
IPSJ Transactions on Advanced Computing Systems Vol.6 No.1 45–55 (Jan. 2013)

Regular Paper

Automatically Checking for Session Management
Vulnerabilities in Web Applications

Yusuke Takamatsu1,a) Yuji Kosuga2 Kenji Kono1,3

Received: July 4, 2012, Accepted: October 17, 2012

Abstract: Many web applications employ session management to keep track of visitors’ activities across pages and
over periods of time. A session is a period of time linked to a visitor, which is initiated when he/she arrives at a web
application and it ends when his/her browser is closed or after a certain time of inactivity. Attackers can hijack a user’s
session by exploiting session management vulnerabilities by means of session fixation and cross-site request forgery
attacks. Even though such session management vulnerabilities can be eliminated in the development phase of web ap-
plications, the test operator is required to have detailed knowledge of the attacks and to set up a test environment each
time he/she attempts to detect vulnerabilities. We propose a technique that automatically detects session management
vulnerabilities in web applications by simulating real attacks. Our technique requires the test operator to enter only a
few pieces of basic information about the web application, without requiring a test environment to be set up or detailed
knowledge of the web application. Our experiments demonstrated that our technique could detect vulnerabilities in a
web application we built and in seven web applications deployed in the real world.

Keywords: web application security, session management, vulnerability, session fixation, cross site request forgery

1. Introduction

Most recent web applications have employed session manage-
ment to keep track of visitors’ activities over inherently stateless
protocols such as HTTP. A session identifier (SID) is issued to
a visitor on his first visit to a web application to keep track of
his activities. The session ID is an attractive target for malicious
attackers because they can masquerade as visitors if they visit a
web application with a visitor’s session ID.

Session fixation [1] and Cross-site Request Forgery (CSRF) [2]
are major attacks inflicted on the session management mecha-
nisms. An attacker in a session fixation attack prepares a session
ID with which a victim is forced to log into a target web applica-
tion. After a victim has logged in, an attacker can access the web
application with the victim’s privileges. An attacker in a CSRF
(also known as a one-click attack, session-riding, or XSRF) attack
forces a victim to execute unwanted actions on the web applica-
tion for which the victim is currently authenticated. A victim with
a little help from social engineering, is forced to follow a link or
execute a script that executes an action chosen by the attacker,
which is successfully processed on the web application since the
victim is currently authenticated.

Session fixation and CSRF are not difficult to prevent in the
development phase of web applications, because the countermea-
sures against them are well-known and not hard to incorporate
into web applications. However, a large number of vulnerabil-
ities have been reported. According to a report from WhiteHat

1 Keio University, Yokohama, Kanagawa 223–8522, Japan
2 Everforth Co., Ltd., Meguro, Tokyo 152–0035, Japan
3 JST CREST
a) yusuke@sslab.ics.keio.ac.jp

Security [3], 14% of web applications were vulnerable to session
fixation and 24% were exposed to CSRF in the first quarter of
2011. These vulnerabilities are real threats. A digital currency,
Bitcoin [4], declined sharply in 2011 due to a CSRF vulnerability
in a currency exchange application called Mt.Gox [5]. The vul-
nerability in Mt.Gox caused the victims to exchange the Bitcoin
currency in Mt.Gox.

There are two reasons that a large number of session manage-
ment vulnerabilities are not eliminated during the development
of web applications. First, web developers are occasionally un-
skillful and not familiar with session fixation or CSRF attacks.
Eliminating all vulnerabilities in web applications is practically
impossible because the test phase cannot be comprehensive or
thorough enough due to severe time-to-market constraints. Web
developers are sometimes not familiar with all kinds of web vul-
nerabilities. Catching up with state-of-the-art web attacks and
countermeasures to these is difficult due to the increased com-
plexity of attack methods as well as web applications. Second,
it is a tedious, time-consuming, and daunting task to check for
potential vulnerabilities in web applications, and web developers
must set up a test environment and prepare malicious scripts to
emulate attacks and so on.

We propose a technique in this paper of automatically check-
ing web applications for session management vulnerabilities, es-
pecially session fixation and CSRF attacks. We implemented our
technique as a plug-in of Amberate [6], [7], which is an extensi-
ble framework for checking web applications for various security
holes. Amberate automatically checks for the presence of nu-

A preliminary version of this paper will appear in IEEE 10th Annual
International Conference on Privacy, Security and Trust.

c© 2013 Information Processing Society of Japan 45

IPSJ Transactions on Advanced Computing Systems Vol.6 No.1 45–55 (Jan. 2013)

merous kinds of web vulnerabilities such as SQL injection and
Cross-Site Scripting (XSS). It is designed to be used in the de-
velopment phase of web applications and thus, assumes internal
knowledge of web applications is available because the develop-
ers can provide these pieces of information. Amberate provides a
set of APIs with which a plug-in can be implemented that checks
for a particular vulnerability in web applications. Amberate cur-
rently provides the plug-ins for SQL injection, XSS, JavaScript
Hijacking, and directory traversal.

The primary contributions of this paper are twofold. First, it
proposes a new technique for detecting session fixation and CSRF
vulnerabilities. Our approach carries out pseudo attacks to detect
these vulnerabilities. Discussed later in the paper, this approach
improves the detection accuracy of these vulnerabilities. Second,
our technique is automated by being incorporated into Amber-
ate. Automated checking by Amberate brings about several ad-
vantages. Even if test operators are not familiar with a specific
kind of vulnerability, Amberate automatically checks all kinds of
vulnerabilities (if the plug-in for checking that vulnerability has
been provided). It also releases test operators from the tedious
and daunting task of having to set up test environments for vari-
ous kinds of vulnerabilities.

We applied Amberate to seven real web applications such as
Mambo [8] and Joomla [9] to demonstrate its effectiveness. Am-
berate detected six session fixation vulnerabilities and 11 CSRF
vulnerabilities. These applications are not trivial as they consisted
of 34,439 to 233,978 lines of code.

The remainder of this paper is organized as follows. We de-
scribe the background, session management vulnerabilities in
Section 2. Section 3 explains our system and Section 4 presents
our experimental results. Section 5 has a review and discussion
of related work. Finally, we conclude the paper in Section 6.

2. Session Management Vulnerabilities

We present session management and session-related vulnera-
bilities that we focused on in this section. Session fixation and
CSRF are briefly explained, in particular, and the countermea-
sures against them are described.

2.1 Session Management in Web Applications
Many recent web applications have employed session manage-

ment to keep track of visitors’ activities over inherently stateless
protocols such as HTTP. A session is associated with a user on
a web application, and the session information is managed on the
server-side. This information, e.g., contains a user’s login status,
the URI of the last visited page, and a shopping history. The web
application identifies users with the session identifier (SID) that
is embedded in the request.

An SID is assigned on the first visit on a web application. It
is embedded in a URI, an HTTP parameter, or a cookie and is
returned to the visitor as part of the response message. The re-
ceived SID is sent back to the web application when the site is
visited again. If an SID is embedded in a URI, it is sent back to
the web application when the URI is clicked. If it is embedded in
an HTTP parameter, it is sent back when the form is submitted.
If it is embedded in a cookie, the SID is sent back as part of the

Fig. 1 Session fixation.

HTTP headers.
A vulnerability in session management is an attractive target

for attackers because they can spoof a victim’s identity and con-
duct a variety of actions on the vulnerable web application.

2.2 Session Fixation
Session fixation forces a visitor to use an SID that an attacker

has prepared. A problem with session fixation is that an SID that
a web application has issued to a visitor can be used by other vis-
itors. Since web applications identify visitors by their SIDs, an
attacker can masquerade as a visitor after the visitor has logged
into the web application with the attacker’s SID. This enables the
attacker to take control over the victim’s account. By masquerad-
ing as the visitor, the attacker can obtain a victim’s personal in-
formation, and shop as the victim.

Figure 1 shows an example of session fixation attacks. An at-
tacker logs into a web application (Steps 1 & 2) to obtain an SID.
Note that the attacker is required to log out of the web applica-
tion to prevent the victim from logging into the attacker’s session
afterward. The attacker uses some kind of social engineering to
force the victim to use the SID. For example, the attacker em-
beds the SID into a hyperlink to lure the victim into clicking onto
it (Step 3). The victim then sends a request containing the SID
(Step 4), and logs into the web application (Step 5). The attacker
sends a request to the web application with the SID (Step 6), and
the web application recognizes the request to be a victim’s re-
quest.

Session fixation is caused because a web application continues
to use the SID issued for the previous login after a user has logged
in again. In the example in Fig. 1, the SID is not changed after
the victim has logged in. Therefore, requests from the attacker
are recognized as those from the victim. A new SID must be as-
signed each time a visitor logs into a web application to prevent
session fixation. If a new SID is issued for each login, the SID
issued to an attacker in Step 1 differs from that issued to a victim.
As a result, session fixation becomes impossible.

2.3 Cross-Site Request Forgery (CSRF)
An attacker in CSRF forces a victim to execute any actions

on behalf of the attacker at the target web application. If an at-
tacker can have a victim’s browser send a request on behalf of
the attacker while the victim is logging in a web application, the
attacker can perform the request with the privileges of the victim.
WhiteHat security [3] reports that every web application has the
potential to be vulnerable to CSRF.

c© 2013 Information Processing Society of Japan 46

IPSJ Transactions on Advanced Computing Systems Vol.6 No.1 45–55 (Jan. 2013)

Fig. 2 CSRF.

Figure 2 shows an example of CSRF attacks. First, a victim
logs into a web application and receives an SID (Steps 1 & 2).
The attacker lures the victim to force him/her to issue a request
that the attacker prepared to the attacker’s page containing a ma-
licious script that executes some actions at the web application
(Step 3). The attacker in this example prepares a script that re-
quests a money transfer to the attacker. The malicious script
makes the victim’s browser send a request and the web appli-
cation executes the requested action (Step 4). When this script is
executed on the victim’s browser, the request for a money transfer
is automatically sent to bank.com with the victim’s SID.

CSRF can be avoided if a web application distinguishes re-
quests that the visitor intended to send and those that he did not.
There are three well-known techniques for doing so: 1) using a
secret token, 2) embedding the SID, and 3) checking the referer
header.

A secret token is a unique string embedded into an HTML
page. It is sent to a web application to identify where a request
came from. A web application only handles a request when it has
a valid secret token. Since an attacker cannot forge a secret token,
the requests made by the attacker cannot be accepted by the web
application.

The technique of embedding an SID into the URL or a hidden
field in an HTML page also effectively prevents CSRF. Web ap-
plications can distinguish requests by checking if requests have
a victim’s SID or not. Requests that the visitor intended are em-
bedded with the victim’s SIDs. Web applications only handle
requests that contain valid SIDs. Requests that the attacker gen-
erated are not embedded with the victim’s SIDs since an attacker
cannot generate with the victim’s SID. Any request made by the
attacker’s script is not handled by the web application. This coun-
termeasure cannot prevent CSRF if attackers can obtain a victim’s
SID by performing session fixation or XSS. However, when at-
tackers can obtain a victim’s SID, attackers can masquerade as
the victim without performing CSRF.

CSRF can also be prevented by checking the HTTP referer
header, which holds the URI of the previous page from which
a link was followed. A web application can only accept requests
that come from valid domains or web pages by using the referer
header. Since all referers of any requests issued by the attacker’s

script are in the attackers’ domains or pages, web applications can
distinguish requests. The web application must refuse requests in
this approach with a whitelist of valid URLs. However, by setting
visitors’ browsers, visitors can send a request for which the ref-
erer header is discouraged from preventing information leaking to
third parties. Since web applications cannot distinguish requests
within this time, this approach cannot completely prevent CSRF
attacks.

3. Automated Checking

3.1 Benefits of Automated Checking
Web application developers must check all kinds of vulnera-

bilities in the development phase of web applications. Unfortu-
nately, this is almost impossible in practice for two reasons. First,
web developers must be knowledgeable about all kinds of web
vulnerabilities. Second, it is tedious to set up environments to
check various vulnerabilities and prepare malicious links and/or
scripts to emulate all kinds of attacks.

We automated the process of checking for session management
vulnerabilities in web applications. We implemented our system
as a plug-in of Amberate [6], [7], which is a framework for au-
tomated vulnerability scanners for web applications. Amberate
provides a set of APIs to implement plug-ins to check for certain
types of vulnerabilities in web applications. Amberate currently
provides plug-ins to check for SQL injection, XSS, JavaScript hi-
jacking, and directory traversal. Amberate is used in practice on
several web sites such as the Open Government Lab [10] hosted
by the Ministry of Economy, Trade and Industry of Japan.

This paper describes the design and implementation of Am-
berate plug-ins for session fixation and CSRF. The advantage
of these plug-ins is twofold. First, by automating the process of
checking for vulnerability, web developers do not have to have
intimate knowledge of session management vulnerabilities. Sec-
ond, the developers are released from the burden of having to
prepare test environments to emulate malicious attacks since Am-
berate automatically mimics the malicious behaviors of attackers.

Amberate carries out real attacks on a target web application,
and analyzes its responses to determine whether the attacks are
successful or not. Each Amberate plug-in performs two tasks:
1) it generates messages to emulate certain kinds of malicious
attacks and 2) it analyzes the responses to check for vulnerabil-
ities. For example, a plug-in for session fixation generates at-
tack messages to emulate session fixation, and it then analyzes
the responses of the web application to check for vulnerabilities
to session fixation.

To generate attack messages, Amberate occasionally needs
application-specific information about messages exchanged be-
tween a browser and a web application. For example, Amberate
requires a session name to specify an SID in an HTTP response’s
cookie issued by the web application and fix it to a victim in a
session fixation attack.

Amberate consists of two phases: 1) a data-collection phase
and 2) a vulnerability-check phase. A client of Amberate accesses
a web application with his/her browser in the data capture phase
as shown in Fig. 3 in the first phase. For example, the client per-
forms processes to log into the web application, post messages,

c© 2013 Information Processing Society of Japan 47

IPSJ Transactions on Advanced Computing Systems Vol.6 No.1 45–55 (Jan. 2013)

Fig. 3 Amberate.

and log out. Amberate works as an HTTP proxy and captures
HTTP requests and responses between the browser and the web
application (Step 1). Amberate pairs an HTTP request with an
HTTP response and stores and analyzes them (Steps 2 & 3) at
this time. For example, Amberate specifies the HTTP header and
message body in the HTTP request and response by checking the
CRLF in them. It extracts cookies in the HTTP header of the
HTTP request by specifying variable names and values whose
field name in HTTP header fields is “Cookie.” It then extracts
URL parameters in a URI of the HTTP request by specifying pa-
rameters that are between “?” in the URI and the end of the URI
and parses the HTTP response’s message body. Amberate pro-
vides this information including the HTTP request and response
to plug-ins. All plug-ins can use this information provided by
Amberate. The Amberate client does not need to perform pro-
cesses to log in and out many times for all plug-ins. Each plug-in

selects the necessary information for generating attack messages
and stores it (Step 4).

Each plug-in generates attacks in the second phase with this
information, sends them to the web application with Amberate
functions, and receives HTTP responses and determines whether
the web application is vulnerable or not by checking HTTP re-
sponses issued by the web application against an attack in the
check phase. Methods of generating attacks and determining
whether the web application is vulnerable or not differ accord-
ing to the nature of the vulnerabilities. For example, a plug-in for
XSS generates an HTTP request that injects a malicious script
into the URL parameter and sends the HTTP request to a web ap-
plication (Steps 5 & 6 & 7), as shown in Fig. 3. The plug-in uses
information about the URL parameter provided by Amberate to
generate the HTTP request. The plug-in for XSS checks whether
the malicious script is in an HTTP response issued by the web

c© 2013 Information Processing Society of Japan 48

IPSJ Transactions on Advanced Computing Systems Vol.6 No.1 45–55 (Jan. 2013)

application against the HTTP request, and it determines whether
the web application is vulnerable to XSS and reports the result
to the client (Steps 8 & 9). When the malicious script is in the
HTTP response, the plug-in determines that the web application
is vulnerable to XSS.

3.2 Plug-in for Session Fixation
A test operator can check for session fixation vulnerabilities

by providing some application-specific information to Amberate.
This application-specific information is the session name and the
attacker’s and victim’s user names and passwords. We show ex-
amples of this information in Table 1. The test operator performs
a login and a logout with his browser. Test operators can easily
provide this information and log in and log out because Amber-
ate users are the administrators or test operators of the target web
application. Test operators do not set up test environments (two
PCs, two browsers, and add-ons) and create messages or scripts
for checking.

Our system automatically extracts the necessary information
to mount a session fixation attack, e.g., a series of steps for login
and logout, and a point that a user name and a password are em-
bedded into in an HTTP request. It can extract this information
from HTTP requests and responses provided by Amberate with
information provided by test operators.

As we described in Section 2.2, the main problem with ses-
sion fixation is that an SID that a web application has issued to
a visitor can be used by other visitors. That is, if a target web
application does not block other visitors (victims) from using an
SID that has been issued to a visitor (an attacker), the target web
application is vulnerable to session fixation.

Our system carries out the steps shown in Fig. 4 to detect ses-
sion fixation vulnerabilities. It logs into the target web application
with the attacker’s user name and password, logs out, and obtains

Table 1 User inputs for phpBB to detect session fixation.

Application-specific information Input example
Session name phpbb2mysql sid

Attacker’s user name attacker
Attacker’s password attacker pwd
Victim’s user name victim
Victim’s password victim pwd

Fig. 4 Session fixation workflow.

an SID that the target web application has issued (Steps 1 & 2 &
3). Next, our system logs into the target web application with the
victim’s user name and password and the SID obtained in Steps
1, 2, and 3 (Steps 4 & 5 & 6). Finally, our system accesses the
victim’s page in the target web application with the SID obtained
in Steps 1, 2, and 3 (Step 7).

Our system automatically extracts some information to per-
form these steps. A point that an SID is embedded into is required
because our system obtains an SID in Step 2 and injects the SID
into this point in Steps 3, 5, 6, and 7. A series of steps for login
and logout are required because our system logs into and logs out
of the target web application in Steps 1, 2, 3, 5, and 6. The login
request and a point that a user name and a password are embedded
into in an HTTP request are required because our system enters
the attacker’s and the victim’s user names and passwords into the
login request in Steps 2 and 6.

Our system automatically extracts this information from the
HTTP requests and responses provided by Amberate with infor-
mation provided by the test operator.

Our system specifies a point that an SID is embedded into by
checking whether the session name provided by the test opera-
tor is embedded in a cookie in the HTTP response, the URI in
the HTTP response, or a hidden field in the forms of the HTTP
response. This is because the SID is embedded in the URI, the
HTTP parameter, or cookie as we described in Section 2.1.

Suppose that the session name specified by test operators is
“phpbb2mysql sid.” Our plug-in searches for a match to “ph-
pbb2mysql sid” in cookies, URIs, and hidden fields. If a match
is found, for example, in a cookie in an HTTP response like “Set-
cookie: phpbb2mysql sid=6da54ea....; path=/,” our plug-in con-
cludes that the SID is embedded into a cookie.

Our system specifies the login request by analyzing HTTP re-
quests and responses. We assumed that the value of the type at-
tribute in the input element of the form that issued a login request
would be “password.” First, our system checks whether a request
is a GET or POST request. If the request is a POST request, our
system identifies which forms in the HTML document issued the
request. Our system compares all variable names in the request
message body with the values of the name attribute that the input
elements of the form have. If variable names correspond to the
values of the name attribute, the request is issued by this form.
If the value of the type attribute that the input elements in the
form have is “password,” our system identifies that the request is
a login request.

Suppose that a test operator issues a login request using the
following form:
<form method="POST" action="./login_check.php">

User name: <input type="text" name="username">

Password: <input type="password" name="pwd">

<input type="submit" value="Submit">

</form>

and issues the following request message body:
username=tester&pwd=*******

Receiving this request, our plug-in tries to specify which form is-
sues this request. It retrieves and compares all the variable names
in the request message body with those in each form. In this case,

c© 2013 Information Processing Society of Japan 49

IPSJ Transactions on Advanced Computing Systems Vol.6 No.1 45–55 (Jan. 2013)

our plug-in retrieves variable names, username and pwd, and
compares them with the above form. Since the variable names
match each other, our plug-in determines this request is issued by
the form. Then it finds out the form contains a variable whose
type attribute is password, and concludes the above request is a
login request.

Our system specifies points that a user name and a password
are embedded into in an HTTP request by analyzing HTTP re-
quests and responses with information on the login request. We
assumed that an input form for the user name would be placed in
front of an input form for the password in the login form. Our
system checks input elements in the form that issues the login re-
quest from the above. First, our system stores the value of the
name attribute in an input element to inject the user name into a
login request and it checks the next input element. If the value
of the type attribute in the next input element is not “password,”
our system updates the value of name attribute to inject the user
name and it checks the next input element. If the value of the
type attribute is “password,” our system stores the value of the
name attribute in the input element to inject the password. Our
system determines the values which have the stored value of vari-
able names in the login request’s message body are points that a
user name and a password are embedded into.

Suppose that our plug-in is trying to determine the variable
name used for login names in the following form:
<form method="POST" action="./login_check.php">

User name: <input type="text" name="username">

Password: <input type="password" name="pwd">

<input type="submit" value="Submit">

</form>

First, our plug-in stores username as a candidate and then checks
the type attribute of the next variable (in this case, variable pwd).
Since the type attribute of variable pwd is password, our plug-in
concludes username is the variable used for login names.

Our system specifies a series of steps for login and logout by
analyzing HTTP requests and responses with information on the
login request. Our system determines a series of steps for login
from a starting point in which test operators first send a request
with their browser to a login point in which test operators obtain
a response against the login request. It also determines a series of
steps for logout from the login point to an end point from which
test operators finally obtain a response.

There are ways for attackers to force the victim to use an SID.
For example, when the target web application embeds an SID into
a URI, an attacker creates a malicious link to the URI including
an SID prepared by the attacker. The victim is forced to use the
SID if he/she clicks on this malicious link. Test operators cre-
ate this malicious link and check whether this link can force the
victim to use the SID or not to mount a session fixation attack.

Our system does not create traps to force the victim to use an
SID in Step 4 of the session fixation attack and in our system
he/she directly uses the SID. The way the victim is forced to
use the SID is not important, because the target web application
cannot completely block the victim to force him/her from using
the SID. It is important for testing session fixation that our sys-
tem definitely forces the victim to use the SID and that it checks

whether an SID that a web application has issued to a visitor (an
attacker) can be used by other visitors (victims) or not.

Our system makes the test more effective before it mounts ses-
sion fixation attacks. It checks whether an SID is changed at
login or not. If the SID is changed at login, our system deter-
mines the target web applications are not vulnerable to session
fixation since changes in the SIDs at login are an effective coun-
termeasure. Our system extracts the SIDs from the session name
provided by the test operator and HTTP requests and responses
provided by Amberate. If the SIDs have changed when the test
operator logs in, our system determines it is not vulnerable in this
step.

3.3 Plug-in for CSRF
A test operator can check for CSRF vulnerabilities by pro-

viding some application-specific information to Amberate. This
application-specific information is the session name, the victim’s
user name and password, the name of the secret token (if devel-
opers implemented a secret token mechanism as a countermea-
sure against CSRF), and the URI of a function that test operators
would like to detect vulnerabilities. We show examples of this in-
formation in Table 2. Test operators perform a login, a function
that test operators would like to check, and a logout with their
browsers. Test operators can easily provide this information and
log in and perform the function and log out. Test operators do not
set up test environments (a PC, a browser, a server, and add-ons)
and create messages or scripts for checking.

Our system automatically extracts necessary information to
mount a CSRF attack. For example, a series of steps for login,
and a point that a user name and a password are embedded into in
an HTTP request. Our system can extract this information from
HTTP requests and responses provided by Amberate with infor-
mation provided by test operators.

As we described in Section 2.3, the main problem with CSRF
is that a web application cannot distinguish requests that a visitor
intended to send and those that he/she was forced to send by an
attacker. That is, if a target web application does not block a re-
quest that an attacker forced a visitor (a victim) to send, the target
web application is vulnerable to CSRF.

Our system performs the steps shown in Fig. 5 to detect CSRF
vulnerabilities in target web applications. It logs into the target
web application with the victim’s user name and password and
obtains an SID that the target web application issued (Steps 1 &
2 & 3). Our system next creates an arbitrary HTTP request for
the function in which test operators want to detect vulnerabilities
and sends this request with the SID obtained in Steps 1, 2, and 3
(Step 4).

Our system automatically extracts some information to per-

Table 2 User inputs for phpBB to detect CSRF.

Application-specific information Input example
Session name phpbb2mysql sid

Victim’s user name victim
Victim’s password victim pwd

Name of the secret token null
URI of a function http://localhost/phpBB2/

privmsg.php?mode=post

c© 2013 Information Processing Society of Japan 50

IPSJ Transactions on Advanced Computing Systems Vol.6 No.1 45–55 (Jan. 2013)

Fig. 5 CSRF workflow.

form these steps. A point that an SID is embedded into is required
because our system obtains an SID in Step 3 and injects the SID
to the point in Step 4. A series of steps for login is required be-
cause our system logs into the target web application in Steps 1
and 2. A login request and a point that a user name and a pass-
word are embedded into in an HTTP request are required because
our system enters the victim’s user name and password into the
login request in Step 2.

Our system automatically extracts this information from HTTP
requests and responses provided by Amberate with information
provided by the test operator in the same way as it detects session
fixation vulnerabilities.

Our system generates two or four types of requests which the
victim is forced from the HTTP requests provided by Amberate
and a function’s URI where the test operator wants to detect vul-
nerabilities. Our system identifies a request to perform the func-
tion from HTTP requests with the URI and generates the four
types of requests below from the request it identified.
(1) It does not have a referer header and a secret token.
(2) It has a referer header but does not have a secret token.
(3) It does not have a referer header but has a secret token.
(4) It has a referer header and a secret token.
Types 1 and 2 are generated because users can set up modern
browsers to send empty or arbitrary values for this header for pri-
vacy. Types 3 and 4 are generated when a token mechanism is
implemented in target web applications. If a target web appli-
cation checks whether a request has a secret token and does not
check the value of the token, the CSRF attack is successful when
attackers force victims to send a request with a secret token gen-
erated by the attackers.

Our system makes the test more effective before it executes a
CSRF attack. It checks the technique for embedding an SID. If
the technique is URL rewriting or hidden field, our system de-
termines the target web applications are not vulnerable to CSRF
since these techniques are effective countermeasures. Our system
extracts the technique from the HTTP requests and responses pro-
vided by Amberate. If the technique is URL rewriting or hidden
field, our system determines that the web application is not vul-
nerable in this step.

3.4 Generating a Request
The attacker and the victim in our system send requests gen-

erated by our system in attacks. Our system generates the re-
quests from HTTP requests provided by Amberate. Contents in
a request are changed by user and time, etc. When our system
obtains responses issued by the target web application in attacks,
our system always monitors the responses. Our system modifies

the HTTP requests provided by Amberate with the monitoring in-
formation. For example, the SID in the HTTP requests provided
by Amberate is issued for the test operator. Our system needs
to modify the test operator’s SID in the HTTP requests to the at-
tacker’s and the victim’s SID issued by the target web application.

3.5 Checking Attack Results
Our system checks whether an attack is successful or not by

analyzing the response issued by the target web application in
reply to an attack. If the response obtained by this attack is a re-
sponse that the victim can obtain in session fixation, the attack
is successful. If the response obtained by this attack in CSRF is
a response obtained by treating the request that the victim was
forced to send, the attack is successful.

Our system searches for a special keyword within the content
of a response issued by the target web application in reply to an
attack. If the special keyword appears in the HTTP document of
a response issued in response to an attack, our system determines
that this target web application is vulnerable. For example, the
special keyword is “Welcome, victim (the victim’s name)” and
“Thank you, victim (the victim’s name).” If the response issued
in reply to a session fixation attack has the special keyword that
appeared on a victim’s page, this session fixation attack is suc-
cessful. If the response in reply to a CSRF attack has the spe-
cial keyword that only appeared when the target web application
treated a message function and a purchase function, this CSRF
attack is successful.

Our system requires test operators to provide a special keyword
because it differs for each web application. False negatives and
positives are created when our system extracts special keywords
from the HTTP responses provided by Amberate.

4. Experiments

We evaluated our system using our synthetic and seven real-
world web applications. We present and discuss our evaluations
in this section.

4.1 Synthetic Web Applications
We first experimented with a synthetic web application vul-

nerable to session fixation or CSRF. We prepared seven types
of session management mechanisms and implemented web pages
for logging into and out of the web application and purchasing
items. The seven types of session management are as follows.
The first 4 mechanisms are related to session fixation and the last
3 are related to CSRF. Session management strategies 1 & 4 have
session fixation vulnerability. Session management strategies 2 &
3 do not have session fixation vulnerability. Session management
strategies 5 & 7 have CSRF vulnerability. Session management
strategy 6 doesn’t have CSRF vulnerability. We embed an SID in
a request using three different approaches (cookie, URL rewrit-
ing, and hidden field).
(1) New SID issued on the first visit and new SID not changed

at a user’s login.
(2) New SID issued on the first visit and new SID changed at a

user’s login.
(3) New SID issued at a user’s login.

c© 2013 Information Processing Society of Japan 51

IPSJ Transactions on Advanced Computing Systems Vol.6 No.1 45–55 (Jan. 2013)

Table 3 Detection results for the synthetic web application.
“No vul.” means “not vulnerable to session fixation or CSRF.” “-” means “not checked by Am-
berate because the target application is not vulnerable to CSRF.”

Session Vulnerability Amberate
managements URL Rewriting Cookie Hidden Field

1 Session fixation Session Fixation Session fixation Session fixation
2 No vul. No vul. No vul. No vul.
3 No vul. No vul. No vul. No vul.
4 Session fixation Session fixation Session fixation Session fixation
5 CSRF - CSRF -
6 No vul. - No vul. -
7 CSRF - CSRF -

Table 4 Detection results for session fixation.
“No vul.” means “not vulnerable to session fixation.” “-” means
“not checked by Amberate because the target applications do not
have a login function for administrators.” “unable” means “cannot
be checked with Amberate.”

Web App. User Vulnerabilities
Manual Amberate

Mambo 4.6.2 user Session fixation Session fixation
admin Session fixation Session fixation

Joomla 1.0.9 user Session fixation Session fixation
admin Session fixation Session fixation

phpBB 2.0.12 user Session fixation Session fixation
admin - -

phpBB 3.0.9 user No vul. No vul.
admin No vul. unable

phpNuke 7.0 user No vul. No vul.
admin No vul. Session fixation

phpNuke 8.2.4 user No vul. No vul.
admin No vul. Session fixation

osCommerce 2.2-MS1 user Session fixation Session fixation
admin - -

(4) New SID issued only when a user does not have an SID at
the user’s login.

(5) Requests identified only with an SID.
(6) Requests identified with an SID and a secret token. The

value of the secret token is checked to determine the requests
are valid.

(7) Requests identified with an SID and a secret token. The
value of the secret token is not checked.

Table 3 shows the experimental results. Amberate detects all
the vulnerabilities in the synthetic web application. In the cases
where there is no vulnerability in the web application, Amberate
reports that the web application is not vulnerable.

4.2 Real World Web Applications
We conducted experiments against known vulnerable web ap-

plications in the real world after searching vulnerability reposi-
tories such as Refs. [11], [12], and [13]. The web applications
we used were Mambo [8], Joomla [9], phpBB [14], phpNuke [15],
and osCommerce [16]. We manually analyzed the source code of
web applications and mounted session fixation and CSRF attacks
to check vulnerabilities in web applications.
4.2.1 Session Fixation

Table 4 summarizes the names of seven real world web ap-
plications (Web App.), users who use the login function (User),
results obtained from manual analysis and tests of vulnerabilities

against session fixation (Manual), and results from our evalua-
tions of session fixation (Amberate) in (Vulnerabilities). We can
see two false positives occurred with two login functions and that
our system cannot detect one vulnerability from this table. Our
system could detect other login functions in web applications.

The reason our system caused the two false positives in php-
Nuke 7.0 and 8.2.4 is that the administrator’s main page in php-
Nuke was the same as that of other administrators, and phpNuke
did not blank out the SID when administrators logged out. We
found a flow of false positives occurred when our system detected
vulnerabilities in phpNuke.
(1) The test operator logs into phpNuke as an administrator and

logs out with his browser.
(2) The test operator gives four items of information as a ses-

sion name and the attacker’s and the victim’s user names
and passwords, and a special keyword that appears on the
victim’s page, to our system. The special keyword is a string
that appears on the attacker’s and the victim’s pages, because
the administrator’s main page in phpNuke is the same.

(3) Our system executes a session fixation attack with this infor-
mation.

(4) The attacker logs into phpNuke, which issues an SID to the
attacker.

(5) The attacker logs out. phpNuke does not blank out the at-
tacker’s SID at this time.

(6) The victim logs on with the attacker’s SID. phpNuke issues
a new SID to the victim at this time.

(7) The attacker accesses the administrator’s page with the at-
tacker’s SID, which is valid.

(8) Our system determines that the session fixation attack was
successful by analyzing the response obtained in the Step 7
with the special keyword obtained in Step 2. This is because
the special keyword appears in the response.

phpNuke is not vulnerable to session fixation, but the method
of session management that does not blank out the SID when ad-
ministrators log out has problems. Developers should improve
this method of session management. If attackers steal an SID
from an administrator, they are able to use the SID after the ad-
ministrator has logged out.

Our system cannot find a session fixation vulnerability in ph-
pBB 3.0.9. This is because phpBB requests the administrator to
input his user name and password twice to perform a login. Since
our current implementation assumes that the user name and pass-
word are required only once, these pages cannot be checked. We

c© 2013 Information Processing Society of Japan 52

IPSJ Transactions on Advanced Computing Systems Vol.6 No.1 45–55 (Jan. 2013)

Table 5 Detection results for CSRF.
“No vul.” means “not vulnerable to CSRF.” “-” means “not checked by Amberate because
the target application does not have functions for administrators.” “unable” means “cannot be
checked with Amberate.”

Web App. User Exploit functions Vulnerabilities
Manual Amberate

phpBB 2.0.12 user Send msgs CSRF CSRF
Delete msgs CSRF CSRF

admin Modify admins’ permission No vul. No vul.
Modify users’ info No vul. No vul.

phpBB 3.0.9 user Send msgs No vul. No vul.
Delete msgs No vul. No vul.

admin Modify users’ info No vul. unable
phpNuke 7.0 user add msgs CSRF CSRF

delete msgs CSRF CSRF
admin modify users’ info CSRF unable

register users CSRF CSRF
phpNuke 8.2.4 user add msgs CSRF CSRF

delete msgs CSRF CSRF
admin modify users’ info CSRF unable

register users CSRF CSRF
Mambo 4.6.2 user modify users’ info No vul. No vul.

admin register users CSRF CSRF
Joomla 1.0.9 user modify the user’s info No vul. No vul.

admin register users CSRF CSRF
osCommerce 2.2-MS1 user add goods in cart CSRF CSRF

buy goods No vul. No vul.
admin - - -

believe a slight extension of our implementation can solve this
problem.

Mambo, Joomla and phpNuke authenticate users with the SID
and the IP address. Web applications can mitigate against session
fixation attacks by authenticating users with them. Even if the at-
tacker’s and the victim’s SIDs are the same by having forced the
victim using the attacker’s SID, the attacker’s and the victim’s IP
addresses are not the same. A web application can distinguish
the attacker from the victim and prevent session fixation attacks.
However, this way of authenticating users with the SID and the
IP address is not a good countermeasure against session fixation.
If users access a web application with the same IP address in an
intranet network and a session fixation attack occurs in this net-
work, this cannot prevent session fixation attacks. Kolsek de-
scribes this way as mitigation [1]. Our system determines that the
web application that authenticates users with the SID and the IP
address is vulnerable to session fixation.
4.2.2 CSRF

Table 5 lists the names of seven real world web applications
(Web App.), users who use the function (User), functions that we
exploit to detect vulnerabilities (Exploit functions), results from
manual analysis and detection of vulnerabilities against CSRF
(Manual), and the results from our evaluation of CSRF (Amber-
ate) in (Vulnerabilities). We can see from the table that our sys-
tem cannot detect three vulnerabilities. However our system can
detect other functions in web applications.

The reason our system cannot check the functions that modify
user information in phpNuke 7.0 and 8.2.4 is that there is no spe-
cial string on the page when user information is modified. When
user information is modified, phpNuke does not forward users to
the next page and sends them back to the first page. Consequently
our system cannot carry out detection because test operators can-

not give the string that appears in the response by handling the
function that test operators want to test.

Our system cannot find a CSRF vulnerability in phpBB 3.0.9
in the same reason as the session fixation.

5. Related Work

Some web scanners are designed to check for session fixation
or CSRF vulnerabilities. From the top 20 web vulnerability scan-
ners at Insecure.Org [17] we compare Amberate with Wapiti [18]
for session fixation and w3af [19] for CSRF. These two are cho-
sen because they rank the highest among free and open-source
scanners. To understand their mechanisms, we investigated the
source code of these two scanners.

To summarize, these tools are less powerful than Amberate;
they cannot detect the vulnerabilities used in Section 4. Wapiti
is applicable only to a specific version of session fixation and
thus, cannot detect all the session fixation vulnerabilities used in
the experiments. w3af checks HTTP requests and responses only
and misses the countermeasures implemented inside web appli-
cations. In the following, we show the detailed analysis and com-
parison of these tools.

Wapiti performs black-box scans on a target web applica-
tion. It can detect some vulnerabilities such as session fixation,
XSS, SQL Injection and HTTP Response Splitting. According to
Wapiti’s homepage [18] session fixation is categorized as CRLF
injection. Attackers inject a CRLF and a malicious string into
an HTTP response to split the HTTP response into two differ-
ent responses (an original response and a malicious response).
Attackers can force a victim’s browser to handle a malicious re-
sponse besides the original response. For example, attackers can
force the victim to use an SID prepared by the attackers in the
malicious response.

c© 2013 Information Processing Society of Japan 53

IPSJ Transactions on Advanced Computing Systems Vol.6 No.1 45–55 (Jan. 2013)

Wapiti can detect session fixation vulnerabilities only when
there is the CRLF injection vulnerability. Unfortunately, session
fixation is possible even if there is no CRLF injection vulnerabil-
ity in web applications.

Amberate can detect session fixation even if it is caused by
other security holes than CRLF injection. Because Amberate
checks whether an SID that a web application has issued to a
visitor can be used by other visitors or not. The main problem
with session fixation is that a visitor’s SID can be used by other
visitors.

w3af is a web application attack and audit framework and can
identify many web application vulnerabilities using plug-ins such
as CSRF, XSS, SQL injection, and buffer overflow. In the w3af
developers’ mailing list [20], they discuss the CSRF plug-in and
say “In most cases it will be better to *not use it (the CSRF plug-
in)* because of a lot of false positive detection error.” A CSRF
plug-in only analyzes HTTP requests and responses which are
audited to and from a target web application. It checks whether a
request is a GET or POST request, the request has a query string
or not, and the target web application uses at least one persis-
tent cookie or not. It does not send a forced request for checking
whether the target web application blocks the request or not.

w3af causes some false positives. The CSRF plug-in cannot
check whether a countermeasure against CSRF in a target web
application blocks CSRF or not because it does not check the
contents of GET or POST requests. For example, secret tokens
embedded in the HTTP requests are not checked in w3af. Amber-
ate checks for target web applications by performing real attacks
of CSRF and can check, for example, secret tokens.

Sania [7] and Secubat [21] automatically test web applications
by attacking them. Sania intercepts requests and SQL queries be-
tween a web application and a database, and automatically gen-
erates SQL injection attacks from the information extracted from
the SQL queries. SecuBat crawls web applications throughout the
world to discover vulnerabilities against SQL injection and XSS
by attempting real attacks. Sania and Secubat cannot be applied
to detect session fixation or CSRF vulnerabilities because these
vulnerabilities are not subject to input validation.

NoForge [22] and [23] prevent web applications with existing
countermeasures against session fixation and CSRF attacks on the
server side. One countermeasure for CSRF is to distinguish re-
quests that visitors do or do not intend with a secret token and
session fixation assigns a new SID each time a user logs in. No-
Forge is a technique where a server-side proxy detects and pre-
vents CSRF attacks by using a secret token. Reference [23] is a
technique where a server-side proxy detects and prevents session
fixation attacks by using a second SID. Reference [23] issues a
new second SID to a user and changes the second SID when the
user logs in. NoForge [22] and [23] cannot detect session fixation
or CSRF vulnerabilities in web applications because they check
whether a request that a user has sent has been issued by session
fixation and CSRF attacks or not.

The following work prevents session fixation and CSRF with
new approaches. RequestRodeo [24] and BEAP [25] offer client-
side protection from CSRF. Appisolation [26], SOMA [27], and
Ref. [28] offer server and client protection from session fixation

and CSRF. RequestRodeo can prevent CSRF attacks with a se-
cret token in the browser. BEAP can prevent CSRF attacks with
the concept where the browser limits the sending of sensitive
data with a policy. Appisolation can prevent session fixation and
CSRF attacks with the concept that the browser isolates sensi-
tive data (e.g., cookies, and authentication tokens) per web ap-
plications and controls access to these web applications. SOMA
can prevent CSRF attacks with the concept where the browser
controls access to web applications with a policy issued by web
sites. Reference [28] can prevent CSRF attacks with the con-
cept where the browser issues a request including the Origin
header and the server determines whether or not to handle the
request with this Origin header. RequestRodeo [24], BEAP [25],
Appisolation [26], SOMA [27], and Ref. [28] cannot detect ses-
sion fixation or CSRF vulnerabilities in web applications because
browsers check whether a request that users have sent has been
issued by session fixation or CSRF attacks or not and they control
the requests and sensitive data (e.g., cookies, and authentication
tokens).

6. Conclusion

We presented a new system of automatically detecting session
management vulnerabilities in web applications by executing real
attacks in a simulated environment. The attacks were generated
using some information about the target web application supplied
by its test operators and the simulator automatically sent the at-
tacks to the web application to check whether the attacks were
successful or not. The test operators could easily detect these
vulnerabilities by using this technique.

Our experiments demonstrated that our technique could detect
vulnerabilities in our synthetic and some real-world web applica-
tions. We also discussed reasons our system could not check for
vulnerabilities and provided details on false positives.

References

[1] Kolsek, M.: Session fixation vulnerability in web-based applications,
available from 〈http://www.acrossecurity.com/papers.html〉.

[2] Shiflett, C.: Security Corner: Cross-Site Request Forgeries, available
from 〈http://shiflett.org/articles/cross-site-request-forgeries〉.

[3] WhiteHat Security: WhiteHat Website Security Statistics Report,
available from 〈http://www.whitehatsec.com/home/resource/
stats.html〉.

[4] Bitcoin: available from 〈http://bitcoin.org/〉.
[5] Mt.Gox: available from 〈https://mtgox.com/〉.
[6] Kosuga, Y. and Kono, K.: Amberate: A Framework for Automated

Vulnerability Scanners for Web Applications, JSSST Trans. Comput.
Softw. (2011).

[7] Kosuga, Y., Kono, K., Hanaoka, M., Hishiyama, M. and Takahama,
Y.: Sania: Syntactic and Semantic Analysis for Automated Testing
against SQL Injection, Proc. Annual Computer Security Applications
Conference (ACSAC ’07), pp.107–117 (2007).

[8] Mambo: available from 〈http://www.mamboserver.com/〉.
[9] Joomla: available from 〈http://www.joomla.org/〉.
[10] Open government lab: available from 〈http://www.openlabs.go.jp/〉.
[11] SecurityFocus: SecurityFocus, available from 〈http://www.

securityfocus.com/〉.
[12] National Vulnerability Database: National Vulnerability Database,

available from 〈http://web.nvd.nist.gov/〉.
[13] Cvedetails: available from 〈http://www.cvedetails.com/〉.
[14] phpBB: available from 〈http://www.phpbb.com/〉.
[15] phpNuke: available from 〈http://phpnuke.org/〉.
[16] osCommerce: available from 〈http://www.oscommerce.com/〉.
[17] Insecure.Org: available from 〈http://insecure.org/〉.
[18] Wapiti: available from 〈http://wapiti.sourceforge.net/〉.

c© 2013 Information Processing Society of Japan 54

IPSJ Transactions on Advanced Computing Systems Vol.6 No.1 45–55 (Jan. 2013)

[19] w3af: available from 〈http://w3af.sourceforge.net/〉.
[20] w3af-develop: available from 〈http://sourceforge.net/mailarchive/

forum.php?forum name=w3af-develop〉.
[21] Kals, S., Kirda, E., Kruegel, C. and Jovanovic, N.: SecuBat: A web

vulnerability scanner, Proc. International World Wide Web Conference
(WWW ’06), pp.247–256 (2006).

[22] Jovanovic, N., Kirda, E. and Kruegel, C.: Preventing Cross Site Re-
quest Forgery Attacks, Proc. Securecomm (Securecomm ’06), pp.1–10
(2006).

[23] Johns, M., Braun, B., Schrank, M. and Posegga, J.: Reliable protec-
tion against session fixation attacks, Proc. 2011 ACM Symposium on
Applied Computing (SAC ’11), pp.1531–1537 (2011).

[24] Johns, M. and Winter, J.: RequestRodeo: Client Side Protection
against Session Riding, Proc. OWASP Europe 2006 Conference, Ref-
ereed Papers Track, Report CW448, pp.5–17 (2006).

[25] Mao, Z., Li, N. and Molloy, I.: Defeating Cross-Site Request Forgery
Attacks with Browser-Enforced Authenticity Protection, Proc. Inter-
national Conference on Financial Cryptography and Data Security
(FC ’09), pp.238–255 (2009).

[26] Chen, E.Y., Bau, J., Reis, C., Barth, A. and Jackson, C.: App isolation:
Get the security of multiple browsers with just one, Proc. 18th ACM
Conference on Computer and Communications Security (CCS ’11),
pp.227–238 (2011).

[27] Oda, T., Wurster, G., van Oorschot, P.C. and Somayaji, A.: SOMA:
Mutual approval for included content in web pages, Proc. 15th ACM
Conference on Computer and Communications Security (CCS ’08),
pp.89–98 (2008).

[28] Barth, A., Jackson, C. and Mitchell, J.C.: Robust defenses for cross-
site request forgery, Proc. 15th ACM Conference on Computer and
Communications Security (CCS ’08), pp.75–88 (2008).

Yusuke Takamatsu received his B.E.
and M.E. degrees from Keio University
in 2010 and 2012, respectively. He is cur-
rently a Ph.D. student in Keio University.
His research interest is web security. He
is a student member of IPSJ.

Yuji Kosuga received his B.E. degree in
2007, M.E. degree in 2009, and Ph.D. de-
gree in 2011 from Keio University. He is
currently the Chief Technology Officier at
Everforth Co., Ltd. His research interests
are in web security and system software.

Kenji Kono received the B.Sc. degree in
1993, M.Sc. degree in 1995, and Ph.D. de-
gree in 2000, all in computer science from
the University of Tokyo. He is an asso-
ciate professor of the Department of In-
formation and Computer Science at Keio
University. His research interests include
operating systems, system software, and

Internet security. He is a member of the IEEE/CS, ACM and
USENIX.

c© 2013 Information Processing Society of Japan 55

