
『マルチメディア通信と分散処理ワークショップJ 平成18年11月

A Measurement Based Detective Method for SYN Flood Attacks

Takuo Nal回.sh凶 at，Shunsuke Oshima* and Kazuki Miurat

↑Department of Information Science， Kyushu Tokai University
9-1-1 Toroku， Kumamoも0，Japan

{taku@ktmail，30iis147@stmail}.ktokai-u.ac.jp
t Yatsushiro N ational CoUege of Technology
Inform叫ionand Electronic Engineering

2627， Hirayama-Shinmachi， Yatsushiro， Kumamoto， Japan
oshima@as.yatsushirかnct.ac.jp

Abstract

DoS(Denial 01 8eroiαjαttαcks are easily performed by utilizing the t胸 knesson TCP at the connection es帥・

lishing phase. 11 an attacker sends 8YN packets切的 aspooled source lP address， the server should remain幼e
仰がopenstate lor each ωnnection. This attαckωlled the SYN ftood attack is hardly filte陀 dby抗erouter初 such
aωse that the lP address白 spooled. Early detection 01抗お SYNflood attacksω wellω identifiωtion 01 the
mechαnism 01 esωp初.gfrom抗ehaがopenstαte on TCP is required. ln的ispaper，ωep陀 sentαmeasurementbωed
detective method lor 8YN flood attαcks at an early stα.ge. We implemented a program to send the 8YN packet
αndωllected the SYNチACKand RESET陀 sponsepacket from servers on diJJe陀 nt08包.Our detective procedu陀
takes the lollowing steps. Firstly， Our method builds a stαπdαrd model generated by observations lor the specified
met1'Ics 01 the server activαted by our αttacking program. We c<αp如何 theresponse packet to dete門nine抗emetrics
01 stand.αrd model and find the th陀 sholdωlueof each metric to ident物 whetherthe server白 αttαckedor not.
Secondly， the packet問 sponserate and the αverage response delay a陀 adoptedω the metric on丹四B8Dplatlorm，
while the packet loss rate is adopted on Linux plαザorm.Finally，ωe detect the slight variαtions of何 sponsepacket，
if the value exceeds the pre・dete門ninedth問 sholdvalue， then the detective host executes to send the R8T packet
陀 leasingthe hall-open stαte on TCP.

1 Introduction

D08 attacks are e笛 ilyperformed by utilizing the
weakr邸 5of the network protocol and by iterating r争
qu回総ofservice for the application. Most organization
have opened their Web sit倍加dother ports on TCP to
maintain their sit白 . 80， these attacks aim at directly
the application of Web server or TCP protocol to sus-
pend their Internet servic回 . In a DDo8 (Distributed
Denial of 8ervice) attack， the鰯 aultis coordinated
across many hijacked systems by a single attacker[l].
SYN fiood attacks [2]同disturbthe倒 ablishmentof
the TCP connection. An attacker does not r回 pondto
the SYN+ACK packet from the server following a huge
amount of 8YN packets sent to the server from the at-
tacker with spoofed source IP addresses. As a result，
TCP on the server should keep出ehuge number of the
halιopen state for each connection and exhaust the
memory r回 ourceto be followed by the cease of server

function to be down eventually.

To prevent DD08 attacks， three different types of
method are classified: prevention， detection and coun-
terattack. Prevention method tries to prevent attacks
b槌 edon the pr.伺 mptivemeasurement to built the ωι
erant system. Detection method focuses on early de-
tection for intrusions or attacks andゐcus田 onnotifica-
tion by the alarm as soon鎚 po路 ible.In this method，
accuracy and quickn邸 sare important factors. Coun-
terattack method tri白 tosome actions after detecting
the attack. Typ田 ofthese actions are included the
filtering[4] ， pushback[5] and traceback[6][7]， and miti-
gate the inftuence of the DDoS attacks and finally 位協

to identify the attack source if possible. The me~hod
we propose is mainly categorized into the detective
method， and in addition， we support mitigation to ex-
haust r白 ourcesof the server.

