1．はじめに

$$
\begin{gathered}
\text { 近年, パーソナルコンピュータやPDA などの情報端末にとどまらずゲーム機や携帯 } \\
\text { 電話など, データ通信手段として無線LANを利用する機器が増えてきている. また, }
\end{gathered}
$$電話など，データ通信手段として無線 LANを利用する機器が増えてきている。また，

 る技術として，無線 LANメッシュネットワーク［1］［2］（Wireless LAN Mesh Network，以下 WMN）がある．WMN の概念は，複数の無線 LANアクセスポイント（Wireless LAN Access Point，以下 AP）間を無線通信で接続することにより，バックボーン回線を構築可能とするものである
WMN における既存研究では，隠れ端末や晒し端末の問題［3］，輻輳制御［4］，QoS，

 ある場合を想定していることがほとんどであり，より実環境に近い不規則に配置され た場合の研究事例は無い
しかし，WMNが実環境へ適用される段階になった場合に，APが規則的に設置され

 ットワークの構築を行う方法を提案する。
本稿の流れは以下のようになる。まず，WMN の概要を説明し，シミュレーション実験によって実用化段階で起こりらる問題点を明示する。その後，対処手法の提案と説明を行い，最後に今後の方針について述べる。

2．無線 LANメッシュネットワーク

 トが格子状に配置され密度が一定になることは考えにくい，そことで，本稿では興線 LANメッシュネットワーク方式に対して不規則にメッシュポイントが配置さ
環境を考慮したクラスタリングによる無線 LAN メッシュネットワーク構築方式

A Method to Construct Wireless LAN Mesh
 Networks in Real Environments

REIJI ENDOH ${ }^{\dagger}$ YOH SHIRAISHI ${ }^{\dagger}$

OSAMU TAKAHASHI ${ }^{\dagger \dagger}$
Wireless LAN Mesh Network has been researched generally．In case of evaluation，the mesh points are arranged in a grid pattern and uniformity density．However，it is not practical use stage of Wireless LAN Mesh Network．So，in this paper evaluate the ． We point out problems based on partially short distance link．Then we propose a method to construct Wireless LAN Mesh Networks in real environments．
とパケットドロップ数の比較を行った。また，MP 間のルーティングプロトコルとし
て，リアクティブ型とプロアクティブ型で性能に差が出る可能性があることを考慮し
て，リアクティブ型はAODVを，プロアクティブ型はOLSRを用いて評価する．
実験パラメータは表 1 に示す。不規則な配置においてMP MP 数を規則的な配置と同じ
にした場合，MP 間の距離が離れすぎてしまい通信不可能になる結果が想定されるた
め，不規則な配置における M 数を増やして比較することとする．
表 1 実験パラメータ

規則的な配置，不規則な配置それぞれにおける MP の位置を図 3，図4に示す。

図 4 不規則な配置
 び MP_{9} がデータの生成を行っており，黒の塗り潰しがされている MP_{1} がそのデータを受け取るように設定している
間のグラフは，縦軸が遅延時間（sec）で，横軸が評価時間（sec）となっている，ト ロップパケット数のグラフは，縦軸が 1 秒間あたりにドロップしたパケットの個数で

図 2 には WMNの概要図を示す。メッシュポイント（Mesh Point，以下 MP）は WMN のノードであり，受け取ったフレームを転送する機能を備えている。メッシュアクセ スポイント（Mesh Access Point，以下 MAP）は MP がアクセスポイントの機能を有し たものであり，STAはMAPを介してWMNに接続を行う，メッシュポイントポータ ル（Mesh Point collocated with a mesh Portal，以下 MPP）は MPが有線ネットワークへ
 ークへ接続される。MP•MAP•MPP はアドホックネットワーク（Ad－hoc Network） によって接続されており，それにより無線のバックボーン回線を構築している。STA は MAP に収容されるが，この収容するネットワークをインフラストラクチャネット
ワーク（Infrastructure Network）と呼んでいる．

置されている環境で，MPを物理的に移動させないことを条件とする。

一般にこれまでの研究例では，WMN の性能評価を行う場合，MP および MAP•MPP
合が良いように配置されることが予想されるため，MP などの配置が規則的になるこ とは考えにくい。同様に，情報家電ネットワークへ応用［8］する場合には，端末の密度 は場所によって異なるようになり，規則的な配置とはほど遠い配置となりうる。

