the method has
been developed for classification of actions in videos, we intro-
duce pboost for the classification of spoken inquiries into topics.
The ME method is a probabilistic approach based on data distri-
bution. ME has been widely used in natural language processing
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(NLP) tasks [8] as well as in speech classification [4], [5].
Moreover, we combined the predictions from the above differ-

ent types of methods by using a stacked generalization (SG) [12]
scheme and examined the complementary effect. The SG scheme
and similar schemes have also been studied as a means of com-
bining classifier predictions in other classification tasks [13], [14],
[15].

We also perform an evaluation using words or characters as
features for the classifiers. Using characters as features is possi-
ble in Japanese owing to the presence of kanji, ideograms orig-
inating from Chinese characters that represent not only sounds
but also meanings. The use of words or characters has also been
investigated for spoken document retrieval [16], [17], and better
performance was obtained when using words than when using
characters. However, the spoken inquiries in our topic classifica-
tion task are much shorter than spoken documents; hence we are
also interested in evaluating spoken inquiries.

The remainder of the paper is structured as follows: Section 2
describes the Takemaru-kun datasets, Section 3 explains the topic
classification methods compared in this paper and their combina-
tion, Section 4 presents the experiments conducted and an analy-
sis of their results, and Section 5 concludes this work.

2. Takemaru-kun Datasets

We compared the performances of the methods and their com-
bination using the Takemaru-kun datasets.

2.1 Overview of the Takemaru-kun System
The Takemaru-kun system [1], shown in Fig. 1, is a real-

environment speech-oriented guidance system placed inside the
entrance hall of the Ikoma City North Community Center in Nara,
Japan. The system has been operating daily since November
2002, providing information to visitors, including information on
the center facilities and services, local sightseeing, the weather
forecast, news, and about the system agent itself. The system
uses an example-based one-question-to-one-response strategy for
interaction, which fits the purpose of responding to simple ques-
tions from a large number of users. Users can also activate a Web
search feature to search for Web pages over the Internet that con-
tain the uttered keywords.

2.2 Specifications of Datasets
Utterances received by the Takemaru-kun system have been

recorded since it first started operating. Utterances from Nov.

Fig. 1 Speech-oriented guidance system Takemaru-kun.

2002 to Oct. 2004 and from Dec. 2004 to Mar. 2005 were man-
ually transcribed and labeled with their answers along with in-
formation concerning the age group and gender of users. Invalid
inputs such as noise, coughs, laughter and unclear inputs were
also documented. Some examples of inquiries received by the
system are shown in Table 1. The signal-to-noise ratio (SNR) of
the utterances recorded in this period is 38.31 dB.

The Takemaru-kun datasets consist of valid utterances from
children and adults collected in the period indicated above.
Acoustic models (AMs) and language models (LMs) were sep-
arately prepared for children and adults. The AMs were trained
using the utterances collected by the system from Nov. 2002 to
Oct. 2004, and the LMs were constructed using the transcriptions
of the utterances in the same period. Details of the setup for the
AMs, LMs and ASR for children and adults are shown in Table 2.

Spoken inquiries received by the Takemaru-kun system are
usually short, with only a few words per utterance, as shown in
Fig. 2. Because of this and the vocabulary sizes, shown in Ta-
ble 3, features in the utterances tend to be sparse.

The test datasets contain utterances for Aug. 2003 and from
Dec. 2004 to Mar. 2005, and the training datasets include the rest
of the utterances. ASR word correct rates for children’s utter-
ances are considerably lower than those for adults, as it is shown
in Table 4. The frequency of utterances in the datasets for the 15
most frequent topics is shown in Table 5. As can be observed, the
frequency of utterances for each topic is variable, as some topics
are more popular than others.

Table 1 Examples of utterances received by the Takemaru-kun system.

Utterance in Japanese Translation to English Topic
エレベーターはどこ？ Where is the elevator? info-facility
生駒市の地図を見せて Show me Ikoma city’s map info-city
さようなら Goodbye greeting-end
お名前は What’s your name? agent-name

Table 2 Setup for acoustic models (AMs), language models (LMs) and
ASR for children and adults.

