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Dynamic Numerosity Reduction for Mining-Based

Agent Learning
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When coupling data mining and intelligent agents, one of the crucial chal-
lenges is the need for the knowledge extraction process to be lightweight enough
so that even resource (e.g. memory, CPU etc.) constrained agents are able to
extract knowledge. In this work we propose a method of achieving lightweight
knowledge extraction using dynamic numerosity reduction to allow for agents
to retrieve training data subsets of different sizes based on their available re-
sources. To compensate for the possible loss of data integrity due to training
data size reduction, a novel ranking method, Level Order (LO) ranking, is
proposed for selection of data representatives.

1. Introduction

The symbiosis1) of Data Mining (DM) and Agent Technology (AT), in order to

overcome the breakdown-with-complexity problem of AT’s deductive reasoning

logic, faces two crucial challenges. The first is the need for the knowledge extrac-

tion (KE) process to be lightweight enough so that even resource (e.g. memory,

CPU etc.) constrained agents are able to extract knowledge. The second is a

well designed middleware to bridge the gap between logics of DM and AT. In this

paper, we deal with the first challenge. There are two approaches of achieving a

Lightweight KE (LKE); the use of smaller training data (TD) sets or algorithm

improvement. Reducing numerosity of TD is one way to reduce size of sets in

order to meet the available capacity of a resource contrained agent. However,

reducing the sets beyond a certain level is known to have negative effects on per-
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Fig. 1 Taxonomy of data reduction approaches

formance (e.g. KE accuracy). We propose a numerosity reduction based method

to deal with this problem with no or minimum performance loss.

TD sets reduction methods (known by names like noise or data reduction,

subset selection etc.) are in five categories2), shown in Fig. 1. In this paper we

explore numerosity reduction based on sampling. Methods other than numerosity

reduction are too related to data structure for a generic reduction approach.

Sampling is preferred for LKE during mining-based agent learning ?1 over other

numerosity reduction methods for two reasons. First, it is non parametric and

therefore there is no extra cost of creation and recreation of data estimation

models. Second, among non-parametric methods, sampling cost increases linearly

with sample size while reduction or selection cost in other methods increases

exponentially.

Sampling-based numerosity reduction methods, like other reduction methods,

are characterized in terms of the following proporties.

� Selection method: A way of selecting examples, e.g. random.

� Selection type: Condensation type if the selection method seeks to retain

border examples and edition type if it seeks to retain central examples.

� Fitness function or test: A criteria which the selected examples are to meet.

� Search direction: Whether a subset selection is incremental or decremental.

� Stratification: Independent selection from each stratum contained in TD set.

� Others: Related to the used KE algorithm, e.g. distance function.

The proposed sampling-based TD numerosity reduction method for mining-

based agent learning has two main advantages over others. It improves relia-

?1 A learning process whereby an agent learns a knowledge model from training examples.
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bility of the extracted knowledge by using ordered selection method as opposed

to random selection. Our ordered selection method, called Stratified Ordered

Selection (SOS), is based on ranking of examples using a novel ranking scheme

called Level Order (LO) ranking. SOS allows for on-demand selection of sub-

sets of desired sizes which enhance or preserve KE performance. Additionally,

SOS provides room for class balancing during subset retrieval. Class balancing

removes class imbalances. Class imbalance is a well known machine learning

problem whereby training examples belonging to one of the classes contained in

a TD set are significantly many compared to another class.

In the next section, we compare and contrast sampling-based numerosity re-

duction methods. We also present an overview of how mining-based agent learn-

ing have been approached in existing multi-agent frameworks. In section 3 we

describe our proposed method in detail. Section 4 presents evaluation of the

proposed method and finally section 5 concludes the paper.

2. Related Work

There are two viewpoints; subset selection and DM-integrated agent approach.

2.1 Sampling-based subset selection

Among the three non-parametric methods shown in Fig. 1, sampling has the

advantage that the cost of obtaining a subset sample is proportional to the size

of the subset as opposed to the size of a TD set for other methods. Other non-

parametric methods require at least one complete pass through the TD set in

every selection. Therefore for the same subset size, selection complexity has a

linear relationship with TD dimensions in sampling methods whereas in other

methods (e.g. histograms) complexity increases exponentially.

Table 1 shows four (three existing methods and SOS) sampling-based methods

of subset selection. All are incremental random sampling methods. One crucial

shortfall of random-based sampling methods is that they are not very reliable.

There is no guarantee that they will always give a performance enhancing (or

preserving) subset when applied on the same TD set. For instance, SRS (Strati-

fied simple Random Sample)2) involves random selection of examples from each

of the mutually disjoint strata (e.g. a classes) of a TD set. While SRS ensures

a representative subset like its other peers (SRSWOR-Simple random sample

Table 1 Sampling methods and characteristics

Fitness Selection Selection Strati- Search Distance

Approach Test Method Type fication Direction Function

cluster - random - yes incremental n/a

SRS - random - yes incremental n/a

RMHC accuracy random - no incremental manhattan

SOS - ordered hybrid yes incremental minkowski

without replacement, SRSWR-Simple random sample with replacement), it can

neither regenerate same result nor does it explicitly attempt to retain decisive

(e.g. boundary, central) examples of a class. Cluster (cluster sample) is very sim-

ilar to SRS. The only difference is that in cluster sample, if there are C mutually

disjoint strata, selection of examples can result into s clusters, where s < C.

Methods like RMHC (Random Mutation Hill Climbing) improves reliability by

using a fitness test. In RMHC, although randomly selected, examples are only

kept if they enhance or preserve accuracy. The use of a fitness test during subset

selection imposes extra computational cost which in mainstream DM is not a big

problem because selection is only done once for a TD set. However, in resource

constrained environments where agents have differing resources, subset selection

is done many times with varying subset sizes. We therefore find RHMC less

appropriate for mining-based learning by a resource constrained agent.

The SOS method addresses these shortfalls which are experienced by other

sampling methods. It uses an ordered (pre-defined order) selection method in

order to improve reliability. The method does not employ a fitness test at selec-

tion time in order to keep the cost low. It is both a condensation and an edition

method so that the generated subsets enhance or preserve KE performance even

better. To ensure a representative subset like in SRS, the method also employs

a stratification approach, hence the name Stratified Ordered Selection (SOS).

2.2 DM-integrated agent approaches

In most existing DM-integrated agent frameworks, a provisioning for on-

demand TD subsets selection is not given. In ABLE3), the idea of LKE is only

highlighted without further details. In Agent Academy4), Data Miner provides

few insufficient TD sets reduction functionalities, as far as LKE is concerned.
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Fig. 2 Retrieval intermediary and TD subset retrieval

2.3 Benchmarking

In general, previously published evaluation works5),6) reveal that RMHC, AkNN

(All k Nearest Neighbor) and DROP3 (Decremental Reduction Optimization

Procedure 3) offer excellent balance between size reduction and accuracy. Among

these best performing methods, RMHC is the only sampling-based method and

therefore the only possible benchmarking candidate. However as discussed in

subsection 2.1, RMHC is less appropriate for LKE. We therefore retreat to SRS as

our benchmarking method. SRS is well known for its inexpensiveness and ability

to generate representative subsets. Moreover, contrary to all other methods but

inline with the proposed method, SRS has the ability of generating multiple

subsets of varying sizes as well as room for class balancing.

3. The Proposed Method

Our proposed method aims at allowing agents to retrieve TD subsets of varying

sizes based on available resources. Fig. 2 shows an approach to mining-based

agent learning in which a retrieval intermediary implements the proposed SOS

to allow dynamic and on-demand retrieval of subsets. Pre-ordering of examples

is achieved by using Level Order (LO) ranking.

3.1 TD Subset Retrieval

Fig. 2 shows four-step negotiation between an agent and the retrieval manager.

1. Send request: An agent sends its desired size and class balance.

2. Request verification: The manager verifies the desired size and class balance.

It checks whether the desired size is achievable, whether the amount of sam-

pling to achieve it is reasonable and re-adjusts the specifications accordingly.

Finally, the new or verified subset specifications are sent to an agent.

3. Acknowledgement: An agent acknowledges if it is satisfied with the proposed

specifications. Otherwise it goes back to step 1.

4. Subset retrieval: The manager retrieves a subset using SOS selection.

3.2 TD Subset Selection

The SOS method is stratified because the desired examples are selected inde-

pendently from individual classes. It is ordered because examples are selected in

a pre-defined order based on LO ranking. During SOS, class balancing is allowed

to compensate for performance losses associated with size reduction and class

imbalances. The desired class balancing is achieved by either oversampling the

minority class using synthetic examples or undersampling the majority class. A

minority class is a class with fewer examples and a majority class is a class with

many examples. These two sampling procedures are achieved as follows.

� Oversampling : Oversampling is achieved by creating new synthetic examples

using the SMOTE7) technique. The process involves four steps.

1. An example is chosen at random from within the class to be oversampled.

2. Its five nearest neighbors are selected.

3. A desired number of points are selected at random along the line segments

joining the randomly selected example and any two of its neighbors.

4. New examples at each of the selected points in step 3 are then created.

� Undersampling : Undersampling is achieved by selecting only the desired

number of highly LO-ranked examples from the class to be undersampled.

3.3 LO Ranking scheme

In our description we adopt the term “representatives” to refer to “selected

examples”. Fig. 3(a) describes the LO ranking scheme, an intra-class ranking

scheme which seeks to identify representatives which broaden class representation

by retaining both central and boundary examples. Representatives are selected

in levels. Suppose N class examples in their distance space where Idx is an

example at a distance dx from the centroid. We refer to this as level zero of

representation where the prime central example is the closest-to centroid (Idmin :

dmin = min{d1, ..., dN}) and the prime border example is the furthest-from
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(a) Ranking steps

(b) Examples in a distance space

Fig. 3 Level Order ranking

the central example (Idmax : dmax = max{d1, ..., dN}). This scheme considers

Idmin and Idmax as level zero representatives, as shown in Fig. 3(a). Other

representatives are established as follows.

� Level one representative: Using measure of central tendency on distance, an

ideal representative would have been the median example, expressed below.

∃Idx : x =
N

2
∀N ∈ even, x =

N + 1

2
∀N ∈ odd

However, since SOS seeks to retain boundary examples also, the median is

not always necessarily at the boundary. Consider examples in a distance

space in 3(b). The median is not at the boundary but an example next to

it is. Therefore, we select, as level one representative, an example I1 = Idx
which maximizes the measure shown in Eq. 1 and partitions the distance

space into 2a and 2b. In Eq. 1, min(#2a,#2b)
max(#2a,#2b) ensures that a representative is

closer to the median and d(x+1)−dx ensures that a representative is at the

boundary.

E(Idx) = [d(x+ 1)− dx] ∗ min(#2a,#2b)

max(#2a,#2b)
(1)

� Level two and higher representatives: The Level one process is repeated on

partitions 2a and 2b separately to obtain I2a and I2b as level two representa-

tives which subsequently divide their respective partitions into {3a and 3b}
and {3c and 3d} respectively. This is then repeated recursively until the

desired number of representatives is reached.

Level one and higher representatives are then made into a binary tree using their

respective distances with level one representative as a root node as shown in

Fig. 3(a). Except for level zero representatives, examples selection order (i.e.

ranking) is determined in accordance to level order traversal. The order in

Fig. 3(a), is indicated by dotted arrows (Idmin, Idmax, I1, I2a, I2b, I3a, .....).

LO ranking uses Minkowski distance (Eq. 2) space. Where p is the order of

the Minkowski metric. Our choice is due to the fact that two of the commonly

used distance functions (p = 1 for Manhattan distance and p = 2 for Euclidean

distance) are contained in Minkowski space. Hence more flexibility.

D(x,y) =

[
n∑

i=1

|xi − yi|p
] 1

p

: x = (x1, x2, ..., xn), y = (y1, y2, ..., yn). (2)

4. Experiments and Evaluation

We evaluated SOS on five well known machine learning TD sets, shown in

Table 2. They are all two-class problem sets from datasets repository of the

University of California, Irvine. There are only two classes in the sets (a minority

and a majority class). The minority-majority classes ratio is called class balance

or just balance. Numbers of features in the datasets are shown in the last column

of the table. Enclosed in brackets, after the number of features, are numbers of

real-valued features, integer-valued features and nominal features, respectively.

We used these data sets to investigate the following.

I Optimal value of p, order of the Minkowski metric: Five different values of p

(1,2,3,5,7) were compared for average performance on all TD sets.

II Effects of SOS on KE performance: Baseline performances on original TD
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Table 2 Training Data (TD) sets

Name Description Size Balance #Features

Page-blocks Blocks of document page layout. 5472 10%:90% 10 (4/6/0)

Pima Pima Indians diabetes data. 768 35%:65% 8 (8/0/0)

Spam Spam filtering data. 4597 39%:61% 57 (57/0/0)

Segment Image segmentation data 2308 14%:86% 19 (19/0/0)

Yeast Cellular localization sites of proteins. 1484 11%:89% 8 (8/0/0)

Table 3 Simulation parameters and environments

Parameter or Environment Description Values

KE algorithm C4.5

Subsets sizes (% of original) 0,5,...,95

Model Validation 10-fold cross validation

Environments Programming=JAVA, Learning=WEKA, Agent =ABLE

sets were first computed. Then for each set, subsets were generated on-

demand, used for agent training and the resulting models evaluated.

III Comparison between SOS and benchmarking choice (SRS): We repeated the

procedure in II using SRS and compared the results.

4.1 Parameters, Enviroments and Performance Metrics

Table 3 shows parameters used in our simulations. For a C4.5 classifier, classi-

fication accuracy is the most important metric for KE performance. This is also

argued by Segata et. al5). Nonetheless, we also investigated Area under ROC

curve (AUC) and F-Measure of the resulting models. The ROC curve is created

by plotting true positive rate against false positive rate. AUC and F-Measure

are single numerical metrics commonly used to compare model performances2).

Preparations of subsets involved random division of TD sets into 10 disjoint

sets of the same size. In turn, each of the disjoint sets becomes a testing partition

while a union of the rest of the disjoint sets becomes a training partition on which

SOS or SRS was applied.

4.2 Results and Analysis

I Optimal value of p: Table 4 summarizes our findings. 5 was marginally found

to be an optimal value for p. It was used for the rest of our simulations.

Table 4 Average accuracy values on TD sets for p=1,2,3,5 and 7

TD set p=1 p=2 p=3 p=5 p=7

Page-blocks 97.03 97.15 96.87 96.63 96.96

Pima 79.31 76.90 77.72 79.66 78.26

Spam 93.20 93.30 93.64 93.65 93.56

Segment 99.27 98.79 99.09 99.28 99.14

Yeast 78.04 78.24 78.67 79.13 78.77

Table 5 Performance metrics on original TD sets

Dataset avg. accuracy (%) avg. F-Measure avg. AUC

Page-blocks 97.13 0.971 0.942

Pima 73.70 0.735 0.761

Spam 93.24 0.932 0.940

Segment 99.31 0.993 0.988

Yeast 76.01 0.754 0.743

Table 6 F-Measure, AUC and execution times

SOS (average values) SRS (average values)

Dataset F-Measure AUC time F-Measure AUC time

Page-blocks 0.952 0.914 158.22 0.852 0.823 140.24

Pima 0.791 0.822 41.97 0.734 0.746 16.74

Spam 0.923 0.924 229.15 0.783 0.760 129.97

Segment 0.994 0.989 49.77 0.913 0.891 45.78

Yeast 0.746 0.730 40.41 0.741 0.672 28.45

II Effects of SOS on KE performance: Table 5 shows baseline performance of

the KE algorithm on the original TD sets. Fig. 4 shows accuracy levels of

extracted models for all TD sets. Due to space limitation, we only show the

effects of class balancing on one TD set (page-blocks) in Fig. 4(f).

III Comparison between SOS and benchmarking choice (SRS): Fig. 4 compara-

tively shows accuracy levels for both SOS and SRS generated subsets. Other

metrics (F-Measure, AUC and execution time) are summarized in Table 6.

From the evaluation results, the following can be observed.

� SOS leads to better than baseline performance even with 0% reduction.

� Class balancing helps minority class especially when the subsets get smaller

(Fig. 4(f), from about 60% reduction).

1238 c© 2011 Information Processing Society of Japan

「マルチメディア通信と分散処理ワークショップ」 平成23年10月

― 55 ―



IPSJ SIG Technical Report

 50

 60

 70

 80

 90

 100

 0  10  20  30  40  50  60  70  80  90  100

ac
cu

ra
cy

 (
%

)

reduction (%)

SOS
SOS + class balance

SRS

(a) Page-blocks

 50

 60

 70

 80

 90

 100

 0  10  20  30  40  50  60  70  80  90  100

ac
cu

ra
cy

 (
%

)

reduction (%)

SOS
SOS + class balance

SRS

(b) Pima

 50

 60

 70

 80

 90

 100

 0  10  20  30  40  50  60  70  80  90  100

ac
cu

ra
cy

 (
%

)

reduction (%)

SOS
SOS + class balance

SRS

(c) Spam

 50

 60

 70

 80

 90

 100

 0  10  20  30  40  50  60  70  80  90  100

ac
cu

ra
cy

 (
%

)

reduction (%)

SOS
SOS + class balance

SRS

(d) Segment

 50

 60

 70

 80

 90

 100

 0  10  20  30  40  50  60  70  80  90  100

ac
cu

ra
cy

 (
%

)

reduction (%)

SOS
SOS + class balance

SRS

(e) Yeast

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  10  20  30  40  50  60  70  80  90  100

F
-M

ea
su

re

reduction (%)

SOS
SOS + class balance

SRS

(f) Effects of class balancing
Fig. 4 Accuracy and F-Measure

� In general, SOS outperforms SRS except in terms of execution time (Table 6).

Longer execution times for SOS are attributed to traversal of the binary tree

used in LO ranking to store examples order.

� SOS preserves (Fig. 4) and enhances (Fig. 4(b), 4(c), 4(e)) performance.

5. Conclusion

We have presented our sampling-based method (SOS) of reducing numerosity of

TD sets for mining-based agent learning. We have shown performance enhance-

ment ability of SOS and its superiority against a benchmarking method. SOS

leads to better performance even with 0% reduction. SOS can therefore be used

not only as a subset selection method for resource constrained agent learning,

but also as a performance enhancement method even in mainstream learning.

Further empirical analysis of performance of SOS on other datasets of differing

nature and composition is ongoing as well as review of other relevant numerosity

reduction methods.
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