IRNFAF+ TRERELSRUABT - ay 7)) FKISEIR

A Measurement Based Detective Method for SYN Flood Attacks

Takuo Nakashima', Shunsuke Oshima! and Kazuki Miural
1 Department of Information Science, Kyushu Tokai University
9-1-1 Toroku, Kumamoto, Japan
{taku@ktmail,30iis147@stmail }.ktokai-u.ac.jp
1 Yatsushiro National College of Technology
Information and Electronic Engineering
2627, Hirayama-Shinmachi, Yatsushiro, Kumamoto, Japan
oshima@as.yatsushiro-nct.ac.jp

Abstract

DoS(Denial of Service) attacks are easily performed by utilizing the weakness on TCP at the connection estab-
lishing phase. If an attacker sends SYN packets with a spoofed source IP address, the server should remain the
half-open state for each connection. This attack called the SYN flood attack is hardly filtered by the router in such
a case that the IP address is spoofed. Early detection of this SYN flood attacks as well as identification of the
mechanism of escaping from the half-open state on T'CP is required. In this paper, we present a measurement based
detective method for SYN flood attacks at an early stage. We implemented a program to send the SYN packet
and collected the SYN+ACK and RESET response packet from servers on different OS’s. Our detective procedure
takes the following steps. Firstly, Our method builds a standard model generated by observations for the specified
metrics of the server activated by our attacking program. We capture the response packet to determine the metrics
of standard model and find the threshold value of each metric to identify whether the server is attacked or not.
Secondly, the packet response rate and the average response delay are adopted as the metric on FreeBSD platform,
while the packet loss rate is adopted on Linuz platform. Finally, we detect the slight variations of response packet,
if the value exceeds the pre-determined threshold value, then the detective host executes to send the RST packet
releasing the half-open state on TCP.

1 Introduction function to be down eventually.

To prevent DDoS attacks, three different types of

DoS attacks are easily performed by utilizing the method are classified: prevention, detection and coun-

weakness of the network protocol and by iterating re-
quests of service for the application. Most organization
have opened their Web sites and other ports on TCP to
maintain their sites. So, these attacks aim at directly
the application of Web server or TCP protocol to sus-
pend their Internet services. In a DDoS (Distributed
Denial of Service) attack, the assault is coordinated
across many hijacked systems by a single attacker|1].
SYN flood attacks [2}[3] disturb the establishment of
the TCP connection. An attacker does not respond to
the SYN+ACK packet from the server following a huge
amount of SYN packets sent to the server from the at-
tacker with spoofed source IP addresses. As a result,
TCP on the server should keep the huge number of the
half-open state for each connection and exhaust the
memory resource to be followed by the cease of server

terattack. Prevention method tries to prevent attacks
based on the preemptive measurement to built the tol-
erant system. Detection method focuses on early de-
tection for intrusions or attacks and focuses on notifica-
tion by the alarm as soon as possible. In this method,
accuracy and quickness are important factors. Coun-
terattack method tries to some actions after detecting
the attack. Types of these actions are included the
filtering[4], pushback[5] and traceback[6]{7], and miti-
gate the influence of the DDoS attacks and finally tries
to identify the attack source if possible. The method
we propose is mainly categorized into the detective
method, and in addition, we support mitigation to ex-
haust resources of the server.

In this paper, we present a measurement based de-
tective method for SYN flood attacks in early stage.

We implemented a program to send the SYN packet
and collected the SYN+ACK response packet from the
server. Our detective procedure takes the following
steps. Firstly, Our method builds a standard model
generated by observations for the specified metrics of
the server activated by our attacking program. We
capture the response packet to determine the metrics
of standard model and find the threshold value of each
metric to identify whether the server is attacked or not.
Secondly, the packet response rate and the average re-
sponse delay are adopted as the metric on FreeBSD
platform, while the packet loss rate is adopted on Linux
platform. Finally, we detect the slight variations of re-
sponse packet, if the value exceeds the pre-determined
threshold value, then the detective host executes to
send the RST packet releasing the half-open state on
TCP.