In this paper， we pr.白 enta measureme叫 b錨 edde-
tective method for SYN fiood attacks in early stage.

-13-

We implemented a program to send the SYN packet
and collected the SYN + ACK response packe色合omthe
server. Our detective procedure ta~回 the おllowing
steps. Firstly， Our method builds a stand釘 dmodel
generated by observationsゐrthe specified metrics of
the server activated by our attacking program. We
capture the r田 ponsepacket to determine the metrics
of standard model and find the thr，白holdvalue of伺 ch
metric to identify whether the server is attacked or not.
Secondly， the packet r回 ponserate and the avera吾e時

sponse delay are adopted as the metric on FreeBSD
platform， while the packet loss rate is adopted on Linux
platform. Finally， we detect the slight variations of re-
sponse packet， if the value exceedsむhepre-determined
threshold value， then the detective ho抗 executesto
send the RST packet rele錨 ingthe halιopen state on
TCP.

This paper is organized as follows. First， the ex-
perimental setup and the packet sequence pattern is
described in Section 2. Section 3 is the results of ob-
servations followed by the detective method in Section
4. Section 5 is the summary and discussion for future
work.

2 Experimental Setup and Packet Se-
quence

In this section， we introduce explanation of the ex-
perimental setup followed by packet田 quencepatterns.

2.1 Experimental Setup

Our experiments configure the attacking machine
錨 aclient， and observe receiving and sending pack-
ets from and to the server to infer the performance
dynamics on the server. The client operat田 onthe
FreeBSD 5.3 platform as the attacker， while the server
operates one of the major different OS's， i.e. FreeBSD
5ム LinuxFedoraωre 5 (Kernel version 2.6.16)加 d
Windows Server 2003 SE SP1. We implemented packet
generating program by C and set up this program on
the client. The client sends packets sequentially to the
specific po凶 onTCP on the server. In this experi-
ment， we examined 50， 100， 500， 1000 and 5000除

quence SYN requωt packets with setting one or multi
spoofed source IP addresses. A voiding the unnec邸 sary
load caused by probing packets， we prep訂 'edanother
me錨 uringhost to probe all packet sequenc白 betw伺 n
the client and the server with timing data. This mea-
suring host captures all SYN， SYN + ACK and RESET
packets and r缶 ervesreceiving tim田 onthe server.

one
multi

As the r回 ults，we observed the following two p配 ket
回 quencepatterns， and shows the classification 01 re-
sponse packet sequence patterns in Table 1. To spoof
different multi source IP addresses， we incremented the
IP addr邸 sfrom the lease significant bit and sequence
number on the SYN packet to capture the correspond-
ing SYN+ACK packet. These experiments were exe-
cuted on our private network and r回 ponsepackets for
SYN packet with spoofed source IP address were de-
stroyed on this network.

Different source IP address邸 areused in the caa of
the multi spoofed source IP address笛.

2.2 Packet Sequence Pattern 1

Client Server

t 1r
-+

t2r
・園田'

t28
4・ー

Figure 1. Packet関 quenceof Pattern 1.

Figure 1 illustrat回 onesequence of r田ponsepacke旬
for two sequential SYN packets仕omthe client. Firs叫む凶lyあFら}

the client sends one SYN packet at the t討ime(tlrνrふ.

the server r白 ponsesthe SYN + ACK packet a抗tt出he
time(tω. If the client sends the next SYN packet s←
quentially in a short time with the same spoofed source
IP address抗 th恥l児etime(t匂2針官r小.

tωo the spoof島edpacket with the SYN + ACK packet but
dω。邸 s叩owith tωh恥e郎 Tp附飢k刷:eta抗，ttωh恥et伽i加me仰(t匂弘ω28刈8)'These
r回 ponsepatterns are repeated one after another forぬe
舘 quentialSYN requests with the same spoofedωurce
IP address.

2.3 Packet Sequence Pattern 11

Figure 2 illustrates the other sequence of response
packet for one SYN packet. First the client sends one
S刊 pa側 a叫色“川川tl凶恥h恥1児附e
s叩po叩n悶 t恥heSY刊N+叫ACααK仁pa制 a抗.tt蜘het伽i加me吋(οtl払ωhω8)'Ifthis
client replies back to the server with ACK packet， then
the connection is倒 ablished. If色heclient， however，
is an attacking ho剖， and spoo色 sourceIP address on
the first SYN packet， then SYN + ACK p猷:ketis aban-
doned on the network. As the server remains halι
open state， it repeats r田 ponseto SYN packets with
SYN + ACK packets with different time intervals. The
iterating number of the SYN + ACK packet depends on

-14 -

the server's OS type and interval times approximately
increas槌 onthe manner of exponential order.

Client Server

t1r
-+

Figure 2. Packet sequence of Pattern 11.

3 Results of Observations

In this section， we show the observed raw data col-
lected in our experiments. We evaluated the elapsed
time of response packets from the requ白 ttime of the
firs色packet.As each sequential SYN packet is marked
within the時 quencenumber field in the IP header us-
ing the sequential number， the corresponding elapsed
time is estimated. Due to the variations of r邸 ponse
patterns of each operating system， we discuss theお1-
lowing three typical classes in detail.

• The server is on FI'eeBSD platform and receives
sequential SYN packets with one spoofed source
IP addr邸 s.

• The server is on Linux and receives sequentia1
SYN packets with multi spoofed source IP ad・
dresses.

• The server is on Windows and receives sequen・
tial SYN packets with multi spoofed source IP
addresses.

3.1 Measured Packet for FreeBSD

500

100

400

∞
∞

内

o

n

d

@
O
C
@
コσ
@
ω
Z〉
ω

。
Time[sec]

Figure 3. sequential responseゐrFreeBSD.

Figure 3 shows the elapsed time of all SYN +ACK
packets r回 pondingfrom the FI'eeBSD server as the r争
sults of 500 sequential SYN packets with one spoofed
source IP address. The FI'eeBSD server performs the
responding packet of SYN+ACK to itcrateおurtimes.
We obscrved the 5仏SYNcωe， of which r，缶ult担 not
shown， to find that if the number of sequential SYN
packets is smaller than 50 packets， every SYN + ACK
r倍 ponsepacket is sent. On the other hand， 500 sequen-
tial SYN packets lead to intermittent response packet
at second， third andおurthresponse. Two respond-
ing patterns are illustrated in Figure 3. Firstly， the
elapsed time for the response packet increas回 witha
linear manner. Secondly， one pa此 ofsequential packet
r田 ponseis omitted similarly in the c鎚 eof second， third
andおurthresponse case.

5000

4000
@

g

330∞
ω
妻2側
ω

Time[se吋

Figure 4. 5000 sequential rωponse for
FreeBSD.

Figure 4 illustrates all response SYN + ACK packets
activated by 5000 sequential SYN packets. Two identi-
cal characters， the intermittent r田 ponseand the linear
increase， are observed in Figure 4錨 seenin Figure 3.
Firstly， the intermittent r邸 ponseappe訂 sto the sec-
ond， third and fourth r偲 ponsecase. Secondly， elapsed
time of each r四 ponseincreas凶 witha nearly linear
manner. Figure 4， however， indicat四 thatoverloads on

-15-

Figure.6 shows the elapsed time of all SYN+ACK
packets responding仕omthe Windows server as the r争
sults of 500 sequential SYN packets with multi spoofed
IP addresses. First SYN + ACK r笛 ponsesare plotted
onもhevertical axis similar to the Linux cases. In addi-
tion， three packets are totally r，邸pondedon七heWin-
dows case. The packe七1085has appe町 edsimilarly at
the second SYN+ ACK response.

the server generate fluctuations and delays for r，槌ponse
packets. The quantitative discussion will appe町 inthe
next subsection.

Me槌 UI吋 Packetfor Linux 3.2

Detective Method

In this section， we propose the SYN Bood detective
method to compare the standard model and actual sys-
tem performance.

4

5∞

∞

∞

∞

凋
守

q

u

h

，
』

。oc
@
3
U
@
ω
Z〉
的

100

From these observations described previously， we se-
lect r回 ponserate and average r偲，ponsedelay in metrics
to identify whether the server is attacked or not.

100

80H
ポ 11
cll 11
窃 60g
広 I¥

[40~\ ，、
ω
cll

a: 201 ・

Metrics for FreeBSD 4.1

100 40 50 60

Time[sec]

Figure 5. 500 sequential r'倒 ponseゐrLinux.

90 80 70 30 20 10
o
o

1st SYN+ACK-
2ndSYN+ACK・--
3rd SYN+ACK --・
4thSYN+ACKーー

。
The Number of SYN Packet

Figure 7. Packet respon関 rate.

First metric is the packet response rate [%] which
defined by

Figure 5 illustrates the elapsed time of all
SYN+ACK pacl倒 sresponding仕omthe Linux server
as the r鎚 ultsof 500 sequential SYN packets with multi
spoo島dIP addresses. As all fir抗 SYN+ACKpackets
sim凶taneouslyresponse to SYN packets， all plots are
on the vertical axis in the Figure 5. T~e total packet
number of SYN + ACK response詰 sixin terms of this
Linux operating system.

Comp町 'edto the FreeBSD case， the feature of se-
quential r田pondingh鎚 disappearedin this Linux c部 e.
The responding order is likely to be of r姐 dommanner，
andωme response packets are Iost at the last pa凶 of
r白 ponsesequence in especially the third r倍 ponsec鎚 e.
In spite of 1085 of the third response， we白ldthat the
fourth and other r白 pons田町'egenerated. It means
that the Linux retains the state information， bu七can-
not control the r，儲pondingprocess.

。

the number 01 αctual response pαckets
x 100[%].

the number 01 expected response packets

Measured Packet for Windows 3.3

Figure 7 shows the packet r田 ponserate of each
SYN + ACK response. First SYN+ ACK response main-
tains 100 %あreach sampled SYN requ回 t.In other
SYN+ACK cases， packet response rates vary similarly
舗 tofir剖 decreaseto 60 % for 100 sequence SYN
packets， then decrease to 24 % for more than 500 s争
中 enceofSYN r句 ue抗sand the rate keeps unchanged
おrlarger SYN sequential requests. This ob田rvation
means that TCP r田 ponsecompletely for the first SYN
request， but reduces quickly for additional， i.e. from
2nd to 4th， SYN + ACK packets. As the r，倍ult，we can
set packet response rate as one tl官邸holdmetric. If
this r，信ponserate decays under 50 % for the additional
SYN + ACK packets， we could close the halιopen state
on TCP.

-16-

10 456

Time[sec]

Figure 6. 500 sequential respon田 for
Windows.

9 8 7

"
"
.'・・.
2・2
I~:
-・・

\:，.=~
::，.二
・2・

ふ・3・.-;........
・.ぺ..'弘
~..:じよ t
.1" .~:ピ
λ・4 ・.\~
h:.:'"
'.・二・ ._. ・1....
・・‘ー.，・・2:・'i，:.::
..!;~H; •

• ~1.ピヤ'
.~ "i"..:

3 2

500

@

g 300
2

52∞
〉
ω

1∞

o
o

400

in subsection 3.2， a number of fourth and fi此hresponse
packets are sent though second or third r回 ponsepack-
e旬 withthe same sequence number are lost. It means
Linux plaむformhave kept the halιopen state for蹴 h
connection regarding the legitimate connection. There-
fore， we adopt the packet 1055 to identify whether the
server is attacked or not.

Figure 9 illustrates the packet 1055 rate for each re-
spon回 packetin L泊uxpl“おrm.We examine a new
experiment to observe response packets for sequentia1
maximum sequence numbers from 100 to 900 with 100
steps， and ca1culate the packet 1088 rate of each 時
sponse packet. All first r田 ponsepacket to each SYN
requ偲 tpackets responds quickly showing 0 % packet
1088 rate.

We can capture the following featur偲合omthe
shape of loss rate in Figure 9. The third respon艶
packet locating in the middle of r偲 ponding田 qu佃 ce
has the largest 1055 rate compared to other r，回pons回
and the following r倍 ponsωcannot decrease the some
boundary value of packet 10鎚 rateespecially in the
area with maximum sequenωnumber ex，ωeding 500.
If the sequence number exceeds 500， the packet 10ss
rate of each r倍 ponseoverly incre錨 es，and every 10路

rate exceeds 20 % after r伺.ching700. If the source IP
addr邸 esare spoofed a same addr鰯， the 10鉛 rateis
calculated from the total r缶 ponsepackets. But if the
source IP addr邸邸前esp∞島din diversified addr回蜘，
it恒 difficultto capture only the attacker's paclats.
Therefore， we adopt the 0∞urrence of the packet Ioss
槌 thedetective metriω.

5-0∞ :0 15002000 25∞3∞0-3o1

The Number 01 SYN Packet

Figure 8. Average response delay.

内

4

n

u

a

u

a

U

8

骨

内

ζ

4

・・

4
E

・

{
O
@
ω
}
h
E
@白

@
ω
c
o
a
ω
@
庄

@
m
M
W
』
@
〉
〈

Detective Method for FreeBSD

S民 ondmetric is the average r句 ponsedelay ca1cu-
lated槌おUows: First we measure the standard re-
sponse dela;ぁi.e. tls - tlr， t2sーら，t3s - tlr and
t4s - tlr， from the response time for the sequentia1 30
SYN requ部 tsas the normal stable state. Then we
define that the average r偲 ponsedelay is the average
of actual r回 pon回 delayminus the expected response
delay predicted by the standard response delay. Fig-
ure 8 illustrates the average r缶 ponsedelay of each
SYN+ACK response. Every response remains under
100 m副isecondsin the c部 eof smaller then 500 SYN
requ剖 packets. SYN r，句U鰯 packetsincre錨 emore
then 500， average r笛 pon民 delaysraise linearly and fi-
nally r，伺chabout 10 seconds. Additional SYN+ACK
r倍 ponse，i息 2nd，3rd and 4th r田 ponse，delay sim-
ilarly and delay more than 1st SYN+ACK r笛 pon田.

Wecan関 taverage r，白ponsedelay邸 secondthr回 hold
metric. If the average respon関 delayexceeds 1鵠 cond，
we could close the halιopen state on TCP.

4.3

We defined two thr白 holds，i.e. the packet r笛 ponse
rate and the average r句 ponsedela;ぁ Theproposed de-
tective method works as follows.

Metrics for Linux 4.2

• We set the detective system in front of the ob-
served server. This system can bc a packet for-
warding machine or a packet observing machine.

• We capture packet fiows on TCP田 tablishing
ph邸 e，then keep ftows causing the halιopenstate
on the server.

• We observe packet ftows whether a packet ftow
decay under the thr，ωhold of the packet response
附 eand/or exceed over the threshold of the av-
erage r田 ponsedelay.

-

'

・
'
，

J

F

M
.
u
/
m

e
‘

・

，
ea

，
 /

/

・

，

••

，

.

・

，

，

・

，

，

・

'

'

'

4.

，

¥・

.
v
'

・
・
.
、
，
，

EV

.

、

，

，

・

・

.

・

、

4

・''

、

，

.

.

.

.

.

¥

納

/

7
・・・・・・・

''M『

ー

'

'
1

・
・
・
・
'
，
，

4

・・
l

，

・

'

'

.・・・・，，

l

‘‘‘‘

.

e

‘‘‘‘‘
a
y

A
F
e
a

e
'
s
e
'

1∞

80

60
(ポ
)
2
6
E
ω
ω
o
J

40

20

. If the packet fiows exceed through th邸 ethr笛 h-
olds， then detective system sends the RST packet
to the server.