3．MP の配置と性能の関係

3.1 評価環境

MP（以下では簡略化のために MPとMAPを含めてMPと記す）を規則的な配置で はなく不規則に配置させた場合に起こりうる問題点を明示するために，OPNET［9］を用象としているため MP が直接データの生成と受信を行うこととし，End－End 間の遅延
$\operatorname{Com}\left(\mathrm{MP}_{3}, \mathrm{MP}_{1}\right)$ も， $\operatorname{Com}\left(\mathrm{MP}_{9}, \mathrm{MP}_{1}\right)$ も共に平均して約 2 ホップの通信であっ た。図 7 から，遅延時間は安定しており，その値は前記（1）の図5の2つの値の平均

MPを図 4 のような不規則に配置し，ルーティングプロトコルとしてAODVを用い た場合におけるシミュレーションを行った。

図 9 平均遅延時間（不規則，AODV）図 10 ドロップパケット数（不規則，AODV）
$\operatorname{Com}\left(\mathrm{MP}_{3}, \mathrm{MP}_{1}\right)$ も， $\operatorname{Com}\left(\mathrm{MP}_{9}, \mathrm{MP}_{1}\right)$ も共に平均して約 3 ホップの通信であっ た。図9から，Com（ $\mathrm{MP}_{3}, \mathrm{MP}_{1}$ ）の平均遅延時間が $\mathrm{Com}\left(\mathrm{MP}_{9}, \mathrm{MP}_{1}\right)$ の場合よりも大きくなっていることがわかる，これは $\operatorname{Com}\left(\mathrm{MP}_{3}, ~ \mathrm{MP}_{1}\right)$ の通信経路上で中継して いる MP への負荷が高まってしまったことが原因であると考える。また，図 10 では パケットのドロップは確認されなかった。
置し，ルーティングプロトコルとしてOLSRを用い た場合におけるシミュレーションを行った。横軸が評価時間（sec）となっている，
（1）規則的な配置で AODV を用いた場合
MPを図3のような規則的な配置にし，ルーティングプロトコルとしてAODVを用 M

図 5 平均遅延時間（規則的，AODV）図6 ドロップパケット数（規則的，AODV）
Com（ $\mathrm{MP}_{3}, \mathrm{MP}_{1}$ ）は平均して約 2 ホップの通信で， $\operatorname{Com}\left(\mathrm{MP}_{9}, \mathrm{MP}_{1}\right)$ は平均して約 3 ホップの通信であった。図 5 から， $\operatorname{Com}\left(\mathrm{MP}_{3}, ~ \mathrm{MP}_{1}\right) ~$ よりも $\mathrm{Com}\left(\mathrm{MP}_{9}, ~ \mathrm{MP}_{1}\right)$ の平均遅延時間が大きいことがわかり，そこから遅延は距離（ホップ数）に応じて増 えているといえる．また，図 6 ではパケットのドロップは確認されなかった。
MPを図3のような規則的な配置にし，ルーティングプロトコルとしてOLSRを用
（2）規則的な配置で OLSR を用いた場合 いた場合におけるシミュレーションを行った。

8 ドロップパケット数（規則的，OLSR）

図 7 平均遅延時間（規則的，OLSR）
 4．提案方式
4.1 基本的な考え方
3.3 節で述べたように通信品質の劣化は，MPの配置密度にむらがあり，そのために
短距離リンクが発生してしまったことが原因であると考える．そこで図 14 のように
複数のMPを正方形のクラスタによってクラスタリングを行い，クラスタ内で中継機
能が有効な MPを制限することで，問題の解決をする方式を提案する。提案方式では
クラスタ生成の容易さと，提案方式適用後のWMNが規則的な配置に近くなることか
ら，クラスタの形状を正方形とした。なお，本稿ではクラスタの位置はあらかじめ定
義されていると仮定する．

[^0]

（3）x^{2} mumat）$\angle==1$

図 11 平均遅延時間（不規則，OLSR）
図 11 平均遅延時間（不規則，OLSR）図 12 ドロップパケット数（不規則，OLSR）

3ホップの通信であった。 11 から Com（ $\mathrm{MP}_{9}, \mathrm{MP}_{1}$ ）の平筀運廷楼が非常に多いてよが関連していると考える，また Com（ $\mathrm{MP}, ~ \mathrm{MP}_{1}$ ）$)$ の通信が断続的になっており，ほとんど通信ができない状態があった。
3.3 評価結果のまとめ
3.2 節から，MPが図 4 の不規則な配置の場合には通信品質が低下することがわかる。
 に配置される部分ができてしまい，短距離リンクが多く生成されていたことが原因で あると考えられる。規則的な配置の場合には，遅延時間に大きなばらつきもなく，ハ ケットのドロップもほとんど発生していないことから，通信は安定していると言える。

 パケットのドロップが確認された。これはAODV の場合よりホップ数が小さいことか
5% を下回るまでAMPとして機能し， 5% を下回った際に再度選出を行い，AMPを切 り替える動作を行う。電源が有線からの給電である場合には，クラスタの中央に最も近い MPが優先的に AMP に選ばれる。