This paper is organized as follows. First, the ex-
perimental setup and the packet sequence pattern is
described in Section 2. Section 3 is the results of ob-
servations followed by the detective method in Section
4. Section 5 is the summary and discussion for future
work.

2 Experimental Setup and Packet Se-
quence

In this section, we introduce explanation of the ex-
perimental setup followed by packet sequence patterns.

2.1 Experimental Setup

Our experiments configure the attacking machine
as a client, and observe receiving and sending pack-
ets from and to the server to infer the performance
dynamics on the server. The client operates on the
FreeBSD 5.3 platform as the attacker, while the server
operates one of the major different OS’s, i.e. FreeBSD
5.3, Linux FedoraCore 5 (Kernel version 2.6.16) and
Windows Server 2003 SE SP1. We implemented packet
generating program by C and set up this program on
the client. The client sends packets sequentially to the
specific port on TCP on the server. In this experi-
ment, we examined 50, 100, 500, 1000 and 5000 se-
quence SYN request packets with setting one or multi
spoofed source IP addresses. Avoiding the unnecessary
load caused by probing packets, we prepared another
measuring host to probe all packet sequences between
the client and the server with timing data. This mea-
suring host captures all SYN, SYN+ACK and RESET
packets and reserves receiving times on the server.

Table 1. Classification of response patterns.

Spoofed Source | FreeBSD Linux Windows
IP address

one Pattern II | Pattern I | Pattern I

multi Pattern II | Pattern II | Pattern II

As the results, we observed the following two packet
sequence patterns, and shows the classification of re-
sponse packet sequence patterns in Table 1. To spoof
different multi source IP addresses, we incremented the
IP address from the lease significant bit and sequence
number on the SYN packet to capture the correspond-
ing SYN+ACK packet. These experiments were exe-
cuted on our private network and response packets for
SYN packet with spoofed source IP address were de-
stroyed on this network.

Different source IP addresses are used in the case of
the multi spoofed source IP addresses.

2.2 Packet Sequence Pattern I

Client Server
t 1r
sl SYN
tis
SYN+ACK e <%
t 2r
—— SYN
t 2s
RESET -

Figure 1. Packet sequence of Pattern 1.

Figure 1 illustrates one sequence of response packets
for two sequential SYN packets from the client. Firstly,
the client sends one SYN packet at the time(t;,.), then
the server responses the SYN+ACK packet at the
time(t;,). If the client sends the next SYN packet se-
quentially in a short time with the same spoofed source
IP address at the time(tz,), the server does not respond
to the spoofed packet with the SYN+ACK packet but
does so with the RST packet at the time(te;). These
response patterns are repeated one after another for the
sequential SYN requests with the same spoofed source
IP address.

2.3 Packet Sequence Pattern II

Figure 2 illustrates the other sequence of response
packet for one SYN packet. First the client sends one
SYN packet at the time (¢;,), then the server firstly re-
sponses the SYN+ACK packet at the time (t;5). If this
client replies back to the server with ACK packet, then
the connection is established. If the client, however,
is an attacking host, and spoofs source IP address on
the first SYN packet, then SYN+ACK packet is aban-
doned on the network. As the server remains half-
open state, it repeats response to SYN packets with
SYN+ACK packets with different time intervals. The
iterating number of the SYN+ACK packet depends on

the server’s OS type and interval times approximately
increases on the manner of exponential order.

Client Server
t 1r
L SYN
SYN+ACK t 1s
SYN+ACK t 2s
SYN+ACK tas
_ : \
. 1
M]
SYN+ACK s t s

Figure 2. Packet sequence of Pattern II.