Maximum Sequence Number

Figure 9. Loss rate.

As the result， the server can escape the halιopen
state on TCP quickly.

-17-

Different仕omFreeBSD platform， it is inappropri-
ate to adopt the delay鎚 ametric to detect attacks
おrnon-sequential r缶 pons邸 correspondingto sequen-
tiaI SYN requests in Linux platform. As we discussed

4.4 Detective MethodおrLinux

Based on the discussion in subsection 4.2， we pro・
po田 thefollowing detective procedure adopting the
packe色lossas a metric.

• We estimate the r回 ponsedelay for each r，白ponse
組 dit's fluctuating periods for variously spoofed
IP addrl田 S回. Th偲 eestimated values consist of
thethr笛 holdvalu田 todetermine whether the r争
spon田 packetis lost or not.

. If the real r回 ponsepacket exceeds the threshold
valu白， then the detective host identifies that the
server falls in overload condition by a number of
attacks and sends the RST packet using the ob-
served connections.

5 Conclusion

In this paper， we presented a measurement based
detective method for SYN flood a;枇acksat an e町 ly
stage. We implemented the SYN packet-sending pro-
gra:m and collected the SYN + ACK a:nd RST r笛 ponse
packets仕omthe server. After observing the activity
of the server， we classified r，偲ponsepatterns into two，
and examined the experiments to capture the thresh-
old of metrics to identify whether the server is attacked
or not. We analyzed the r缶 ponserate and the average
r白 ponsedelay for FreeBSD platform and packet loss
rate for Linux platform. From the observation for r，争
sponse packets of two OS's， the r回 ponserate decays
24 % or the average r白 ponsedelay exceed 1 second
will make the server enter the heavy load condition ac-
tivated by the attackers on FreeBSD platform. On the
other hand， if the r回 ponsepacket is not reached on the
detective host until the pre-measured r缶 ponsethresh-
old time， then the de飴ctivehost identifi田 theheavy
load condition of the server on Linux platform.

In the future， the packet-forwarding machine is to be
conducted with the detective method herein proposed
to be managed to work in the real network.

References

[1] Rocky K. Chang: Defending ag剖nstflooding-b踊 ed
distributed denial-oιservice attacks: a tutorial: Com-

muniωtions Mα，gazine， IEEE， 40(10)， pp.42・51，Oct
(2002).

[2悶2刻]C. L. Schu凶1巾ba， 1. V. Krsu叫1
A. S釦un吋E吋da釘r十副加創飢肌n，飢 dD. Z 叩 1由bOI凶凶d止 Analysisof a dcnial
of service a;瓜，tt句ackon τTCP. In Proαedings 01的e1997
IEEE Symposium on Secu吋句 αndPrivacy， pp.208-223
(1997).

[3] H. W.卸g，D. Zhang， and K. G. Shin: Detecting釘 N
自oodingattacks， In Proceedings olIEEE INFOCOM，
VoI.3，pp.153ι1539 (2002).

[4] M. Sung and J. Xu.: IP traceb配 k・b邸 edintelli・
gent pa.cket filtering: A novel technique for defend-
ing against internet DDoS attacks， IEEE 1hlnsactions
on Parallelαnd Distributed Systems， 14(9)，pp.861-872
(2003).

[5] J. Ioannidis and S. M. Bellovin: Implementing push-
back: Rρuter，・b笛 eddefense against DDoS attacks， In
Proceed飢タs01 Network and Distributed System Se':'
ω吋tySymposium， The Internet Society， February
(2002).

[6] S. Savage， D. Wetherall， A. Karlin， and T. Anderson:
Practical network suppo同 forIP traceback， In Pro-
ceedings 01的eACM SIGCOMM Conlerence，pp.295四

306， (20∞).
[7J A. C. Snoeren: H錨 h-b笛吋 IPtraceba.ck， In Pro-

ceedings 01抗eACM SIGCOMM Conlerence， ppふ14
(2001).

-18-

