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Human Body Modeling Based on Pose and Shape Space
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Abstract: In this paper, we propose a method to create a 3D model of a human body using commercial depth cam-
eras. Due to the cheaply available commercial depth cameras, various systems that use 3D scan can now be realized
at natural environment. However, due to the poor quality of raw depth data, instead of using the depth input directly
to create a 3D model, we try to extract the pose and the shape of a person,and then use these information to deform
a template model. We use a parametric body model called SCAPE. SCAPE body model employs a low dimensional
model of shape and pose dependent deformation that is learnt from the database of range scans of human bodies. In
our research, we try to estimate the parameters to model the human body using the Kinect depth information.

1. Introduction
3D model of human is required by various digital applications

such as animation in movies and games, or motion analysis for
medical purposes or even sport activities. This often requires us-
ing commercial 3D scanners which tend to be highly expensive,
and limits the 3D scanning in terms of its uses and place. More-
over, because it is almost impossible for a person to not move dur-
ing scanning process, 3D modeling methods for non-rigid items
often result in errors. Various topics related to human motion
capture is an actively researched topic and ability to do so will
open ways to various other applications in the field of animations,
surveillances, fashion, health-care,etc.

Generally speaking, capturing the shape of an individual stands
as a problem mainly due to the non-rigid nature of the body. In
addition, in any single image, only half of the body is visible, i.e.
if a person stands straight facing the camera, information from
the back part is missing. Other than that, various poses results
in self occlusion, i.e. a part of body is hidden due to occlusion
from some other parts. Because the human body is non-rigid,
even if the person tries not to move, the appearance changes be-
tween two frames, Needless, to mention that human appearances
changes during different forms of movements. Moreover, due to
clothing it becomes very difficult to accurately estimate human
body shape.

Human body modeling often makes use of the model, in which,
various rigid body parts are linked in the kinematic chain. For ex-
ample, to move an arm a total of six degrees of freedom must be
controlled. (three degrees of freedom at the shoulder, one at both
the elbow and and two at the wrist joint). This is just considering
the major joints, if we go on considering the semi movable joints
and muscles then the degree of freedom rises dramatically.

In this paper, we propose a data driven method to model a hu-
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man body using the depth camera. Our system is capable of per-
forming a full body scan in a natural environment. We use the
SCAPE model which is a 3D body model which accounts for
changes in pose and variation in shape between humans. SCAPE
model is learnt from database of scans of various human bodies.
Since the whole set of SCAPE database is not available, we use
3D scans provided by MPI Informatik [1] in order to learn the
deformation model.

2. Related Works
High cost scanners such as [2] provide a high quality and ac-

curate 3D models of human body. But these scanners tend to be
highly expensive costing hundreds of thousands of dollars. For
example, the Cyberware body scanner costs $ 240,000 [2].

Before the availability of commercial depth cameras, multiple
synchronized cameras were often used to estimate the 3D model
[3], [4]. These works use silhouettes from a multi-view image
sequence to recover the skeleton and the 3D surface. This kind
of system cannot be realised in natural environment. Moreover,
it requires knowledge to create the setup and do camera synchro-
nization. We can overcome this using commercial depth cameras,
however only partial view of a person is provided and makes it
difficult to create a 360◦ model.

With the commercial 3D cameras being available, more re-
searches [5], [6] have used 3D cameras for scanning of human
bodies.[5] uses multiple Kinect cameras to capture the human
body. A special set up is required so that the depth cameras
don’t interfere each other. Non-rigid registration is used to bring
the partly scanned body parts into alignment and finally, create
a whole 3D human model. The system is still expensive com-
pared to using a single depth camera and a special setup is re-
quires which makes it troublesome for general people.

Our approach is very similar to [6]’s work. However, they
make use SCAPE model as us. However, we go a step further
to provide a direct control over these parameters. In their ap-
proach it is very difficult to change a attribute without changing
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some other attributes. For example, changing height will incur a
change in body weight. We try to solve for this in our work.