3 Results of Observations

In this section, we show the observed raw data col-
lected in our experiments. We evaluated the elapsed
time of response packets from the request time of the
first packet. As each sequential SYN packet is marked
within the sequence number field in the IP header us-
ing the sequential number, the corresponding elapsed
time is estimated. Due to the variations of response
patterns of each operating system, we discuss the fol-
lowing three typical classes in detail.

e The server is on FreeBSD platform and receives
sequential SYN packets with one spoofed source
IP address.

o The server is on Linux and receives sequential
SYN packets with multi spoofed source IP ad-
dresses.

o The server is on Windows and receives sequen-
tial SYN packets with multi spoofed source IP
addresses.

3.1 Measured Packet for FreeBSD

500
(]] | [

400}

8 3

g 300}

(3]

2 200 I I I

&]
100]

0 5 10 15 30 25
Time[sec]

Figure 3. sequential response for FreeBSD.

Figure 3 shows the elapsed time of all SYN+ACK
packets responding from the FreeBSD server as the re-
sults of 500 sequential SYN packets with one spoofed
source IP address. The FreeBSD server performs the
responding packet of SYN+ACK to iterate four times.
We obsecrved the 50-SYN case, of which result is not
shown, to find that if the number of sequential SYN
packets is smaller than 50 packets, every SYN+ACK
response packet is sent. On the other hand, 500 sequen-
tial SYN packets lead to intermittent response packet
at second, third and fourth response. Two respond-
ing patterns are illustrated in Figure 3. Firstly, the
elapsed time for the response packet increases with a
linear manner. Secondly, one part of sequential packet
response is omitted similarly in the case of second, third
and fourth response case.

5000 ——r .
r , ! , ’ . ‘
4000 re_ LY
g - ‘ - ‘ - ‘
:U" 3000 . . ’
a) . ’ ’
w - ‘ - ! -’ !
£ 2000 - - -
m s ’ , ’) ,
1000 ’r 'r ’r
0 020 30 40 80 0
Time[sec)
Figure 4. 5000 sequential response for
FreeBSD.

Figure 4 illustrates all response SYN+ACK packets
activated by 5000 sequential SYN packets. Two identi-
cal characters, the intermittent response and the linear
increase, are observed in Figure 4 as seen in Figure 3.
Firstly, the intermittent response appears to the sec-
ond, third and fourth response case. Secondly, elapsed
time of each response increases with a nearly linear
manner. Figure 4, however, indicates that overloads on

the server generate fluctuations and delays for response
packets. The quantitative discussion will appear in the
next subsection.

3.2 Measured Packet for Linux

400

L PO AR

300 H

200

SYN Sequence

100

A ewn ey, W S wmtne STl b A

0

0 10 20 30 40 50 60 70 80 20 100
Time[sec]

Figure 5. 500 sequential response for Linux.

Figure 5 illustrates the elapsed time of all
SYN+ACK packets responding from the Linux server
as the results of 500 sequential SYN packets with multi
spoofed IP addresses. As all first SYN+ACK packets
simultaneously response to SYN packets, all plots are
on the vertical axis in the Figure 5. The total packet
number of SYN+ACK response is six in terms of this
Linux operating system.

* Compared to the FreeBSD case, the feature of se-
quential responding has disappeared in this Linux case.
The responding order is likely to be of random manner,
and some response packets are lost at the last part of
response sequence in especially the third response case.
In spite of loss of the third response, we find that the
fourth and other responses are generated. It means
that the Linux retains the state information, but can-
not control the responding process.

3.3 Measured Packet for Windows

500 T
400 i
2 ‘°
§ 300
g
; 200
(7]
100}
0
o 1 5 6 7 8
Timefsec]
Figure 6. 500 sequential response for
Windows.

Figure 6 shows the elapsed time of all SYN+ACK
packets responding from the Windows server as the re-
sults of 500 sequential SYN packets with multi spoofed
IP addresses. First SYN+ACK responses are plotted
on the vertical axis similar to the Linux cases. In addi-
tion, three packets are totally responded on the Win-
dows case. The packet loss has appeared similarly at
the second SYN+ACK response.