AM training tool HTK 3.2 [18]
Acoustic model PTM [19], 2,781 HMMs, 1,965 states,

8,256 mixtures
Acoustic features 12 MFCC, 12 ΔMFCC, Δ E
AM training Baum-Welch, 3 iterations
LM training tool SRILM 1.5.0 [20]
Language model 3-gram, Kneser-Ney smoothing
LM perplexity Children: 16.5, Adults: 9.9
ASR engine Children: Julius 4.0, Adults: Julius 3.5.3 [21]

Table 3 Vocabulary sizes.

Inquiries Feature Children Adults
Transcriptions Word 1-grams 3,610 1,691
Transcriptions Word 2-grams 14,096 4,221
Transcriptions Word 3-grams 19,648 5,375
Transcriptions Character 1-grams 858 709
Transcriptions Character 2-grams 8,998 4,303
Transcriptions Character 3-grams 22,252 7,469
ASR 10-best results Word 1-grams 6,095 3,589
ASR 10-best results Word 2-grams 68,180 22,768
ASR 10-best results Word 3-grams 121,951 31,817
ASR 10-best results Character 1-grams 1,228 994
ASR 10-best results Character 2-grams 26,869 12,865
ASR 10-best results Character 3-grams 97,337 32,126
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Fig. 2 Frequency of utterances by number of words and characters per utterance in (A) children’s training
and (B) adults’ training datasets (ASR 1-best results).

Table 4 ASR word correct rate of the utterances in the datasets.

Children Adults
Training Test Training Test
77.73% 71.59% 91.36% 85.53%

Table 5 Frequency of utterances in the datasets for each topic.

Children Adults
Topic Training Test Training Test

chat-compliments 2,548 1,066 766 194
info-services 884 206 494 89
info-news 529 144 484 137
info-local 709 187 553 70
info-facility 5,007 1,653 1,795 299
info-city 1,006 317 504 93
info-weather 2,947 1,073 1,099 257
info-time 3,911 898 984 187
info-sightseeing 647 142 668 79
info-access 681 142 676 83
greeting-end 4,535 2,125 912 269
greeting-start 6,845 2,629 2,672 723
agent-name 5,381 1,574 1,309 254
agent-likings 4,418 2,260 851 194
agent-age 3,446 1,108 664 157
Total 43,494 15,524 14,431 3,085

3. Topic Classification

The classification of spoken inquiries into topics can be used
to manage the interaction with users and help select appropriate
answers [2]. It can also be used to improve the ASR performance

by applying topic-dependent language models, as was shown by
Lane et al. [22].

3.1 Compared Methods
SVM, pboost and ME have different characteristics. SVM and

pboost are discriminative classifiers which means that they learn a
direct map from inputs to classes without caring about underlying
probability distributions. SVM can deal with nonlinearity owing
to the use of kernel functions, meaning that it can robustly find
boundaries among classes even when data are not linearly sepa-
rable, whereas pboost performs feature selection and classifies by
checking for the presence of optimal discriminative subsequence
patterns in the input. On the other hand, ME is a classifier that
estimates probability distributions from data, allowing multiclass
classification. It also has the advantage that it is not sensitive to
hyperparameter settings, in contrast to the other two classifiers.
3.1.1 Support Vector Machine

SVM maximizes the margin of classification of two differ-
ent classes of data, robustly detecting boundaries between them.
SVM can deal with nonlinearities by using kernels and is appro-
priate for sparse high-dimensional feature vectors. SVM has suc-
cessfully been applied to a wide variety of classification tasks
including speech [3], [5], [6], [9], [10].

In our classification task, the number of utterances for each
topic is unbalanced. We use C-support vector classification (C-
SVC) with a soft margin for unbalanced data. Details of the
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method are described in Ref. [23]. The hyperparameters C+ and
C− are cost parameters that control the importance given to clas-
sification errors in order to implement a soft margin. When the
training data is unbalanced, SVM parameters are not estimated
robustly. By introducing the different hyperparameters C+ and
C−, this problem can be dealt with.

SVM is originally a binary classifier. We used a one-vs-rest
approach for multiclass classification, which constructs one bi-
nary classifier for each topic. Each classifier is trained with data
from a topic that is regarded as positive, and the rest of the top-
ics are regarded as negative. Although SVM can only predict the
topic label and not probability information, the method described
in Ref. [24] can be used to obtain probability estimates or pseudo-
probabilities for each topic. We used this method and classified
new data in the topic with highest pseudo-probability. We se-
lected this approach because in preliminary experiments it had
better performance than the one-vs-one approach for this task.