3. An overview of SCAPE
We borrow concept of deformable body model called

SCAPE(Shape Completion and Animation of PEople) that
was proposed back in 2005[7]. SCAPE models human body
in two spaces. The pose space and the shape space. The pose
deformation model captures the changes in the body as a function
of pose. For example, the orientation of legs changes when a
person walks. The beauty of this model lies in the fact that it
captures the non rigid deformation arising due to the change in
the pose of a person. For example, muscles bulging in the biceps
when a arm is bent, or the changes in the underarms during
shoulder movement. These kind of changes are captured under
pose deformation model. The shape deformation model captures
changes in the shape such as height and weight across different
individuals.

3.1 Model Overview
The objective is to model the deformations that transforms tem-

plate mesh X to example meshes Y present in the pose and shape
data set. The SCAPE model uses triangle based deformation [8]
rather than using the direct vertex based deformation. In the
SCAPE model triangle deformations are given by sequence of
linear transformations

( 1 ) Rigid transformations R resulting from change in pose, such
as change in orientation

( 2 ) Non-rigid transformations Q resulting from change in pose,
such as bulging of muscles

( 3 ) Non-rigid transformations S resulting from change in shape
between different subjects

For a given triangle t of the source mesh X containing the
vertices (x1, x2, x3), which corresponds to triangle containing the
points y1, y2, y3 we find a 3 × 3 deformation matrix Mt such that

Mt(~xt,k) = ~yt,k, k = 2, 3 (1)

where ~xt,k represents the edge vector ~xt,k = xt,k − xt,1.
Since, M is given by sequence of linear transformations, we

can write

Mt = Rp[t]StQt (2)

p[t] specifies the body part to which a particular triangle t be-
longs to. Matrix Rp[t] is body part specific, i.e. all the triangles
belonging to same body part have same R.

3.2 Creating a new mesh
Once the rigid rotation for all body parts R, and non-rigid de-

formation matrices Q and S are estimated, these matrices can be
used to recover the example mesh using the template mesh. Sim-
ilarly, for any given R,Q and S a new mesh can be created using
template mesh, such as

arg min
y1 ,··· ,yN

∑
t

∑
j=2,3

‖Rp[t]StQt(~x j,k − ~y1,k)‖2 (3)

This optimization process estimates the best position for the ver-
tices such that resulting mesh will have consistent edge vectors.
Since all the deformations are local, global translational degree
of freedom remains over all triangles.

3.3 Rigid Deformation due to pose
Human body can be modeled as an kinematic chain of articu-

lated body parts. We assume that during a change in pose, these
body parts rotate freely around their joints. This causes the trian-
gles in the body part to undergo changes in orientation. Hence,
we need to solve for the rotation matrix for each body part. Since,
the correspondences between the vertices in template mesh and
example mesh is known, following equation can be used to solve
for the rotation matrix, partwise.

arg min
~y1 ,··· ,~yN

∑
t

∑
2,3

‖Rp[t]~xt,k − ~yt,k‖2 (4)

Rotation matrix in itself is not enough to capture the deforma-
tion caused due to the change in pose. We need the non-rigid
deformation to account for the deformation such as changes in
underarms or muscle bulging, etc.

3.4 Non-Rigid Deformation due to pose
Estimating the non-rigid deformation induced due to pose con-

sists of two steps. First, non-rigid deformations are learnt from
the pose dataset. Secondly, we try to model the non-rigid defor-
mation as a linear function of R.

We use the pose dataset to train the non-rigid pose deforma-
tion model. All the models in the set belongs to the same person,
hence the triangle deformations are induced due to the change
in the pose and the shape factor can be left out. A smoothness
constraint is added which requires that the neighbouring triangles
undergo similar deformation. We can estimate mathb f Qi

t for each
mesh Y i in the pose dataset using least squares solving techniques
and solve for all the Qt in a body part at once.

arg min
Q1 ,···QT

T∑
t

∑
j=2,3

‖Rp[t]Qt~xt, j − ~yt, j‖2 (5)

This concludes the first part, learning the non-rigid deforma-
tion for all training data sets. Next, we assume that the non-
rigid deformation can be expressed as linear function of rigid-
deformations R. Our objective is to predict Qs from the pose,
or from the rigid rotations more specifically. Given any new
pose(not present in the training data set), the model should be
able to predict the deformation matrices Qk.

We learn a linear regression function ak for each triangle which
predicts the transformation matrices Qk as a function of the rota-
tions at the nearest joints.

Let Np[t] be the list of body parts connected to a particular body
part. Then, we calculate relative joint rotation ∆R(p[t],c) for each
joint between body part p[t] and c, cεNp[t], using the absolute
body part rotation Rp[t] and Rc as below.

∆Rp[t],c = RT
p[t]Rc (6)
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Fig. 1 Training Data. Two from pose data set, Template mesh, three from shape dataset,two female and
a male (left to right)

Joint rotation can be represented using exponential map coor-
dinates [9]. Let M denote any 3 × 3 rotation matrix, then it can
be expressed in 3D vector form computed from the following for-
mula.

t =
θ

2sinθ


m32 − m23

m13 − m31

m21 − m12

 , θ = cos−1
(

tr(M) − 1
2

)
. (7)

where t represents the axis of rotation, and θ represents the
magnitude of rotation. We create a column vector ∆rp[t] such that
all the adjacent joint rotations are pushed into the vector. ∆rp[t],c

is the representation of ∆Rp[t],c in the exponential map coordinate
system.

Let qt,i j, i, j = 1, 2, 3 represent the nine elements of matrix Qt.
We express qt,i j as linear function of the relative rotation of the
adjacent joints.

qt,i j = aT
t,i j

 ∆rp[t]

1

 , i, j = 1, 2, 3 (8)

aT
t,i j is a 7 × 1 regression vector, and a constant term is added

to ∆rp[k] . Without this term, zero change in pose will assign null
matrix to Q.

Now, we learn the regression vector at,i j from the Qs learnt
from the pose dataset and solving for the following least squares
problem.

arg min
ai

t,i j

∑
i

ai
t,i j

T
 ∆rp[t]

1

 − qi
t,i j

2

(9)

Given an arbitrary pose whose rotation matrix is given by Rnew
p[t] ,

non-rigid deformation per triangle can be computed using Eq. 8.

3.5 Non-Rigid Deformation due to shape
The deformation matrix responsible for change in shape is rep-

resented as St. In order to calculate the non-rigid deformation
due to shape, we first calculate the deformations induced due to

change in pose. Then, we try to estimate the deformation matrix
accounting for the remaining deformation. After calculating the
shape deformation matrix for each body in the shape data set , we
sought to create a low dimensional model that accounts for the
variations in the body shape.

Similar to the calculation of the non-rigid deformation matrix
Qt, we calculate the deformation matrix S t.

arg min
S1 ,···ST

T∑
t

∑
j=2,3

‖Rp[t]StQt~xt, j − ~yt, j‖2 (10)

Next, we create a low dimensional model that captures the
variation in body shapes among different individual. For every
mesh in the shape data set Y j, we create a vector of size 9 × N
where N is the total number of triangles in a mesh. The body
shape deformations S t for all the triangles is concatenated into
this single column vector ~s j, and a new matrix is created such
that the concatenated vector becomes the column vector of ma-
trix. Sshape =

[
· · · , ~s j, · · ·

]
. Our mesh contains 12,000 triangles,

the body shape is specified using 108,000 parameters. We use
PCA to find a reduced dimension subspace that is able to charac-
terize the variations in the body shapes.

~̂s = U~β j + ~µ (11)

Here, µ is the mean of the shape deformation, the columns of the
U are the principal components given by PCA. The β represents
the PCA coefficients.

4. System Overview
The objective of our system is to capture the

shape(height,weight,etc) and pose(standing,sitting,etc) of a
person in the depth map. Commercial depth camera is used to
capture the subject. We use a parametric body model to represent
the human body. Furthermore, available tracking algorithms are
used to estimate the parameters required to deform the template
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model. The objective of our system is to capture the variation
in body shapes and is unable to capture the clothing. Moreover,
the subject is required to wear tight fittings in order to accurately
estimate the parameters.

5. Sensor
We use Microsoft Kinect [10] to capture the input data. How-

ever, models created using laser scanners are used to create the
template model. The Kinect consists of an IR camera, a RGB
camera and a IR laser projector that projects specific patterns of
laser. It captures a 2D color image and 3D depth map at the rate of
30fps. The images and depth data can be captured using official
MicrosoftSDK or other available libraries such as OpenNI[11].
These cameras can be operated at natural environments. And in
general performance is not affected by lightning conditions.

6. Fitting the model to depth input
The SCAPE is a parametric model, described by a set of pose

parameters θ which accounts for the orientation of the body parts,
global position of body parts, shape coefficients ~β. Our objective
is to find a way to estimate these parameters from a given depth
input.

6.1 Estimation of the pose deformation parameters
We make use of the generally available algorithms for pose

tracking such as the one from the Microsoft SDK[12]. We make
no rigorous claims about these tracking algorithms. We under-
stand that these algorithms have limitations and may not be able
to give accurate results for poses that incurs self occlusions. From
the standard tracking algorithms we can track 14 joint positions
Fig.2. We need to pay attention that these joints may not neces-
sarily refer to anatomical joints. For example there is no joint at
the centre of the torso or at head. These joints specify the centre
of mass for such body parts. Moreover, the joints available from
these tracking algorithms are not identical to the joints present in
our template mesh or training dataset. However, this is not much
of a problem for two main reasons:

(a) We are just interested in orientation of body parts and not
the position of joints in itself.

(b) These joints can be used indirectly to infer the orientation of
the joints in the template mesh.

Now we try to find the local rigid rotation such that input body
parts would align with the template mesh.

6.2 Orientations
OpenNI and MicrosoftSDK1.5(and further) provided the joint

orientation information for the joints tracked by the tracking al-
gorithm. The joints orientations provided by OpenNI are global
orientations relative to the standard T-pose, i.e. if the user stood
in an ideal T-pose , all joint orientations will be identity matri-
ces Fig.2. To be even more precise about how the arm is ori-
ented in this ideal T-pose, the upper arm should be twisted in a
way so that if the elbow is flexed, the lower arm should bend
forwards towards sensor. Nevertheless, it should be noted that

Fig. 2 Joint Orientation from OpenNI

OpenNI has certain limitations to track the joint orientations. For
example, when a person stands in a standard T pose, and rolls the
arms, it would be difficult to notice the movements. Furthermore,
the depth value at the joints would not change much, therefore
OpenNI cannot distinguish such movements. Moreover, orienta-
tion at endpoints(head,wrists,ankles) of the articulated chain are
not available. Therefore, in our implementation we assume that
the orientation of endpoint is same as that of it’s parent. How-
ever, the orientation provided by OpenNI cannot be used directly
in our model. We need to find the relative rotation from template
pose to the given pose. We capture a pose that is similar to that of
template. While it is difficult to capture a pose that is exactly the
same as the template pose, we choose a pose that minimizes the
error. We find the inverse of the orientation for the pose that is
similar to the template pose. Using this orientation, we compute
the relative rotation from this captured template pose to any given
pose.

The relative rotation quaternion gives the parameters that ac-
counts for the orientation of the body parts. Now, we have the
relative orientation for each body part, we can use the regression
vector learnt from the pose data set to infer Qs for the given pose
using Eq 9.

6.3 Estimation of shape deformation parameters
Our objective is to estimate the n PCA coefficients, so that the

shape of the subject can be estimated using the principal compo-
nents of the shape deformation matrix. We can simply change the
template model by changing the PCA parameters. However, it is
difficult to direct the change in only one direction. For example,
the first PCA parameter changes a captures axis of variation from
small to big, thin to fat, the second PCA parameter captures the
variation in height, etc. The modification of a single PCA param-
eter will simultaneously modify other features that are naturally
plausible. Such as change in height may lead to change in gender.
So, even though principal component analysis helps to character-
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ize the space of human body variation, it doesn’t provide with a
direct method to control specific variation. For example, chang-
ing a height of a person will change weight of a person. There-
fore, we discuss a direct way to control the characteristics of body
shape with specific parameters. We follow a method similar to
[13]. Fortunately, the database provided to us [1] also contains
the attributes for each scan such as height, weight, breast girth,
waist girth, hips girth, leg length and other data for each scan.
By learning a linear mapping we can control the PCA parameters
and the physical attributes, we can get a greater control over the
induced changes.

We create a linear mapping between these two spaces. The lin-
ear mapping can be represented by (k)× (n+ 1) matrix L where k
is the number of PCA parameters and n is the number of physical
attributes, 7 in our database.

L[ f1 f2 · · · fn 1]T = b (12)

where fn are tha values of physical attributes, b are the corre-
sponding PCA coefficients.

L = BF+ (13)

F is the matrix whose columns contain physical attributes of each
subject. Similarly, B contains PCA coefficients of each subject as
its columns. F+ is the pseudoinverse of F. Now, we can create
an average person with given set of characteristics as shown in
Fig.3.

Fig. 3 Both are creates using same weight but different height,difference in
height is 20cm

Moreover, we can specify amount of change to any given
model as

∆ f = [∆ f1 ∆ f2 · · · ∆ fn 0]T (14)

where ∆ fn is the targeted amount of change in an individual. For
example, if we want to increase the height of a person by 10cm
then ∆ fheight = +10 and so on. The L matrix can be used to calcu-
late the resulting change in the PCA weight and can be added to

the PCA weights. We can change the attributes of the individual
such as increase in height, decrease in waist girth,etc. Fig??

∆b =M∆f (15)

In our implementation, we produce an initial mesh with given
weight and height. Then, we make further changes to the mesh
depending on other attributes.

6.4 Measurements with Kinect
We use depth map from Kinect to infer the body measurements

of the person. For example, we can get a a rough estimation of a
person’s height by taking the difference between the top pixel and
bottom pixel of the user. We understand that there exists error in
such estimation. However, for initial estimation this is enough.
Similarly, we take the waist measurement of the subject. Unlike
measurement of height, waist involves taking two different poses.
Once, the subject is facing the camera and when the user faces
his back towards the camera. This gives us an estimate of waist
of the subject. Using these measurements, we create our mesh.

7. Results
We make a person stand in front of the depth camera such that

the whole body, i.e. from head to foot is visible. We estimate
the height of the person and make the person turn and then cal-
culate the waist circumference. Since, the person has moved the
pose of the person changes, i.e. position of the waist has changed.
Nevertheless, we use this measure to create the mesh. Fitting the
pose of the subject to the template mesh is shown in left of Fig.
4. Similarly, the right shows the mesh constructed from the pose
and shape of the subject. We assume that the shape of a person
does not change. Therefore, we make an estimate of shape only
once. Later, the shape parameters are re-used while constructing
new meshes for same person.

Accuracy
Since we don’t have ground truth to test the accuracy, we test

for the accuracy of the given mesh, by comparing it with the RGB
image provided by the Kinect. We overlap the produced new
mesh in the image and see how accurate is the testing. More-
over, the quality of mesh itself is an indicator. The areas around
the joint has not undergone smooth deformation, which will be
focused in our future work.

8. Conclusion and Future Work
We have presented a method for estimating 3D human shapes

using the depth cameras and existing motion tracking algorithm.
However, spaces for further improvement lies in our work. First
of all , the measurements we use from Kinect are not correct. For
now, we just use the the height and waist measurements because
this is easier to infer from standard tracking algorithms. For more
accurate capture, other measurements such as breast circumfer-
ence, hip circumference, etc. can be used. Since, the laser scans
already provide us with these data, an estimate of these attributes
will lead to more accurate mesh.

Secondly, after an initial estimate of a body shape, a more accu-
rate body shape can be achieved by a direct comparison between
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Fig. 4 Comparision with the image and output mesh

the point cloud input from depth cameras and the mesh. For this,
an optimization will be necessary which decreases the difference
between the point cloud and the mesh. Our future work should
address the problem.

We hope that realization of such a system will open doors to
many applications in different fields such as in animation, games,
or virtual dressing rooms. Our system can be used at normal en-
vironments. Moreover, compared to previous work, our approach
strikingly decreases the number of parameters (to be estimated),
which makes our system computationally cheap. Hence, for most
of the part our system can be realised closer to real time.
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