-4 Detective Method

'

In this section, we propose the SYN flood detective
method to compare the standard model and actual sys-
tem performance.

4.1 Metrics for FreeBSD

From these observations described previously, we se-
lect response rate and average response delay in metrics
to identify whether the server is attacked or not.

100 . . v

| 15t SYN+ACK —
d 2nd SYN+ACK - - -
i 3rd SYN+ACK ---
& | 4th SYN+ACK -—
2 6ol
o \‘
40
-
g
20}

The Number of SYN Packet
Figure 7. Packet response rate.

First metric is the packet response rate {%)] which
defined by

the number of actual response packets
the number of expected response packets

x 160{%).

Figure 7 shows the packet response rate of each
SYN+ACK response. First SYN+ACK response main-
tains 100 % for each sampled SYN request. In other
SYN+ACK cases, packet response rates vary similarly
as to first decrease to 60 % for 100 sequence SYN
packets, then decrease to 24 % for more than 500 se-
quence of SYN requests and the rate keeps unchanged
for larger SYN sequential requests. This observation
means that TCP response completely for the first SYN
request, but reduces quickly for additional, i.e. from
2nd to 4th, SYN+ACK packets. As the result, we can
set packet response rate as one threshold metric. If
this response rate decays under 50 % for the additional
SYN+ACK packets, we could close the half-open state
on TCP.

-t
N
1

1st SYN+ACK — 3rd SYN+ACK ---
2nd SYN+ACK --. 4th SYN+ACK ——- |

-
o

-
o

®

F-N

Average Response Delay [sec]
N [+>]

(=]

The Number of SYN Packet
Figure 8. Average response delay.

Second metric is the average response delay calcu-
lated as follows: First we measure the standard re-
sponse delay, i.e. t15 — t1r, t2s — t1r, t3s — t1r and
t4s — tir, from the response time for the sequential 30
SYN requests as the normal stable state. Then we
define that the average response delay is the average
of actual response delay minus the expected response
delay predicted by the standard response delay. Fig-
ure 8 illustrates the average response delay of each
SYN+ACK response. Every response remains under
100 milliseconds in the case of smaller then 500 SYN
request packets. SYN request packets increase more
then 500, average response delays raise linearly and fi-
nally reach about 10 seconds. Additional SYN+ACK
response, i.e. 2nd, 3rd and 4th response, delay sim-
ilarly and delay more than 1st SYN+ACK response.
We can set average response delay as second threshold
metric. If the average response delay exceeds 1 second,
we could close the half-open state on TCP.

4.2 Metrics for Linux

100

80

[23
(=3

&

Loss Rate(%)

8

Maximum Sequence Number
Figure 9. Loss rate.

Different from FreeBSD platform, it is inappropri-
ate to adopt the delay as a metric to detect attacks
for non-sequential responses corresponding to sequen-
tial SYN requests in Linux platform. As we discussed

in subsection 3.2, a number of fourth and fifth response
packets are sent though second or third response pack-
ets with the same sequence number are lost. It means
Linux platform have kept the half-open state for each
connection regarding the legitimate connection. There-
fore, we adopt the packet loss to identify whether the
server is attacked or not.

Figure 9 illustrates the packet loss rate for each re-
sponse packet in Linux platform. We examine a new
experiment to observe response packets for sequential
maximum sequence numbers from 100 to 900 with 100
steps, and calculate the packet loss rate of each re-
sponse packet. All first response packet to each SYN
request packets responds quickly showing 0 % packet
loss rate.

We can capture the following features from the
shape of loss rate in Figure 9. The third response
packet locating in the middle of responding sequence
has the largest loss rate compared to other responses
and the following responses can not decrease the some
boundary value of packet loss rate especially in the
area with maximum sequence number exceeding 500.
If the sequence number exceeds 500, the packet loss
rate of each response overly increases, and every loss
rate exceeds 20 % after reaching 700. If the source IP
addresses are spoofed a same address, the loss rate is
calculated from the total response packets. But if the
source IP addresses are spoofed in diversified addresses,
it is difficult to capture only the attacker’s packets.
Therefore, we adopt the occurrence of the packet loss
as the detective metrics.

4.3 Detective Method for FreeBSD

We defined two thresholds, i.e. the packet response
rate and the average response delay. The proposed de-
tective method works as follows.

o We set the detective system in front of the ob-
served server. This system can be a packet for-
warding machine or a packet observing machine.

e We capture packet flows on TCP establishing
phase, then keep flows causing the half-open state
on the server.

e We observe packet flows whether a packet flow
decay under the threshold of the packet response
rate and/or exceed over the threshold of the av-
erage response delay.

o If the packet flows exceed through these thresh-
olds, then detective system sends the RST packet
to the server.

As the result, the server can escape the half-open
state on TCP quickly.

4.4 Detective Method for Linux

Based on the discussion in subsection 4.2, we pro-
pose the following detective procedure adopting the
packet loss as a metric.

e We estimate the response delay for each response
and it’s fluctuating periods for variously spoofed
IP addresses. These estimated values consist of
the threshold values to determine whether the re-
sponse packet is lost or not.

o If the real response packet exceeds the threshold
values, then the detective host identifies that the
server falls in overload condition by a number of
attacks and sends the RST packet using the ob-
served connections.

5 Conclusion

In this paper, we presented a measurement based
detective method for SYN flood attacks at an early
stage. We implemented the SYN packet-sending pro-
gram and collected the SYN+ACK and RST response
packets from the server. After observing the activity
of the server, we classified response patterns into two,
and examined the experiments to capture the thresh-
old of metrics to identify whether the server is attacked
or not. We analyzed the response rate and the average
response delay for FreeBSD platform and packet loss
rate for Linux platform. From the observation for re-
sponse packets of two OS’s, the response rate decays
24 % or the average response delay exceed 1 second
will make the server enter the heavy load condition ac-
tivated by the attackers on FreeBSD platform. On the
other hand, if the response packet is not reached on the
detective host until the pre-measured response thresh-
old time, then the detective host identifies the heavy
load condition of the server on Linux platform.

In the future, the packet-forwarding machine is to be
conducted with the detective method herein proposed
to be managed to work in the real network.

References

[1] Rocky K. Chang: Defending against flooding-based
distributed denial-of-service attacks: a tutorial: Com-
munications Magazine, IEEE, 40(10), pp.42-51, Oct
(2002).

[2] C.L.Schuba, I. V. Krsul, M. G. Kuhn, E. H. Spafford,
A. Sundaram, and D. Zamboni: Analysis of a denial
of service attack on TCP. In Proceedings of the 1997
IEEE Symposium on Security and Privacy, pp.208-223
(1997).

[3] H. Wang, D. Zhang, and K. G. Shin: Detecting SYN
flooding attacks, In Proceedings of IEEE INFOCOM,
Vol.3,pp.1530-1539 (2002).

[4] M. Sung and J. Xu.: IP traceback-based intelli-
gent packet filtering: A novel technique for defend-
ing against internet DDoS attacks, IEEE Transaclions
on Parallel and Distributed Systems, 14(9),pp.861-872
(2003).

[5] J. Ioannidis and S. M. Bellovin: Implementing push-
back: Router-based defense against DDoS attacks, In
Proceedings of Network and Distributed System Se-
curity Symposium, The Internet Society, February
(2002).

[6] S. Savage, D. Wetherall, A. Karlin, and T. Anderson:
Practical network support for IP traceback, In Pro-
ceedings of the ACM SIGCOMM Conference,pp.295-
306, (2000).

7] A. C. Snoeren: Hash-based IP traceback, In Pro-
ceedings of the ACM SIGCOMM Conference, pp.3-14
(2001).