We used a bag of words (BOW) to represent utterances as vec-
tors, where each component of the vector indicates the frequency
of appearance of a feature. The length of a vector corresponds to
the size of the dictionary that includes every feature in the training
dataset. We used an RBF kernel because in preliminary experi-
ments it exhibited slightly better performance than a polynomial
kernel for this task. The RBF kernel is defined as

κ(�xi, �x j) = exp(−γ||�xi − �x j||2), γ > 0 (1)

where �xi and �x j represent utterance vectors and γ is a hyperpa-
rameter of the function.
3.1.2 PrefixSpan Boosting

Pboost is a method proposed by Nozowin et al. [11] for the
classification of actions in videos. In this work we introduce
pboost for the classification of spoken inquiries into topics.
Pboost implements a generalization of the PrefixSpan algorithm
by Pei et al. [25] to find optimal discriminative subsequence pat-
terns, and in combination with the Linear Programming boosting
(LPboost) classifier, it optimizes the classifier and performs fea-
ture selection simultaneously. Boosting methods form a weighted
majority prediction rule by combining the decisions of several
weak learners, and have also been used for speech classifica-
tion [4], [9].

Details of this method are described in Ref. [11]. Pboost uses
the PrefixSpan algorithm [25] to find optimal subsequence pat-
terns that characterize utterances from a specific topic. For exam-
ple, in the topic info-facility we found the following utterances:
“Where can I find the toilet?” and “Where can I find the library?.”
From these utterances, pboost can determine that an optimal pat-
tern is the subsequence “where find.” As can be seen from this
example, subsequences can also include gaps.

The presence of a single subsequence pattern in an utterance is
called a weak hypothesis and has the form h(�x; �s, ω). Here, �x ∈
{�xi}, �xi ∈ Rn, i = 1, . . . , l is a training vector, �s is a subsequence
pattern and ω ∈ Ω, Ω = {−1, 1} is a variable that indicates if the
sequence is relevant to the positive or negative class.

The classification function has the form

f (�x) =
∑

(�s,ω)∈�̄S×Ω
α�s,ωh(�x; �s, ω) (2)

where α�s,ω is the weight for feature sequence �s and parameter ω
such that

∑
(�s,ω)∈�̄S×Ω α�s,ω = 1 and α�s,ω ≥ 0. α�s,ω indicates the

discriminative importance of a feature sequence.
In pboost, the primal problem formulation implementing a soft

margin for an unbalanced number of samples follows the form

min
ρ,�α,�ξ
−ρ + D+

∑
{i:yi=+1}

ξi + D−
∑
{i:yi=−1}

ξi (3)

sb.t.
∑

(�s,ω)∈�̄S×Ω
yiα�s,ωh(�xi; �s, ω) + ξi ≥ ρ, i = 1, . . . , l

∑

(�s,ω)∈�̄S×Ω
α�s,ω = 1, �α ≥ 0, �ξ ≥ 0

where �xi ∈ Rn, i = 1, . . . , l indicates a training vector, yi ∈ {1,−1}
is a class, ρ is the soft margin separating negative from positive
samples, and D+ and D− are hyperparameters controlling the cost
of misclassification by penalizing the sums of the slack variables
ξi for the soft margin.

Here, we also used a one-vs-rest approach for multiclass classi-
fication, and we classified new data according to the highest value
of the classification function in Eq. (2).
3.1.3 Maximum Entropy

ME is a supervised learning method that estimates probabil-
ity distributions from data [26], by selecting the distribution that
maximizes the entropy. Among the methods we compared in this
work this is the only one that provides probability information,
and is a multiclass classifier by nature. ME has been widely
used in natural language processing (NLP) tasks [8] as well as
in speech classification [4], [5].

