
fマルチメディア通信と分散処理ワークショップ j 平成 17年 11月

Persistent Computing: What is it and Why Study it?

Jingde Cheng

Depar抑zentoflnformation and Con伊uterSciences
Saitama University， Saitama， 338・8570，Japan

cheng@ics.saitama-u.ac.jp

The requirement that a comput.的gsystem should run continuously and persistently is neverωken初ω
account as an essential and/or general requirenzent by traditional system design and developnzent
nzethodolog的 . A traditional comput加gsystem often hasωstop its running and service when it has
some trouble， it is at，臼cked，and it needsωbe maintained， upgn似たd，orrecoポgured. This paper
presents the author's vision 01 persistent computing， a new nzethodology and/or paradigm that a初日如

develop cont初uouslydepenぬbleand dynamically adaptive reactive句 'stems，called "Persistent
Computing Systems， "的 orderto build more human-friendly reactive systems. The paper presents the
author's considerations on why we should study persistent computing systems， discusses how
persistent computing systems can be constructed to satisfy their requirenzents， and shows sonze new
scientiflc and technical challenges on

1.ln仕oduction

The requirement白ata computing system should
run continuously and persis飽ntlyis never taken into
account路加 essentialandlor general requirement by
甘aditional system design and development
me由odologies. A fact to sUPPOrt this proposition is
白atwe伺 nnotfind ‘persistence' andlor ‘persistent'
related technical terms defined or listed in various
compu缶r dictionaries， compu胞r glossaries，
encyclopedia of software engineering， and handbooks
of software reliability such as [22， 24， 25， 27， 28， 30，
36). Although there are some individual computing
systems designed and develoμd wi曲 considerations
on fault tolerance [1， 21]， in general a traditional
computing system often has to stop its running and
service when it has some trouble， it is at阻.cked，組dit
ne吋sωbemain阻ined，upgraded， or reconfig町'ed.

However， modem s∞iety is more and more
dependent on vario凶 computing systems， and
therefore， dependent on the continuous， reliable， and
secure functioning of the systems. On the other hand，
some research釘伺， such as autonomous evolution，

agent society， anticipatory systems， and artificial life，
also r，句uire continuous， reliable， and secure
functioning of computing systems in order ωsimulate
some life andlor s∞ial phenomena.

Can we make computing systems continuously
live for functioning pe隠is蜘 tly? This paper pre鈴脳

出eauthor's vision of persis怯ntcomputing， a new
methodology andlor paradigm白紙 aimsto develop
continuously dependable and dynami伺Ilyadaptive
reactive勾蹴ms， 伺Iled “Persお'tent Computing
Systems，" in order to build more human-friendly
reactive systems. The paper p陀鈍nts出eau曲目、

considerations on why we should study persis胞nt
computing systems， discus鎚 s how persis胞nt
∞mputing systems can be∞m甘uctedto satisfy曲eir
requiremen包， and shows some new scientific and
胞chnicalchallenges on persis白ntcomputing.

2. Why Persistent Computing Systems?

A reactive system is a computing system由at
maintains an ongoing in飽ractionwith its environment，
as oppo路 dωcomputing some final value on
飽rmination[20， 29). A persistent computing system
is a reactive system曲atfunctions continuously and
evolves autonomously anytime without sωpping its
reactions even when it had some trouble， it is being
at包.cked，or it is being maintained， upgraded， or
reconfigured. Note血atぜ acomputing system ω
∞mpu飽 some final value on 胞rminationor ω
comple旬lysωp its∞mpu旬tiondue ωsome rl伺 son，
then in general it is not a persis飽ntcomputing system.

