はじめに

これまでに地磁気センサ・加速度センサを用いて，製造工場における工員のルーテ

てい
 には不向きだが，回転運動を主とする動作に関しては高い精度でモニタ可能で とが分かつた。地磁気•加速度センサを用いた作業モニタ技術の適用先の1
従来，スポーツ選手の動作をモニタする方法としては，ビデオカメラを利用する方

処理が必要となることからリアルタイムなモニタが難しい点や，選手を撮影するため に複数のカメラが必要であり，それらは固定されていなければならない，等の制約が ある，それに対して，地磁気•加速度センサを用いた場合，各回の選手の動きの違いを
 ことから測定上の制約も少ない。また，マーカを用いない方法［6］では，要求される精度が得られない。

 リングから得た測定要求項目を基に，複数の地磁気•加速度センサとビデオカメラを
連動させたシステムの設計について述べる。最後にまとめを述べる。
 †岩手県立大学大学院ソフトウェア情報学研究科
Faculty of Software and Information Science，Iwate

[^0]
 が十分に高いことを確認した。また，選手とコーチからヒアリングを行い，測定要求項目
として，アプローチ算始から踏み切りまでの速度，踏み切り付近での選手のフォーム，踏
な切り位置でジャンプした選手の姿勢の傾きであることを確認した。我々は測定要求項目
こ対して，複数の地磁気•加速度センサとビデオカメラを連動させたモニタリングシステ
ムを新たに開発し，スキージャンプ競技の練習に適用している。本稿ではその設計につい
て述べる．

A Design of Ski Jumper＇s Motion Monitor System by Terrestrial Magnetism and Acceleration Sensors

Masaki Oikawa ${ }^{\dagger}$ Nobuyoshi Sato ${ }^{\dagger}$

Tsuyoshi Takayama ${ }^{\dagger}$ Yoshitoshi Murata We have confirmed that terrestrial magnetism and acceleration sensors are useful to measure ski jumper＇s inrun descending speed and taking－off positions using a model of ski jumping ramp．Also we gathered required measurement by inquiring a ski jumping athlete and his coach．As this result， we confirmed following measurements：inrun descending speed，jumper＇s style and posture at jumping point，and slant of body of the jumper when he is flying．We are developing a ski jumper＇s motion monitoring system using terrestrial magnetism，acceleration sensors and video camera which enable to monitor such measurements．In this paper，we describe its design．
抗を小さくすることにより速度を上げることになる．
（2）踏み切り：踏み切りタイミング（踏み切り位置）と方向および力（加速度）．踏み
切りによって，飛距離が大きく右される．
（3）空中姿勢：飛型の適正化とそれに持っていくまでの時間．飛型を適正化し，空気抵
抗を小さくするとともに，選手の前方からの空気の流れを利用して揚力を得るた
め，空中姿勢は飛距離を左右する．飛型が適正化されたあとは静止しているのが
ベストとされる．また，飛行中の風向きなども飛距離を大きく右する．
（4）着地：テレマーク姿勢．着地の姿勢が美しいがどうかも採点の基準となる．

プ台に関しては，周囲に障害物が少ないことから，無線 L A N の基地局を適切に すれば，数 +cm の精度で位置を測定できる可能性はある。RFIDの利用に関しては， シュ状にRFタグを床等に埋め込んで位置を測定する研究が行われている［9］． の動作を推定する方式としては，加速度センサを利用した方法，加速度センサと気センサやジャイロセンサを組み合わせた方法，ビデオカメラを利用した方法な ある。梅本らは加速度センサを利用し，同一動作を繰り返し実行可能か測定して ［10］．我々は，加速度センサでは連続的に動作をモニタリングすることが困難で ことから，地磁気センサから回転運動量を抽出すると共に加速度センサの出力と合わせて，自動車工場における工員の作業をモニタリングする研究を行ってきた 2］［3］［4］．その結果，ルーティン作業における動作は毎回ほぼ同じであり，適切な値を利用することにより通常と異なった動作を行った事をリアルタイムで検出可 あることを確認している。しかし，動作における動作速度の違いやタイミングの についての考察は行っていない。谷口らは，複数のビデオカメラを用いて人の動 リアルタイムにキャプチャする研究を行っている［11］．身体の上にカラーマーカ けた上で複数のビデオカメラが必要であり，画像処理のために多大な処理能力を るコンピュータが必要となっている。ビデオカメラを利用したモーショントレー スポーツにも適用されている。J．M．Baduraらは， 8 台の高速カメラを利用して野球 ッチャーのフォームがフラットなグランドとピッチングマウンドで異なることを している［12］．瀧らはスポーツ競技者•指導者の利用を目的とした情報技術（映像 の活用事例について述べている［14］．スポーツ競技者•指導者を対象に，映像情術の活用観点を重視した，トレーニング支援を実現するために，運動情報の可視掲示システムについて提案•設計を行っていることを確認した。先行研究として， ージャンプ競技に関する選手の動作モニタへの地磁気•加速度センサの適用可能検討した［13］．模型を用いた選手の滑走速度や踏み切り位置の測定を行った結果，可能性が十分に高いことを確認した。

スキージャンプのモニタに要求される項目

図 2 に示す

する形で測定するに当たり，適用範囲について検討する。具体的な適用範囲としては，
本番向けか練習向けかである．本番向けにおいては，スキージャンプ競技ルールによ
り身体の各部位にセンサなどのモノを装着することはできない決まりになっている．
よって本番における選手のフォーム変化を地磁気•加速度センサで測定することは実
質不可能である．一方，練習向けにおいては，特に決まった制約はなく，測定する上
で身体の各部位にセンサが装着可能であることを確認した。よって本稿では練習向け
における選手の競技力向上に繋げるためのシステムを提案•設計をする．

4．システム設計

 た

4.1 地磁気•加速度センサとUSBカメラ

地磁気•加速度センサは，アイチ・マイクロ・インテリジャントの AMI－601CGを利用している。このデバイスは，ワンチップの地磁気•加速度と，無線送信部，バッテリ （Magneto－Impedance，MI）効果を利用する MI センサである。加速度センサは，ばねによ つて保持された磁石の変位を地磁気測定用とは別の MI センサを用いて測定される．
 も計算される．地磁気•加速度センサは無線を通じて送信される。送信されたデータ は USB 接続の受信器によって受信され，PC にデータが取り込まれる。設計に用いた地磁気•加速度センサを図 1 に示す。また，実測地における地磁気•加速度センサの受信範囲を確認するため，選手とコーチが夏場のスキージャンプ練習のために活用して いる練習競技場に赴いた。受信範囲を確認するため，踏み切り地点の先端に地磁気•加速度センサを設置し測定を行った。測定結果として，図3 が示すように，踏み切り地点の先端から 5.0 m までの範囲をセンス可能であることを確認した。

USB カメラは $40[$ Frame $/ \mathrm{sec}]$ での撮影が可能なものを利用している。これは，地磁気•加速度センサのサンプリングレートとUSBカメラのフレームレートを一致させた測定を実現するためである。両者を一致させて測定することで測定データを見直す際 に地磁気•加速度センサのデータとの照合が容易になる。設計に用いた USB カメラを

図 5 測定アプリケーションプログラムの実行結果
 トロール部分は，Level 2 の MFC のダイアログクラスをベースに動作し，複数のセンサ間で同期を取りながら測定する構成である。ビデオカメラ入出力部分は Level 1 の DirectShow クラスと Level 2 の OpenCV クラスからの構成になる。OpenCV クラスは大量のフレームをキャプチャすると動画の途中が途切れる不連続な出力をすることが
 を受け渡しする共通性をもつている OpenCV クラスと相性の良い DirectShowクラス を用いた。画像処理はクラスライブラリの関係上 OpenCV クラスの方が適している

よって図 4 が示すように，DirectShowにはフレームキャプチャ処理を行わせ，キャプチ ャしたフレームに対する画像処理は OpenCV に処理させた設計構成としている。 ロール部分を示し，図 5B はUSBカメラの出力部分を示している。複数の地磁気•加速度センサの測定コントロール部分の機能として，＂測定開始＂ボタンをクリックして から，＂測定終了＂ホタンをクリックするまでの地磁気及び加速度の連続し CSV ファイルに保存する．USB カメラ出力部分の機能として，図 5A の地磁気•加速度 センサの測定コントロール部分の＂測定開始＂ボタンをクリックすると，録画が開始さ れる。同測定コントロール部分の＂測定終了＂ボタンをクリックすると録画が終了し， AVIファイルに保存する。

現段階において，複数のセンサと USB カメラを連動させての測定は可能である。し かし，選手やコーチが本測定アプリケーションを使いやすくするためのユーザインタ ーフェースの考慮や，測定したデータをいない。今後はこれらの課題を踏まえ，設計•実装を行ら。
機能を持つ。以前に述べたように検証範囲は，スタート開始地点から踏み切り地点終了までとし，検証範囲における選手のフォーム変化を確認することができる。検証時 には，地磁気•加速度センサ部分と USB カメラ部分を平行動作させ，スタート開始地点から踏み切り地点までの選手のフォーム確認を 25 ms 間隔（地磁気•加速度センサ），対して USB カメラは 1［Frame］間隔で測定データの見直しを同時に行える構成として いる。検証アプリケーションの構成図を図6に示す。

図 6 の構成図より，地磁気•加速度センサ部分では，Level 1， 2 の階層をベースに，グ ラフ描画，特徴ベクトル抽出の処理をする設計構成としている。なお，前節でも述べ たとおり，本稿ではシステム全体の設計に焦点を入れており，選手のフォーム変化に関係する特徴べクトルの抽出などの細かい機能はできていない。USB カメラ部分では， Level 1，2（DirectShow クラス，OpenCV クラス）をベースに，録画されたビデオデータ （AVI 形式）を再生，停止，コマ送り処理をするような設計構成としている。実装した プログラムの出力例を図7に示す

図 7 のプログラムの出力例より，図 7A が地磁気•加速度センサの出力部分を示し，図 7B が USBカメラの出力部分を示している。図 7A に示したプログラムの出力例の機能として，図 7A のファイルメニューから，（1）「ファイルを開く」 \rightarrow（2）「指定したフ アイル名（CSV 形式）」を選択し実行すると，図 7A のエリアに指定された CSV ファ イルに対するグラフ描画を行う。同時に図 7B のエリアに，グラフ描画された CSV フ アイルに対応するビデオ動画データ（AVI形式）を読み込む。以上（1），（2）をもら一度繰

Networking，Applications and Systems（TeNAS2008），in conjunction with The IEEE 22nd International Conference on Advanced Information Networking and Applications （AINA2008），pp1480－1485．（2008）

佐藤永欣，小田島昌一，鈴木潤，石川泰二，村田嘉利，『地磁気•加速度センサを利用し た作業トレースシステムのプロトタイプ』，第 135 回マルチメディア通信と分散処理研究会，情報処理学会研究報告，Vol．2008，No．54，pp．153－158（2008．6）

Nobuyoshi Sato，Shouichi Odashima，Jun Suzuki，Taiji Ishikawa，Yoshitoshi Murata， ＂Prototype of a Workers＇Motion Trace System using Terrestrial Magnetism and Acceleration Sensors＂，The 2nd International Conference on Network－Based Information Systems，（NBiS2008），to be appeared．