Given an utterance consisting of the feature sequence cN
1 ,

where the suffix 1 indicates the first feature of the sequence (word
or character) and N indicates the last feature of the sequence, the
objective of the classifier is to provide the most likely class label
k̂ from a set of labels K, such that

k̂ = argmax
k∈K

p(k|cN
1 ), (4)

where the ME paradigm expresses the probability p(k|cN
1 ) as

p(k|cN
1 ) =

exp
[∑

c

N(c) logα(k|c)
]

∑
k′

exp
[∑

c

N(c) logα(k′|c)
] . (5)

Ignoring the terms that are constant with respect to k yields

k̂ = argmax
k∈K

∑
c

N(c) logα(k|c), (6)

where N(c) is the frequency of a feature in a class, and α(k|c)
with α(k|c) ≥ 0 and

∑
k α(k|c) = 1 is a parameter that depends on

the class k and feature c, and is calculated using methods such as
L-BFGS-B [27] which is a limited-memory algorithm for solving
large nonlinear optimization problems.
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Fig. 3 Training and test procedures in the SG scheme.

3.2 Combination of Methods
Because of the differences in the classifiers we selected for

comparison, we can expect them to compensate each other to im-
prove prediction performance. Because of this, we also compare
them with an SG scheme that combines their predictions.

SG, proposed by Wolpert [12], is a method that combines the
outputs of multiple classifiers using a second-level classification,
minimizing the generalization error of first-level classifiers and
achieving greater predictive accuracy. Its success arises from its
ability to exploit the diversity in the predictions of first-level clas-
sifiers in a particular classification task.

The training and test procedures in the SG scheme are illus-
trated in Fig. 3. In the first step of the training, the predictions of
each of the first-level classifiers for each of the training utterances
are collected to create a new dataset. Cross-validation training is
used for the first-level models to avoid bias when obtaining the
predictions. Each first-level method is trained with 90% of the
data, and the model is used to predict the remaining 10%, until
we have obtained predictions for each utterance in the training
dataset.

In the second step, predictions of the first-level classifiers for
each utterance in the training dataset are used as new data for
training the second-level model. The feature vectors used to train
the second-level model contain predictions of each of the first-
level classifiers for each of the topics. For SVM and pboost, a
position in the feature vector is 1 if an utterance is classified as
positive in the topic represented by that position, and 0 otherwise,
whereas for ME a position contains the probability for the topic
represented by that position.

The test procedure is performed in a similar fashion, but in this
case cross-validation is not needed, since we can obtain predic-
tions for utterances in the test dataset by using models trained
with all the training data.

As a second-level classifier, we selected SVM with an RBF
kernel. We also performed preliminary experiments with SVM

with a linear kernel and with ME and noticed that the results were
not sensitive to the kernel or method. The classification problem
at the second level is much simpler than that at the first level, since
its feature vectors have very low dimensionality. Hence, the de-
cision to use SVM with an RBF kernel was made for simplicity.

4. Experiments

We compared the performances of the methods in the topic
classification of spoken inquiries.

4.1 Experimental Conditions
In our experiments, we used the Takemaru-kun datasets as de-

scribed in Section 2.2. The experimental conditions for the first
and second-level classifiers are given in detail in Tables 6 and 7
respectively. For experiments with the SG scheme, we followed
the procedure described in Section 3.2. We used a one-vs-rest
approach for multiclass classification with SVM and pboost, and
the “# of positive” and “# of negative” variables indicated in the
experimental conditions refer to the number of utterances in the
topic and in the rest of the topics respectively, for each classi-
fier. Optimal hyperparameter values for SVM and pboost were
obtained experimentally using a grid search strategy and were set
a posteriori.

Owing to the considerable amount of computational time
required for the PrefixSpan search-based feature selection in
pboost, we used ASR 1-best results instead of ASR 10-best re-
sults. As explained in Section 3.1.2, pboost can include gaps in
between optimal subsequences. In preliminary experiments, we
found out that this increases the performance when using words
as features; however, when characters are used as features the
performance decreased when gaps are allowed.

The classification performance of the methods was evaluated
using the F-measure, as defined by

F-measure =
2 · Precision · Recall
Precision + Recall

. (7)
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Fig. 4 Prediction error overlap by method for (A) children’s and (B) adults’ utterances using character
features (open test). The number of prediction errors for each method is indicated above the bars
in bold, and the numbers of prediction error overlaps among the methods are indicated inside the
bars.