The first problem motivated曲epre鵠 nt創出orω
study persistent computing systems andlor persis白川

computing is to solve the problem of auωmated
thωrem finding [7， 8). Wos in 1988 proposed 33
basic research problems in automa凶 reasoning[34，
35). The thirty-first one is the problem of auωmated
theorem finding (A TF for short):“What properties
αn be identified to permit an automa旬drl伺 soning
programωfind new and in胞resting由ωrems，ω
oppo鴎 dto proving conjectured thωrems?" The
problem of ATF is still completely open until now.
The most important and difficult requirement of曲e
problem is曲at， in ∞ntrastωproving co吋ectured
theorems supplied by the user， it asks properties
andlor criteria such出atan automated reasoning
program can use them to find some thωrems in a field

-235-

曲atmust be evaluated by theoris也 of曲efield as new
and in旬resting theorems. The signifiωnce of
solving the problem is obvious because an auωmated
reasoning progrョm satisfying the requirementωn
provide great assistance for scientists in varlO¥iS fields.
In order to find new theorems in a special field， we
have to tell an A TF system what are known ∞ncep臼，
白eorems，open problems in the field at first， and then
run the system continuously. Because an A TF
process needs a lot of compu旬tionpow~r and time，
and produces a lot of in胞rmediates，any interruption
of the proωss is very undesirable. This naturally led
usωrequiring persis旬nt∞mputing.

The second problem motiva凶血e present
au血orωstudypersis胞ntcomputing sys旬msandlor
persis胞nt∞mputingisωdevelop autonomously and
continuously evolutionary systems [11， 1ηThe
旬m ‘evoh瓜on'means a gradual process in which
something changes. into a different and usually bet胞r，
maturer， or more comple臼 form. The au旬nomous
evolution of a system， which may be either natural or
artificial， should be a gradual process in which
every血ingchanges by conforming ω 由esystem's
own laws onIy， and not subjectωsome higher ones.
Because any evolution is a gradual process and in
general the outside environment of a system changes
over time， the autonomous evolution of a sys旬m
should be a persistently continuous process without
stop of interactions with its outside environment
Stopping a system means 曲at its evolution is
in胞rrupted. Although a sωp戸dsystem may be
resumed， it may be stranded since its outside
environment hぉ changed. Therefore，叩

auωnomously evolutionary system should at the same
time be a continuously evolutionary system. This
r何回respersls旬ntcomputing.

The third problem motivated血epresent au血or
ωstudy persis胞nt computing systems andlor
persis胞ntcomputing is anticipatory computing， in
particular， anticipatory reasoning-reacting systems.
The ∞nωpt of an anticipaωry system first proposω
by Rosen in 1980s [6， 31]. Rosen considered曲at
“an anticipatory system is one in which present
change of s組紐 dependsupon fuωre ci即ums飽nα，
rather曲anmerely on the p問sentor pぉt"and defined
an anticipatory system鎚“asystem containing a
predictive model of itself andlor its environment，
which allows it to change s阻胞 atan instant in accord
wi白血emodel' s predictionωa latter instant" An
anticipatory r伺 soning-reactingsys旬m (ARRS for
short) is a computing system containing a controller C
wi曲伺pabilitiesto measure and monitor the behavior
of the whole system， a tradi

by ARE based on PM白紙 makes加 ARRSable to
旬keanticipation [12， 13]. All anticipatory systems
have the following two charac胞risticsin common: (1)
for any anticipatory system， conceming its cuπ'ent
state， there must be a future sta胞 referredby the
current s細胞，組d(2) for any anticipaωry system， its
S句協 forman infi凶飽 sequenω. Therefore， we can
say血鉱山enotion of anticipatory sys旬m implies a
fundamentalωsumption or requirement， i.e.，ωbe
anticipatory， a commuting system must behave
continuously and persistently without stopping its
running. It is obvious 曲at 釦 y anticipaωry
computing andlor reasoning proωss should not be
in崎町up也d. Th凶， anticipatory rl伺 soning-rl伺 .cting
systems and anticipatory computing also requires
persls旬ntcomputing.

The fourth problem motivated曲epre鈎 ntau曲or
ωstudy persis胞nt computing systems andlor
persis脆:otcomputing is ubiquitous computing. The
ultimate g侃 1of ubiquitous∞mputing isωprovide
U鉛 rs with 曲e way of computing anytime 釦 d
anywhere [33]. Obviously， a necessary condition
andlor fundamental錨 sumptionto underlie ubiq凶tous
computing are 曲at there certainly are systems
functioning anytime available throughout the physi伺 l
world. Therefore， ubiquitous computing must lead
to requiring 曲at computing systems function
continuously and persistently， i.e.， pe悶is蜘 t
computing [15].

From different viewpoints， persis胞nt∞mputing
systems andlor persis飽ntcomputing may provide us
wi曲 differentbenefits. From血eviewpoin胞 of
computational science and engineering， persis旬nt
computing systems伺 nprovide us with continuous
computing powers which we need to es胞bIish血e
compu阻tion剖 methodologyas a third paradigm of
scientific me血odology. From血eviewpoints of
reliability and鈴 curity，persis胞nt∞mputingsystems
can serveωinfrastructures for achieving high
reliability and high security in血erl飽 1world. From
出eviewpoint of auωnomo凶 evolution，agent s∞iety，
anticipatory systems，佃d artificial life， persis胞nt
computing can be considered邸血ep町poserather
曲ana way orω01.

3. Design and Development of Persistent
Compu伽 gSystems

The present au血orh錨 proposedthe foIIowing
general principles in concurrent systems engineering
[9， 10]:

The wholeness principle 01 concu"ent systems:
‘'The behavior of a ∞ncurrent system is not simply
曲emech白首ω1puttingωge血.erof its parts曲atact
concurrently but a whole such曲atone cannot find
some way to resolve it into parts mech創泊回llyand

-236-

then simpJy compose the sum of its pans as the same
as its original behav ior."

The uncertainty principle in measuring and
monitoring concurrent systems:‘'The behavior of an

observer 5uch as a run-tIme mea$urer Or monitor

cannot be separated from what is being observed."

The self-measurement principle in designing，
developing， and maintaining concurrent systems“A

Jarge-scaJe， Jong-Jived， and highJy reliabJe concurrent

system shouJd be constructed by some function

componen臼 andsome (maybe onJy one) permanent

seJf-measuring components山atact concur問ntJywith
the function componenlS， measure and Inonitor the

system itseJf according to some requirements， and

pass run-time information about the systcm's behavior
to thc outside worJd of the system."

On the other hand， we can say the folJowing
d眠pendenceprinciple in me酎 uring，monitoring， and
controlling“A syslem cannot control what it cannot

monitor， and the system cannot monitor what it cannot
町lcasurc."

Based on the above principJes and the fact由at

system buses have successfuJJy pJayed a very
lmpor回ot roJe in hardware reconfiguration and

upgradability in computcr enginecring， the present
author considered that a pc目 Istentcompuung syslcm

can bc constructcd by a group of control components

including self-measuring， self-monitoring， and self.
controlling componen臼 withgencral-purpose which
are independent of systcms， a group of functional

componcnts to carry out special takes of the system，
some datalinstruction buffe目 and some

datalinstruction buses. The buscs are used for
connccling all components and buffcrs such that all
data/instructions arc sent to targct component5 or
buffers onJy through the buscs and there is no direct

intcraction which docs not invoke thc buses bctwcen

any lwo compol1ents and buffers
ConceplualJy， a soft system bus， SSB for shon，

is simply a communication channel with thc facilities
of data/instruction transmission and p陀 servaUonto

conncct components in a component-based system
[J5]. Jt may consist of some d，叫a-instruction
stations. which have the facility of dataJinstruction
prese円 al旧 n.connected sequcntially by transmission
challnels， both of which are impJementcd in software

techniques， such tha1 ovcr thc channels
data/instructions can now among data-instruction
stations， and a component tapping to a data-instruction

station can send datalinstructions 10 and receive

dataJinstructions from the data-instruction s旧11011.
An SSB-based system is a component-ba田d

system consisting a group of control componen臼
including self-measuring. sclf-monitoring， and self-
controlling components with generaJ-purposc which
are indcpendent of systems， and a group of functional
componcnlS to carry out special takes of由esystem
such that all componenlS arc connectcd by onc or

more SSBs and thcre is no direct interヨctionwhich
does not invoke the SSBs between any two
components [15]

The most intrinsic characterislic or O105t

important requirement of SSBs is that al1 SSB must

provide the facility of datalinstruction preservation
such由atwhen a componen1 in a system cannot work

wcll temporarily all dataJinstructions sent to the

component shouJd be preserved in some da回-

instruction station(s) untiJ the component works well

to get these datalinstructions. Therefore， othcr
components in the system shouJd work continuousJy
wilhout intcrruption， except those components that
waiting for receiving new dataJinstructions senl from

the component in qucslion

from the viewpoint of structure， an SSB may be
either Iinear or circular. On the other hand， from the
vicwpoint of information flow direclion，
datalinstruction日owsaJong an SSB may be either

one-way or bidirectional. Therefore， lhere may be

four types of SSBs: lillear one-way， linear
bidirectional， circular one-way， and circular
bidirectional SSBs. Jt is obvious thal different types
of SSBs will provide system desigl1ers and deveJopers

a variety of tcchnical bcncfits and functional
advantagcs to makc target sy5tcms morc nexible and

powerfuJ. On the olher hand， different types of SSBs
will have different difficuJt to impJement.

U同 r

o dnla.inSlnlclJolI sl山 n

fig. J SSB architecture of HJLBERT

As a11 exampJe， fig. J sho¥Vs SSB architecture of
HILBERT， an autonomous cvolutionary information

system wc arc developing for teaching and leaming

Jogic [J 8]. The group of centraJ conlroJ components
includes a ccntraJ measurer (Me)， a central rec泊rdcr
(R)， a centraJ monitor (Mo)， al1d a centraJ
conlrollerlscheduJer (ClS)， all of which are permanent
components of lhe system， and are independent of any
application. These central c刀ntrolcomponen也 arc
connected by two SSBs such that aJJ data and
Inslructiolls arc sent 10 or recei ved by componen臼

237 -

only 曲rough 曲e SSBs and there is 00 direct
in飽ractionwhich does not invoke the bu鑓sbetweeo
any two components. The functiona1∞mponen包
are m飽 sured，record叫 monitored，and ∞ntrolled by
由.eceo回 l∞ntrol∞mponents. All m伺 surement
da旬t instructions issu剖 by 血.e cen釘a1 control
∞mponen也 and communiωting da阻恥twωn
∞mponen包 flowa10ng the SSB.

As this example shows， in an SSB-based system，
the group of cen回 1control componen也 ωnbe
regarded邸曲e・hぬ此， andlor‘brain' of the sys胞m，

由eSSBs伺 nbe regarded邸‘nerves'釦 dlor‘bl∞d
vessels' of the system， while the functiona1
∞mponen臼 ωnbe regarded節也e‘mou町，‘eyes'，
‘no鎚¥‘hands'，and‘feet' of the system.

4. Comp卸価gPersistent Comp凶 ngwith
Related Works

A止insonand his colleagues have propo鈍d曲e
∞ncep胞 ofpersis旬ntprogramming and persis旬nt
programming languages in order to sωre da阻
persis胞nt1yin database systems [2-4].

Ubiquitous Computing， origina11y ProPO田dby
Weiser，剖msto provide出emethωof enhancing
compu飽ru鈍 bymaking many compu旬rsavailable
throughout the physica1 environment， but making
theme町'ectivelyinvisible ω血euser [33].

Dependable Computing， or dependability， is first
in甘oducedぉ agloba1∞ncept曲atsubsumes the usua1
at甘ibutesof reliability， av剖lability，回fety，in胞grity，
m剖n也inability，and so on [1].

IBM's“Autonomic Computing" aims ωreduce
曲ecomplexity of managing componen也 ofa large-
sca1e system [19， 23， 26]. A∞m戸rativestudy of
Autonomic Computing and Persis旬ntComputingωn
be found in [16].

Intel's“Proactive Computing" aims to provide
human-supervised computing serviωs [32].

AII the above computing paradigms did not
c1aim the necessity of persistent computing explicit1y.

5. Scien値目cand Technical Challenges

U ntH now， there is no computing system白紙 has
been implemen低d to satisfy a11 requiremen也 for
persistent computing systems. Probably， even some
implementation issues have not been identified. To
implement a true persis旬ntcomputing system useful
in practices， we have ωsolve many scientific and
胞chnicalcha1lenging problems.

A scientific佃 d血ωreticalfundamen阻1problem
is how to deflne a persis低ntcomputing model
forma11y. Traditionally，曲enotion of compu也bility
in compu胞rscience is in位insi伺 llya finite concept
such血at佃 ycompu旬bleproblem must be able ωbe
∞mpu飽dwi由inflnite steps. However， persis胞nt

∞mputing itself錨 wellお卸値cipaωrycomputing
ir町insiωlly∞ncemsan infini胞 sequenωofs勉飽Sぬ

be ∞m抑制 Thus，from the viewpoint of
∞mpu阻.tion，we have some fundamen旬1qu鎚 tions鎚

follows: What is “∞mpu旬ble" by a戸隠is伽 t
computing system as well 栂 an anticipaぬry
computing system? Is there some intrinsic
di百erenωbetween曲enotion of “compu阻biliザ， by
persis健闘∞mputing ぉ well お鍋ticipaωry
computing and the notion of Turing-computability?
Is there some in住insicdifference between由enotion
of“compu也bility"by persistent computing and白紙

by anticipatory computing? Is any Turing-
incomputable problem“compuぬble"by a persisteot
computing system 鎚 well as an anticipa旬ry
computing system?

Aoother scientific and thωretica1 fundamental
problem is how to deflne the notion of function and
曲eootion of reaction of a computing system formally
such 曲創出eir differenceωn be u鑓 d for
distinguishing functiona1 s飽飽s，partia11y functiona1
s阻胞s，釦ddisfunctional s阻総sfrom reactive s阻総s，
partially reactive s阻飽s，and dead sta包s.

The ∞nωpt of auωoomous and continuous
evolution of a persis飽ntcomputiog system a1so
should be c1arified philosophically and血eoretiωlly.

The biggest 胞chnica1 cha1lenge 0百ered by
persis伽 tcomputing is how to pro慨し main阻in，
upgrade，組dreconfigure∞ntrol componen也 ofa
persis低otcomputing system. Because the control
∞mponeo包 are血epivot of a persis旬otcomputing
system， trouble of any control component may leadω
a dead state of the whole system.

Any of reIiability and security poIicies，
req凶remen包， functions， and facilities of a persis也nt
∞mputing sys旬m must be able ωbe upda凶，

exchanged， added， or delet伺 whilerunning of曲e
whole system without sωpping service. How ω
satisfy由isrequi陀mentisa ∞mple凶yopen problem.

In order to implemeot a persis胞otcomputing
system， the methodology and旬chnologyfor self-
measuring， selιmonitoring， and self-con甘ollingare
indispensable.

To implement a甘uepe隠is健 闘 ∞mputingsys臼m，
at first we need to have some 飽chnical ways
previously 加総stand debug it. A persis飽nt
∞mputing system h鎚 ωbem剖n飽ioed，upgraded，
and r，民onfigu陀dduring its cootinuous and persis蜘 t
running. This raises a new technical cha11enge: how
ω 飽stand debug a persistent computing system
running cootinuously without stoppiog? Almost alI
曲eexistiog旬stingand debugging technologies阻ke
programs of a system rather由anthe running system
itseIf as血eobjects andlor飽rge包. A fundameotaI
邸 sumption underlying the existing 缶sting and
debugging technologies is曲atany program can be
execu胞drepeatedly with var

- 238ー

値比由atprogram has to perfonn. However， for
persis慨は computing systems 血is fundamen阻l
ぉsumptiondoes not hold no longer. Therefore， we
have ωfind a new way ω 胞stand debug a system
running continuously and persis旬ntly[14].

References

[1] R. J. Ab加民“R偲 ourcefulSystems fi町FaultToleran臥
Rcliabili ty，姐dSafcty，" ACM Comp凶 ngSurvcys， Vol. 22， No. 1，
pp. 35-68， 1990.

[2] M. P. Atkinson， P. J. Bailcy， K. Chisholm， W. P.白 ckshott，
R. Morrison，“'An Approach to Pcrsistent Programming，" Computer
Jouma1， Vol. 26， No. 4， pp. 3ω-365，1銃自.

βM. P. Atkinson and O. P Buncma，‘'Typ田 and恥悶istcnccin

Database Programming Lang凶 ges，"ACM Computing Surveys，
Vol. 19， No. 2， pp. 105-170， 1兜 7.
[4] M P. A創出onand R. Welland，“'Fully Integratcd Da胞
Environmen包:Pcrsistent Programming Languages， Object S旬間，

and Programming Environmcn民"Springcr-Verlag，1999.
[勾 A.Avi zicnis， Jζ. Laprie， B. Randell， and C. Landweh，
“B踊ic Conccpts and Taxonomy of D叩endable 創叫 Securc
Computing，" lEEE-CS Transactions on Dependable and Securc
Computing， Vol. 1， No. 1， pp. 11・33，2ω4.
[6] M V. Butz， O. Si伊ud，and P. Gerard，“'Anticipatory
Behavior: Exploiting Knowlcdge A加回出e印刷reto Improve
Current Bebavior，" in M V. Bu包.O. Si伊ud，and P. Ger潤'd(日s.)，
“~ticipatory Behavior in Adaptive Leaming Systems: Foundations，
Theories， and Systems，" Lecture Not回 inArtificial Intelligence，
Vol. 2錨4，pp. 1-10， Springer-Verlag， 2∞13.
同 J. Cheng， ，‘Entailment CaI叩lus白血eLogica1 Basis of
Automated Theorem finding in Scientific Dis∞very，" in
“Systematic Meth叫 S of Scientific Discovery -Papers from曲e
1995 Spring Symposium，" AAAI Tech凶ca1Report SS・95羽， pp.
105・110，1995.
問 J.Cheng，“EnCa1: An Automated Forward Ocduction System
for Oener湿1・Purp偶 eEn凶ImentCalculus，" in N. Terashima佃 dE.
A1卸削(副s.)，“'AdvancedIT Tools， IHP World Confcren回 on汀

Tools， IRP.栃・ 14thWorld Computer Congress，" pp. 507-514，
Chapman & Ha1I， September 1996.
[9] J. Cheng， "The Self-Me田 urement 阿 nciple: A 0偲 ign
Principle for Large-sca1e， Long-lived， and High1y Rcliablc
Concurrent Systems，"目。c.1998 IEEE-SMC Annual In加 nationa1
Conference on Systems， Man， and Cybemetics， Vol. 4， pp. 4010・
4015，1卯8.
[10] J.αeng，吋品olenc払 Un伺 rtainty，and Self-M伺 suremcnt:
Three Fun血men凶Principlesin Concurrent Systems Enginee巾 g，"
Proc. 13曲IntemationaJConferen∞on Systems Engin民 ring，pp.
CS7-CSI2，ω99.
[11] J. Cheng， "Au旬nomo田 EvolutionaryInformation Systems，"
Wuhan University Joumal of Nat町a1Sciences， Vol. 6， No. 1・2，
Special Issue: 目。田edings of 曲e IntemationaJ Software
Enginee巾 gSymposi山n2∞1， pp. 333・339，Wuhan Univeぉity
Jouma1s Press， 2∞1.
[12] J. Cheng，“'Anticipatory R伺 so凶ng-Rc邸 tingSystems，" Proc.
Intemationa1 Conferen偶 onSystems， Development and Self-
0唱anization，pp. 161・165，2∞2.
[13] J. Cheng，・'Tempora1Relevant Logic踊 白cLogical Basis of
Anticipatory Reasoning-Reacting Sys