Yoshitoshi Murata，Nobuyoshi Sato，＂Production Management System in an Assembly Plant by Terrestrial Magnetism Sensors＂，Fifth International Conference on Networked Sensing Systems（INSS2008），pp．27－30．（2008）
．Yonemoto，A．Matsumoto，D．Arita，R．Taniguchi，＂A Real－time Motion Capture system with Multiple Camera Fusion＂，Proc．of International Conference on Image Analysis and Processing（ICIAP）．pp．600－605．（1999）

M．M．Trivedi，K．S．Huang，I．Mikić，＂Dynamic Context Capture and Distributed Video Arrays for Intelligent Spaces＂，IEEE Transactions of Systems，Man，and Cybernetics Part A：Systems and Humans，Vol．35，No．1，pp．145－163．（2005）
．Bah1，V．N．Padmanabhan，＂RADER：An In－Building RF－based User Location and Tracking System＂Proc．of IEEE INFOCOM 2000，pp．775－784．（2000） ．Kitasuka，T．Nakanishi，A．Fukuda，＂Wireless LaN Based Indoor Positioning System WiPS and Its Simulation＂，Proc．of 2003 IEEE Pacific Rim Conference on Communications， Computers，and Signal Processing，pp272－275．（2003）
小倉正利，峰野博史，寺島美昭，德永雄一，水野忠則：RFIDを利用した物品管理システ ムの精度向上手法に関する研究，情報処理学会マルチメディア，分散，協調とモバイル
（DICOMO2007）シンボウム論文集，pp．1793－1799（2007．7）
［10］梅本功太，西垣正勝：人間の動作を用いた認証方式に関する検討，情報処理学会マルチメ
［11］Yonemoto，S．Matsumoto，A．Arita，D．Taniguchi，R．－I，＂A real－time motion capture system with multiple camera fusion＂，in Proc．of International Conference on Image Analysis and Processing，1999．pp．600－605．（1999）
［12］J．M．Badura，W．G．Raasch，M．P．Barber，G．F．Harris，＂A Kinematic and Kinetic Biomechanical Model for Baseball Pitching and its Use In the Examination and Com
parison of Flat－Ground and Mound Pitching＂，IEMBS 2003，Sep．2003，pp．1803－1806

及川正基，佐藤永欣，村田嘉利：「地磁気および加速度センサによるスキージャンプ選手
の動作モニターシステムの提案」，第 16 回マルチメディア通信と分散処理ワークショップ論文集，Vol．2008，No．14，pp79－84（2008．12）

14］瀧剛志，長谷川純一，北川薫，「「スポーツ競技における運動情報の可視化」， f（fit2007 の目次に掲載されていなかった）

5．まとめと今後の予定

動による測定システムの提案，設計について述べた。現段階では複数の地磁気•加速

見段階では，選手のフォーム変化に対する膝や腰などセンサが装着された部位ごとの角度を求める上での基礎データとして，地磁気•加速度センサの測定値からのグラフ

本稿で使用している地磁気•加速度センサの受信範囲は 5.0 m のため，現在は 踏み切り地点（図 3）における選手のフォームの変化を測定することに焦点を入れた測定选手のフォーム変化の測定のために必要であるなら本研究で使用している地磁気•加速度センサよりも受信範囲の広いセンサへの検討を考慮する。しかし，本研究では地磁気•加速度センサがスキージャンプ競技に対してどのくらいの適用可能性 があるのかをまだ検証していない。よって今後は，実際の測定環境における選手のフ オーム変化のデータを取得•解析をかけた後に，選手とコーチを交えたデータについ ての意見交換をしながら適用可能性を検証していく，現段階では実際の測定環境での選手のフォーム変化の測定テータが無いので，ますは並行して，選手のフォーム定化を求める上での評価方法を考案していく。参考文献

1］Nobuyoshi Sato，Yoshitoshi Murata，＂Quality Control Schemes for Industrial Products

[^0]: Faculty of Software and Information Science，Iwate Prefectural University