Table 6 Experimental conditions for the first-level classifiers.

SVM tool LIBSVM 2.9 [23]
Hyperparameters C+ and C+ = (# of negative/total) ×C
C− for each SVM C− = (# of positive/total) ×C
classifier where C+ + C− = C, and

C from 1 × 10−3 to 1 × 103 (powers of 10)
Kernel function RBF kernel
Hyperparameter γ 1 × 10−3 to 1 × 103 (powers of 10), and 0.5
Features Word 1+2+3-grams,

Character 1+2+3-grams
Datasets Transcriptions and ASR 10-best results
Pboost tool pboost 1.0 [11]
Hyperparameters D+ and D+ = (# of negative/total) × D
D− for each pboost D− = (# of positive/total) × D
classifier where D+ + D− = D, and

D = 1/ν
, for ν from 0.001 to 0.100
and 
 = number of training utterances

Max. subsequence length 3
Gaps Allowed for word subsequences

Not allowed for character subsequences
Features Word 1-grams, Character 1-grams
Datasets Transcriptions and ASR 1-best results
ME tool maxent 2.11 [8]
ME model Inequality constraints [28]
Features Word 1+2+3-grams,

Character 1+2+3-grams
Datasets Transcriptions and ASR 10-best results

The F-measure was calculated individually for each topic and
averaged over the frequency of utterances in the topics.

Table 7 Experimental conditions for the second-level classifier.

SVM tool LIBSVM 2.9 [23]
Hyperparameters C+ and C+ = (# of negative/total) ×C
C− for each SVM C− = (# of positive/total) ×C
classifier where C+ + C− = C, and

C from 1 × 10−3 to 1 × 103 (powers of 10)
Kernel function RBF kernel
Hyperparameter γ 1 × 10−3 to 1 × 103 (powers of 10), and 0.5
Features Predictions of the first-level classifiers
Datasets Transcriptions and ASR results

4.2 Performance Comparison
An analysis of overlaps in the prediction error among individ-

ual methods is presented in Fig. 4. The analysis indicates that the
three methods produce some prediction errors that do not overlap
with those of the other methods. Combining the methods makes
it possible to correct some of these errors. On the other hand,
we can observe that SVM and pboost have a higher prediction er-
ror overlap which is understandable since both are discriminative
methods.

We evaluated the classification performance of the individual
methods and their combination and performed a statistical sig-
nificance test using a binomial proportion confidence interval of
95%. Figures 5 and 6 present the results of each method for
transcriptions and the ASR results for children’s and adults’ ut-
terances respectively. The difference in the performance of the

c© 2013 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.21 No.2

Fig. 5 F-measure for each method for transcriptions and ASR results for children’s utterances using (A)
word and (B) character features. The F-measure for each method is indicated above the bars in
bold, and the red line segments represent 95% confidence intervals.

Table 8 Percentage of prediction errors recovered by the SG scheme by
individual method (characters).

Individual Method Children Adults
SVM 20.13% 32.71%
pboost 20.17% 29.70%
ME 13.38% 21.60%

individual methods was not found to be significant in most cases.
However, the SG scheme performed significantly better than the
individual methods. The average performance improvement was
2.81% compared with the performance of individual classifiers
for the classification of ASR results of children’s inquiries and
1.89% for adults’ inquiries when using the SG scheme and char-
acter features. The only case in which a significant improve-
ment could not be obtained was when classifying transcriptions
of adults’ inquiries using either words or characters; however, the
performance was still comparatively high.

In this comparison, the performance of the methods was higher
when character features were used than when words were used,
although the difference was not found to be significant in the sta-
tistical test performed.

The percentage of prediction errors that the SG scheme was
able to correct by an individual method using character features
is presented in Table 8. With both children and adults the SG
scheme was most beneficial for correcting SVM and pboost’s
prediction errors, while less benefit was seen for ME. Table 9
presents the percentage of correct predictions by an individual

Table 9 Percentage of correct predictions misclassified by the SG scheme
by individual method (characters).

Individual Method Children Adults
SVM 2.00% 0.76%
pboost 1.99% 0.86%
ME 4.08% 1.45%

method using character features that the SG scheme misclassified.
Here we can observe side effects from the SG scheme which had
a larger effect on ME predictions. However, these percentages are
low in comparison to the prediction errors that were recovered.