PMP はクラスタ内でアクセスポイント機能を無効化するMPのことを示す。単に通

 のAMPの STA となり通信を行ら，これによりインフラストラクチャネットワーク側 の通信チャネルに余裕を持たせることが可能となると同時に，WMN の簡略化しなが ら必要な通信を継続させることが可能となる。
（3）DMP（Dead Mesh Point）
DMP はクラスタ内で全く機能できないMPのことを示す。電源がバッテリによる稼働でその残量が尽きた場合や，何らかの理由でMPが故障した場合などに機能できな くなった MP が DMP となる。DMP はネットワークに参加することが不可能なため，
その存在を周囲の MP は DMP を検知できないが，それは問題とならない。
 を周囲に通知することによって得る。表3にビーコンに含まれる情報を示す。固定情報はMPが初めから保持している情報であり，Location Data は世界測地系の位置情

 Relation，以下 NR）は周辺のクラスタとの位置関係を示す。可変情報はMPの状態に よって変化する情報であり，Power Supply は MP への電供給方法の情報，Battery Remaining は MP がバッテリ内蔵である場合にその残量の情報，MP Type は MPが

 を示す
として，クラスタリングとMPの分類によってWMNの構築を行う方法の提案した。
提案方式は，クラスタリングによって密度が一定な WMN の構築を行うが，クラス

 を行い，ネットワークシミュレータに実装して，提案方式の有効性を評価する

参考文献

）Y．Matsumoto，J．Hagiwara，A．Fujiwara，H．Aoki，A．Yamada，S．takeda，K．Yagyu，F．Nuno，：A Prospective Mesh Network based Platform for Universal Mobile Communication Service，電子情報通信学会総合大会講演論文集，2004年＿通信（1），p． 732 （2008）．
）間瀬憲一，阪田史郎：アドホック・メッシュネットワーク ユビキタスネットワーク社会の実現に向けて，初版第1刷発行，コロナ社
3）新井田博之，ノクパリンタンヌウォン，藤原敏秀，阪田史郎，関屋大雄，柳生健吾，藤原淳：無線 LANメッシュネットワークにおける隠れ端末問題に起因する不公平性について，電子情報通信学会総合大会講演論文集，2006年＿通信（2），pp． 615 （2006）．
4）樋口豊章，伊藤将志，渡邊晃：無線メッシュネットワークにおける輻輳改善の提案，
DICOMO2008 シンポジウム論文集，Vol．2008，No．1，pp．108－111（2008）．
選択に関する実験的検証，電子情報通信学会技術研究報告，Vol．106，No．42，pp．25－30（2006）
6）間瀬憲一：大規模災害時の通信確保を支援するアドホックネットワーク，電子情報通信学会誌，Vol．89，No．9，pp．796－800（2006）．
7）山崎浩司，伊藤将司，渡辺晃：被災地内にインフラを再構築する研究，DICOMO2007シンポ
8）藤原淳，青木秀憲，大矢智之：無線 LANメッシュネットワーク（IEEE802．11s）を利用した情報家電ネットワーク，電子情報通信学会総合大会講演論文集，2006年＿情報・システム（1）， pp．＂SS－6＂－＂SS－7＂（2006）．
分類に用いるビーコンは，CID が同じ情報のみを利用するように設定されており， これによってクラスタ内にのみ有効となるように送信される。
4．2．3クラスタ間リンクの生成 MPPが在在 AMPの坦合には1つのクラスタに1

 と表記している。リンクは上下左右の近接クラスタに対してのみ生成され，これによ り格子状に近いネットワークを形成することが出来る。
各AMPまたはMPPがリンクを生成する際に，NR が上下左右のクラスタを認識す
るために利用される．NR は図 18 のように害りて当てれた 9 進数の整数で定義されて
おり，Dを正の整数とした場合に，表 4 の関係性から近接クラスタの NRを判断する
ことが可能となっている。

 な MPIDを这信のることによりて近将クラスタへのみリンクを生成することが可能と 4．2．4 WMN による通信
クラスタ内の通信はAMPが集約してWMNに転送を行う。提案方式ではSTA～の変更最小限にするために，WMN でイーサネットフレームの転送を行う．そのため MACアドレスを用いたルーティングを行りこととする。3．3で述べたとおり，転送先 をのホップ数に心して，

5．まとめと今後の課題

9	7	8	9	7
3	1	2	3	1
6	4	5	6	4
9	7	8	9	7
3	1	2	3	1

図 18 NR の割り当で

図 18 NR の割り当て図

[^0]:

