[N FAF 4 TEELHRABT—I v a v]

Persistent Computing: What is it and Why Study it?

Jingde Cheng

Department of Information and Computer Sciences
Saitama University, Saitama, 338-8570, Japan
cheng@ics.saitama-u.ac.jp

Abstract
The requirement that a computing system should run continuously and persistently is never taken into
account as an essential and/or general requirement by traditional system design and development

methodologies.

A traditional computing system often has to stop its running and service when it has

some trouble, it is attacked, and it needs to be maintained, upgraded, or reconfigured. This paper
presents the author’s vision of persistent computing, a new methodology and/or paradigm that aims to
develop continuously dependable and dynamically adaptive reactive-systems, called “Persistent
Computing Systems,” in order to build more human-friendly reactive systems. The paper presents the
author’s considerations on why we should study persistent computing systems, discusses how
persistent computing systems can be constructed to satisfy their requirements, and shows some new
scientific and technical challenges on persistent computing.

1. Introduction

The requirement that a computing system should
run continuously and persistently is never taken into
account as an essential and/or general requirement by
traditional system design and development
methodologies. A fact to support this proposition is
that we cannot find ‘persistence’ and/or ‘persistent’
related technical terms defined or listed in various
computer dictionaries, computer glossaries,
encyclopedia of software engineering, and handbooks
of software reliability such as [22, 24, 25, 27, 28, 30,
36]. Although there are some individual computing
systems designed and developed with considerations
on fault tolerance [1, 21], in general a traditional
computing system often has to stop its running and
service when it has some trouble, it is attacked, and it
needs to be maintained, upgraded, or reconfigured.

However, modern society is more and more
dependent on various computing systems, and
therefore, dependent on the continuous, reliable, and
secure functioning of the systems. On the other hand,
some research area, such as autonomous evolution,
agent society, anticipatory systems, and artificial life,
also require continuous, reliable, and secure
functioning of computing systems in order to simulate
some life and/or social phenomena.

Can we make computing systems continuously
live for functioning persistently? This paper presents
the author’s vision of persistent computing, a new
methodology and/or paradigm that aims to develop
continuously dependable and dynamically adaptive
reactive-systems, called “Persistent Computing
Systems,” in order to build more human-friendly
reactive systems. The paper presents the author’s

considerations on why we should study persistent
computing systems, discusses how persistent
computing systems can be constructed to satisfy their
requirements, and shows some new scientific and
technical challenges on persistent computing.

2. Why Persistent Computing Systems?

A reactive system is a computing system that
maintains an ongoing interaction with its environment,
as opposed to computing some final value on
termination [20, 29]. A persistent computing system
is a reactive system that functions continuously and
evolves autonomously anytime without stopping its
reactions even when it had some trouble, it is being
attacked, or it is being maintained, upgraded, or
reconfigured. Note that if a computing system to
compute some final value on termination or to
completely stop its computation due to some reason,
then in general it is not a persistent computing system.

The first problem motivated the present author to
study persistent computing systems and/or persistent
computing is to solve the problem of automated
theorem finding [7, 8]. Wos in 1988 proposed 33
basic research problems in automated reasoning [34,
35). The thirty-first one is the problem of automated
theorem finding (ATF for short): “What properties
can be identified to permit an automated reasoning
program to find new and interesting theorems, as
opposed to proving conjectured theorems?” The
problem of ATF is still completely open until now.
The most important and difficult requirement of the
problem is that, in contrast to proving conjectured
theorems supplied by the user, it asks properties
and/or criteria such that an automated reasoning
program can use them to find some theorems in a field

— 235 —

TRR1TE1A

that must be evaluated by theorists of the field as new
and interesting theorems. The significance of
solving the problem is obvious because an automated
reasoning program satisfying the requirement can
provide great assistance for scientists in various fields.
In order to find new theorems in a special field, we
have to tell an ATF system what are known concepts,
theorems, open problems in the field at first, and then
run the system continuously. Because an ATF
process needs a lot of computation power and time,
and produces a lot of intermediates, any interruption
of the process is very undesirable. This naturally led
us to requiring persistent computing.

The second problem motivated the present
author to study persistent computing systems and/or
persistent computing is to develop autonomously and
continuously evolutionary systems [11, 17]. The
term ‘evolution’ means a gradual process in which
something changes into a different and usually better,
maturer, or more complete form. The autonomous
evolution of a system, which may be either natural or
artificial, should be a gradual process in which
everything changes by conforming to the system’s
own laws only, and not subject to some higher ones.
Because any evolution is a gradual process and. in
general the outside environment of a systemn changes
over time, the autonomous evolution of a system
should be a persistently continuous process without
stop of interactions with its outside environment.
Stopping a system means that its evolution is
interrupted. Although a stopped system may be
resumed, it may be stranded since its outside
environment has changed. Therefore, an
autonomously evolutionary system should at the same
time be a continuously evolutionary system. This
requires persistent computing.

The third problem motivated the present author
to study persistent computing systems and/or
persistent computing is anticipatory computing, in
particular, anticipatory reasoning-reacting systems.
The concept of an anticipatory system first proposed
by Rosen in 1980s [6, 31]. Rosen considered that
“an anticipatory system is one in which present
change of state depends upon future circumstance,
rather than merely on the present or past” and defined
an anticipatory system as “a system containing a
predictive model of itself and/or its environment,
which allows it to change state at an instant in accord
with the model’s prediction to a latter instant.” An
anticipatory reasoning-reacting system (ARRS for
short) is a computing system containing a controller C
with capabilities to measure and monitor the behavior
of the whole system, a traditional reactive system RS,
a predictive model PM of RS and its external
environment, and an anticipatory reasoning engine
ARE such that according to predictions by ARE based
on PM, C can order and control RS to carry out some
operations with a high priority. It is the predictions

by ARE based on PM that makes an ARRS able to
take anticipation [12, 13]. All anticipatory systems
have the following two characteristics in common: (1)
for any anticipatory system, concemning its current
state, there must be a future state referred by the
current state, and (2) for any anticipatory system, its
states form an infinite sequence. Therefore, we can
say that the notion of anticipatory system implies a
fundamental assumption or requirement, i.e., to be
anticipatory, a commuting system must behave
continuously and persistently without stopping its
running. It is obvious that any anticipatory
computing and/or reasoning process should not be
interrupted. Thus, anticipatory reasoning-reacting

-systems and anticipatory computing also requires

persistent computing.

The fourth problem motivated the present author
to study persistent computing systems and/or
persistent computing is ubiquitous computing. The
ultimate goal of ubiquitous computing is to provide
users with the way of computing anytime and
anywhere [33]. Obviously, a necessary condition
and/or fundamental assumption to underlie ubiquitous
computing are that there certainly are systems
functioning anytime available throughout the physical
world. Therefore, ubiquitous computing must lead
to requiring that computing systems function
continuously and persistently, ie., persistent
computing [15].

From different viewpoints, persistent computing
systems and/or persistent computing may provide us
with different benefits. From the viewpoints of
computational science and engineering, persistent
computing systems can provide us with continuous
computing powers which we need to establish the
computational methodology as a third paradigm of
scientific methodology. From the viewpoints of
reliability and security, persistent computing systems
can serve as infrastructures for achieving high
reliability and high security in the real world. From
the viewpoint of autonomous evolution, agent society,
anticipatory systems, and artificial life, persistent
computing can be considered as the purpose rather
than a way or tool.

3. Design and Development of Persistent
Computing Systems

The present author has proposed the following
general principles in concurrent systems engineering
[9, 10]:

The wholeness principle of concurrent systems:
“The behavior of a concurrent system is not simply
the mechanical putting together of its parts that act
concurrently but a whole such that one cannot find
some way to resolve it into parts mechanically and

— 236 —

then simply compose the sum of its parts as the same
as its original behavior.”

The uncertainty principle in measuring and
monitoring concurrent systems: “The behavior of an
observer such as a run-time measurer or monitor
cannot be separated from what is being observed.”

The self-measurement principle in designing,
developing, and maintaining concurrent systems: “A
large-scale, long-lived, and highly reliable concurrent
system should be constructed by some function
components and some (maybe only one) permanent
self-measuring components that act concurrently with
the function components, measure and monitor the
system itself according to some requirements, and
pass run-time information about the system’s behavior
to the outside world of the system.”

On the other hand, we can say the following
dependence principle in measuring, monitoring, and
controlling: “A system cannot control what it cannot
monitor, and the system cannot monitor what it cannot
measure.”

Based on the above principles and the fact that
system buses have successfully played a very
important role in hardware reconfiguration and
upgradability in computer engineering, the present
author considered that a persistent computing system
can be constructed by a group of control components
including self-measuring, self-monitoring, and self-
controlling components with general-purpose which
are independent of systems, a group of functional
components to carry out special takes of the system,
some data/instruction buffers, and some
data/instruction buses. The buses are used for
connecting all components and buffers such that all
data/instructions are sent to target components or
buffers only through the buses and there is no direct
interaction which does not invoke the buses between
any two components and buffers.

Conceptually, a soft system bus, SSB for short,
is simply a communication channel with the facilities
of data/instruction transmission and preservation to
connect components in a component-based system
[15]. It may consist of some data-instruction
stations, which have the facility of data/instruction
preservation, connected sequentially by transmission
channels, both of which are implemented in software
techniques, such that over the channels
data/instructions can flow among data-instruction
stations, and a component tapping to a data-instruction
station can send data/instructions to and receive
data/instructions from the data-instruction station.

An SSB-based system is a component-based
system consisting a group of control components
including self-measuring, self-monitoring, and self-
controlling components with general-purpose which
are independent of systems, and a group of functional
components to carry out special takes of the system
such that all components are connected by one or

more SSBs and there is no direct interaction which

does not invoke the SSBs between any two
components [15].
The most intrinsic characteristic or most

important requirement of SSBs is that an SSB must
provide the facility of data/instruction preservation
such that when a component in a system cannot work
well temporarily all data/instructions sent to the
component should be preserved in some data-
instruction station(s) until the component works well
to get these data/instructions. Therefore, other
components in the system should work continuously
without interruption, except those components that
waiting for receiving new data/instructions sent from
the component in question.

From the viewpoint of structure, an SSB may be
either linear or circular. On the other hand, from the
viewpoint of information flow direction,
data/instruction flows along an SSB may be either
one-way or bidirectional. Therefore, there may be
four types of SSBs: linear one-way, linear
bidirectional, circular one-way, and circular
bidirectional SSBs. It is obvious that different types
of SSBs will provide system designers and developers
a variety of technical benefits and functional
advantages to make target systems more flexible and
powerful. On the other hand, different types of SSBs
will have different difficult to implement.

L O data-instruction station

Fig. 1 SSB architecture of HILBERT

As an example, Fig. 1 shows SSB architecture of
HILBERT, an autonomous evolutionary information
system we are developing for teaching and learning
logic [18]. The group of central control components
includes a central measurer (Me), a central recorder
(R), a central monitor (Mo), and a central
controller/scheduler (C/S), all of which are permanent
components of the system, and are independent of any
application. These central control components are
connected by two SSBs such that all data and
instructions are sent to or received by components

— 237 —

only through the SSBs and there is no direct
interaction which does not invoke the buses between
any two components. The functional components
are measured, recorded, monitored, and controlled by
the central control components. All measurement
data, instructions issued by the central control
components, and communicating data between
components flow along the SSB.

As this example shows, in an SSB-based system,
the group of central control components can be
regarded as the ‘heart’ and/or ‘brain’ of the system,
the SSBs can be regarded as ‘nerves’ and/or ‘blood
vessels’ of the system, while the functional
components can be regarded as the ‘mouth’, ‘eyes’,
‘nose’, ‘hands’, and ‘feet’ of the system.