Although pboost has lower classification performance than
SVM and ME in many cases, experiments excluding pboost from
the SG scheme yielded decreases in the classification perfor-
mance. One of the advantages of pboost is that it produces results
that can be interpreted. A grammatical analysis of the discrimi-
native word subsequence patterns selected by pboost showed that
the most important part of speech (POS) for the topic classifica-
tion of utterances is the noun, which on average accounted for
more than half of the words in the selected patterns. This is fol-
lowed by the verb, which accounted on average for nearly a sev-
enth of the words in the selected patterns. Particles, the Japanese
POS that relates the preceding word to the rest of the sentence,
were also selected as discriminative word subsequence patterns
in some cases.

We observed that the optimal hyperparameters for SVM and
pboost are highly dependent on the data. Because of this, the

c© 2013 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.21 No.2

Fig. 6 F-measure for each method for transcriptions and ASR results for adults’ utterances using (A)
word and (B) character features. The F-measure for each method is indicated above the bars in
bold, and the red line segments represent 95% confidence intervals.

same optimal hyperparameters that we found for our datasets may
not be suitable for new datasets, and the hyperparameters must be
tuned. ME does not have this problem since there are no hyper-
parameters that need to be tuned.

4.3 Effects of ASR Performance
The ASR word correct rates for children’s utterances are con-

siderably lower than those for adults which is reflected in the
lower topic classification performance in the ASR results for chil-
dren’s inquiries. This was not evident when classifying their man-
ual transcriptions. At the same time, the SG scheme exhibited
higher performance improvements for children’s utterances.

A comparison between the performance of the SG scheme and
word correct rates for ASR results of children’s and adults’ utter-
ances is presented in Fig. 7. The graphs show a tendency to obtain
better classification performance as word correct rates for ASR
results increase. The proportion of utterances with a word correct
rate below 60% is 32.9% for children, and for adults is 15.1%;
and the difference in classification performance between children
and adults is evident. However, for word correct rates above 60%,
the classification performances between children and adults are
closer. Although some performance improvements were obtained
with character features in comparison to words, this trend is not
consistent.

An analysis of the performance of individual classifiers in com-
parison to ASR word correct rates indicated that pboost is more

affected by ASR errors than SVM and ME. This is mainly be-
cause pboost uses subsequence patterns for classification, and
correct recognition is important.

4.4 Word vs. Character Features
Since kanji characters also include meanings, the use of char-

acters as features for classification of short utterances in Japanese
augments the amount of available information, and hence it can
help to deal with the sparseness of features present in spontaneous
speech. Figure 8 shows a comparison between the performance
of the SG scheme using words or character features and the num-
ber of words per utterance. Although the use of characters yields
higher classification performance in some cases, the tendency is
not consistent, and the differences were not found to be signifi-
cant.

5. Conclusions

In this work, we addressed the topic classification of spoken
inquiries in Japanese that are received by a speech-oriented guid-
ance system operating in a real environment. We compared the
performance of SVM with an RBF kernel, pboost and ME, which
are supervised learning methods, and an SG scheme to combine
their predictions in a second-level classification using SVM with
an RBF kernel. We evaluated the effect of using word or character
features. Using characters as features yielded higher classifica-
tion performances in some cases. Experimental results showed an
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Fig. 7 F-measure of the SG scheme by showing word correct rates for ASR of (A) children’s and (B)
adults’ utterances using word or character features (open test). Numbers of utterances are indi-
cated above the bars inside parentheses. The F-measure for the SG scheme is also indicated above
the bars in bold.

F-measure of 86.87% for the classification of ASR results from
children’s inquiries, with an average performance improvement
of 2.81% compared with the performance of individual classi-
fiers, and an F-measure of 93.96% with an average improvement
of 1.89% for adults’ inquiries when using the SG scheme and
character features.

Future work will be focused on improving ASR performance
of children’s utterances as well as experiments combining charac-
ters and words as features in order to improve topic classification
performance. Since manual data labeling, which is required for
supervised learning, is a costly process and unlabeled data are
usually abundant and cheap to obtain, we are also interested in
the investigation of semi-supervised learning methods to improve
topic classification performance.
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