4. Comparing Persistent Computing with
Related Works

Atkinson and his colleagues have proposed the
concepts of persistent programming and persistent
programming languages in order to store data
persistently in database systems [2-4].

Ubiquitous Computing, originally proposed by
Weiser, aims to provide the method of enhancing
computer use by making many computers available
throughout the physical environment, but making
them effectively invisible to the user [33).

Dependable Computing, or dependability, is first
introduced as a global concept that subsumes the usual
attributes of reliability, availability, safety, integrity,
maintainability, and so on [1].

IBM’s “Autonomic Computing” aims to reduce
the complexity of managing components of a large-
scale system [19, 23, 26]. A comparative study of
Autonomic Computing and Persistent Computing can
be found in [16].

Intel’s “Proactive Computing” aims to provide
human-supervised computing services [32].

All the above computing paradigms did not
claim the necessity of persistent computing explicitly.

5. Scientific and Technical Challenges

Until now, there is no computing system that has
been implemented to satisfy all requirements for
persistent computing systems. Probably, even some
implementation issues have not been identified. To
implement a true persistent computing system useful
in practices, we have to solve many scientific and
technical challenging problems.

A scientific and theoretical fundamental problem
is how to define a persistent computing model
formally. Traditionally, the notion of computability
in computer science is intrinsically a finite concept
such that any computable problem must be able to be
computed within finite steps. However, persistent

computing itself as well as anticipatory computing
intrinsically concerns an infinite sequence of states to
be computed. Thus, from the viewpoint of
computation, we have some fundamental questions as
follows: What is “computable” by a persistent
computing system as well as an anticipatory
computing system? Is there some intrinsic
difference between the notion of “computability” by
persistent computing as well as anticipatory
computing and the notion of Turing-computability?
Is there some intrinsic difference between the notion
of “computability” by persistent computing and that
by anticipatory computing? Is any Turing-
incomputable problem “computable” by a persistent
computing system as well as an anticipatory
computing system?

Another scientific and theoretical fundamental
problem is how to define the notion of function and
the notion of reaction of a computing system formally
such that their difference can be used for
distinguishing functional states, partially functional
states, and disfunctional states from reactive states,
partially reactive states, and dead states.

The concept of autonomous and continuous
evolution of a persistent computing system also
should be clarified philosophically and theoretically.

The biggest technical challenge offered by
persistent computing is how to protect, maintain,
upgrade, and reconfigure control components of a
persistent computing system. Because the control
components are the pivot of a persistent computing
system, trouble of any control component may lead to
a dead state of the whole system.

Any of reliability and security policies,
requirements, functions, and facilities of a persistent
computing system must be able to be updated,
exchanged, added, or deleted while running of the
whole system without stopping service. How to
satisfy this requirement is a completely open problem.

In order to implement a persistent computing
system, the methodology and technology for self-
measuring, self-monitoring, and self-controlling are
indispensable.

To implement a true persistent computing system,
at first we need to have some technical ways
previously to test and debug it. A persistent
computing system has to be maintained, upgraded,
and reconfigured during its continuous and persistent
running. This raises a new technical challenge: how
to test and debug a persistent computing system
running continuously without stopping? Almost all
the existing testing and debugging technologies take
programs of a system rather than the running system
itself as the objects and/or targets. A fundamental
assumption underlying the existing testing and
debugging technologies is that any program can be
executed repeatedly with various input data only for
testing and debugging without regard to stopping the

— 238 —

task that program has to perform. However, for
persistent computing systems this furdamental
assumption does not hold no longer. Therefore, we
have to find a new way to test and debug a system
running continuously and persistently [14].

References

[11 R J. Abbott, “Resourceful Systems for Fault Tolerance,
Reliability, and Safety,” ACM Computing Surveys, Vol. 22, No. 1,
pp- 35-68, 1990.

[21 M. P. Atkinson, P. J. Bailey, K. Chisholm, W. P. Cockshott,
R. Morrison, “An Approach to Persistent Programming,” Computer
Joumal, Vol. 26, No. 4, pp. 360-365, 1983.

[31 M. P. Atkinson and O. P Bunema, “Types and Persistence in
Database Programming Languages,” ACM Computing Surveys,
Vol. 19, No. 2, pp. 105-170, 1987.

[4] M. P. Atkinson and R. Welland, “Fully Integrated Data
Environments: Persistent Programming Languages, Object Stores,
and Programming Environments,” Springer-Verlag, 1999.

[S] A. Avi zienis, J-C. Lapric, B. Randell, and C. Landweh,
“Basic Concepts and . Taxonomy of Dependable and Secure
Computing,” IEEE-CS Transactions on Dependable and Securc
Computing, Vol. 1, No. 1, pp. 11-33, 2004.

61 M. V. Butz, O. Sigaud, and P. Gerard, “Anticipatory
Behavior: Exploiting Knowledge About the Future to Improve
Current Behavior,” in M. V. Butz, O. Sigaud, and P, Gerard (Eds.),
“Anticipatory Behavior in Adaptive Leaming Systems: Foundations,
Theorics, and Systems,” Lecture Notes in Artificial Intelligence,
Vol. 2684, pp. 1-10, Springer-Verlag, 2003.

[71 J. Cheng, “Entailment Calculus as the Logical Basis of
Automated Theorem Finding in Scientific Discovery,” in
“Systematic Mecthods of Scientific Discovery - Papers from the
1995 Spring Symposium,” AAAI Technical Report $S-95-03, pp.
105-110, 1995.

[B) 1. Cheng, “EnCal: An Automated Forward Deduction System
for General-Purpose Entailment Calculus,” in N. Terashima and E.
Altman (Eds.), “Advanced IT Tools, IFIP World Conference on IT
Tools, IFIP96 - 14th World Computer Congress,” pp. 507-514,
Chapman & Hall, September 1996.

[9] J. Cheng, “The Sclf-Measurement Principle: A Design
Principle for Large-scale, Long-lived, and Highly Reliable
Concurrent Systems,” Proc. 1998 IEEE-SMC Annual International
Conference on Systems, Man, and Cybemetics, Vol. 4, pp. 4010-
4015, 1998.

[10] 3. Cheng, “Wholeness, Uncertainty, and Self-Measurement:
Three Fundamental Principles in Concurrent Systems Engineering,”
Proc. 13th International Conference on Systems Engineering, pp.
CS7-CS12, 1999.

[11] J. Cheng, “Autonomous Evolutionary Information Systems,”
Wuhan University Journal of Natural Sciences, Vol. 6, No. 1-2,
Special Issue: Proceedings of the International Software
Engineering Symposium 2001, pp. 333-339, Wuhan University
Journals Press, 2001.

[12] J. Cheng, “Anticipatory Reasoning-Reacting Systems,” Proc.
International Conference on Systems, Development and Self-
organization, pp. 161-165, 2602. :

[13] J. Cheng, “Temporal Relevant Logic as the Logical Basis of
Anticipatory Reasoning-Reacting Systems,” in D. M. Dubois (Ed.),
“Computing Anticipatory Systems: CASYS 2003 - Sixth
International Conference, Liege, Belgium, 11-16 August 2003,”
AIP Conference Proceedings, Vol. 718, pp. 362-375, American
Institute of Physics, 2004.

(14] J. Cheng, “Testing and Debugging Persistently Reactive
Systems - A New Challenge in Software Engineering,” Proc. Japan
Symposium on Software Testing 2005, pp. 34-40, 2005.

[15] J. Cheng, “Connecting Components with Soft System Buses:
A New Methodology for Design, Development, and Maintenance of
Reconfigurable, Ubiquitous, and Persistent Reactive Systems,” Proc.

19th IEEE-CS International Coanference on Advanced Information
Networking and Applications, Vol. 1, pp. 667-672, 200S.

[16]) J. Cheng, “Comparing Persistent Computing with Autonomic
Computing,” Proc. 11th IEEE-CS International Conference on
Parallel and Distributed Systems, Vol. Il Workshops (1st IEEE-CS
International Workshop on Reliability and Autonomic Management
in Parallel and Distributed Systems), pp. 428-432, 2005.

[17}] J. Cheng, “Autonomous and Continuous Evolution of
Information Systems,” in R. Khosla, R. J. Howlett, and L. C. Jain
(Eds.), “Knowledge-Based Intelligent Information & Engineering
Systems, 9th International Conference, KES 2005, Melbourne,
Australia, 14-16 Scptember, 2005, Proceedings,” Lecture Notes in
Artificial Intelligence, Springer-Verlag, September 2005.

[18] J. Cheng, N. Akimoto, Y. Goto, M. Koide, K. Nanashima,
and S. Nara, “HILBERT: An Autonomous Evolutionary
Information System for Teaching and Leamning Logic,” Proc. 6th
International Conference on Computer Based Learning in Science,
Vol. 1, pp. 245-254, 2003.

(19 A. G. Ganek and T. A. Corbi, “The Dawning of the
Autonomic Computing Era,” IBM Systems Journal, Vol. 42, No. 1,
pp- 5-18, 2003.

[20] D. Harel and A. Pnucli, “On the Development of Reactive
Systems,” in K. R. Apt (Ed.), “Logics and Models of Concurrent
Systems,” pp. 477498, Springer-Verlag, 1985.

[21) H. Hecht, “Fault-Tolerant Softwarc for Real-Time
Applications,” ACM Computing Surveys, Vol. 8, No. 4, pp. 391-
407, 1990.

{22]) D.S. Hermann, “Software Safety and Reliability: Techniques,
Approaches, and Standards of Key Industrial Sectors,” IEEE-CS
Press, 1999.

[23] P. Hom, “Autoromic Computing: IBM’s Perspective on the
State of Information Technology,” http://www.research.ibm.com/
autonomic/index.html, October 15, 2001.

[24] IEEE-CS, IEEE Standard 610, “IEEE Standard Computer
Dictionary — A Compilation of IEEE Standard Computer
Glossaries,” 1990.

[25]) IEEE-CS, IEEE Standard 610.12-1990, “IEEE Standard
Glossary of Software Engineering Terminology,” 1990.

[26] J. Kephart and D. Chess, “The Vision of Autonomic
Computing,” Computer, Vol. 36, No. 1, pp. 41-50, IEEE-CS, 2003.
[27] M. R. Lyu (ed), “Handbook of Software Reliability
Engineering,” McGraw-Hill, 1996.

[28) J. J. Marciniak (ed.), “Encyclopedia of Software
Engineering,” John Wiley & Sons, New York / Chichester /
Brisbane / Toronto / Singapore, 1994.

[29) A. Pnueli, “Specification and Development of Reactive
Systems,” in H.-J. Kugler (Ed.), “Information Processing 86,” pp.
845-858, IFIP, North-Holland, 1986.

[30] P. Rook (ed.), “Software Reliability Handbook,” Elsevier,
London / New York, 1990.

{311 R. Rosen, “Anticipatory Systems - Philosophical,
Mathematical and Methodological Foundations,” Pergamon Press,
Oxford, 1985.

[32] D. Tennenhouse, “Proactive Computing,” Communications
of the ACM, Vol. 43, No. 5, pp. 43-50, 2000.

B3] M. Weiser, “Some Computer Science Problems in
Ubiquitous Computing,” Communications of the ACM, Vol. 36, No.
7,1993.

[34] L. Wos, “Automated Reasoning: 33 Basic Research
Problems,” Prentice-Hall, 1988.

[35] L. Wos, “The Problem of Automated Theorem Finding,”
Journal of Automated Reasoning, Vol. 10, No. 1, pp. 137-138,
1993.

[36) A. Y. H. Zomaya (ed.), “Parallel & Distributed Computing
Handbook,” McGraw-Hill, 1996.

— 239 —