19白鹿島CSIntemational白 nference00 Advanc“Information
Nctworking and Applications， Vol. 1， pp.“，7，(，72，2∞5.
[16] J.αlcng，“'Com戸ringPcrsistent Comp凶 ngwith Autooomic
Computing，" Proc. 11也IEEE-CSIntemationaJωnference on
Para11el and Dis凶butedSystems， Vol. s Workshops (1st lEEE..(ごS
Intemationa1 Workshop on Reliability and Autonomic Management
in Para1Iel and Distributed Systems)， pp. 428-432， 2ω'5.
[1ηJ. Cheng，“'Autonomo出血d Continuo凶 Evolution of
Informa伽 nSystems，" in R. Khosla， R. J. Howlett， and L. C. Jain
(副s.)，“Knowledge-Bas“IntelligentInformation & Enginccring
Systems， 9曲 IntemationaJ Conferen伺， KES 2ω15， Melboume，
A凶旬叫ia，14-16 Sep鎗mber，2∞'5，目。偶edings，"Lect町'CNot回 in
Artificial Intelligence， Springer-Verlag， September 2∞5.
[18] J.αleng， N. Akimoto， Y. Ooto， M. Koide， K. Nanashima，
and S. Nar混，“田LBERT: An Autonomous Evoh瓜onary
Information System for Teaching and Leaming Logic，" Proc. 6由
Intemational Conferen閃 onComputer Bascd Leaming in Science，
Vol. 1， pp. 24S・254，2∞13.
[19) A. G. Oanek and T. A. Corbi， 1nc Dawoing of血e
Autonomic Computing Era，" IBM Systems Joumal， Vo1. 42， No. 1，
pp. 5-18， 2∞13.
[20] D. H8l'Cl and A. Pnueli， ''On血eDevelopment of Reactive
Systems:'泊K.R. Apt (闘よ“Logicsand Models of Conc町開nt
Systems，" pp. 477498， Springer-Verlag. 1兜 5.
[21] H. Hecbt，“Fault-Tolerant Software for Real-Time
Applications，" ACM Computing Surveys， Vol. 8， No. 4， pp. 391・
4σ7，1990.
ロ2] D. S. Hermann，“Software Safety and Reliability: Tccbniqu偲，
Approaches， and S回 dardsof Key Indus蜘 ISectors，" D翠E-CS
R沼田， 1999.
ロ3] P. Hom，“'Au加nornicComputing: 18M's Perspective on也e
State of Information Tecbnology，" http://www.resear油.ibm.coml
autono凶clindex.h回 1，October 15， 2∞1.
[24] IEEE-CS， lEEE Stan血ro610，“IE回 StandardComputer
Dictionary - A Compilation of lEEE Standard Computer
Olossari民 "1990.
[均 E日3-CS.IEEE Stan也ro610.12・1990，“IEEES脳血吋

Glossary of Software Engineering Tem山~ology，" 1990.
[26] J. Kepbart and D. Ch回 s，''The Vision of Autonomic
Computing，" Computer. Vol. 36， No. 1， pp. 41・却，IEEE-CS， 2∞，3.
[2η 悦 R Lyu (cd.)，“Handb∞k of Software Reliability
Engin儒 ring，"McGraw-HiII， 1996.
[28J J. J. Marc泊iak (edよ“Encyclo戸dia of Software
Engineering，" Jobn Wiley & 50回， New York Iαich鎚 terI
Brisb811e I Toronto I Sing叩ore，I994.
[29] A. Pnueli，“Specifica凶onand Development of Reactive
Systerns，" in H.-J. Kugler (闘よ“Infom凶 onprωe路 ing86，" pp.
845-858， IRP， Nor也・Holland， 1兜 6.
β町 P.R，∞，k (ed.)， ・‘Software Relia凶 ityHandb∞k，" FJsevier，
London/N側 York，I990.
β1] R. Rosen，“A凶 cipaω'ry Systems - Philosophical，
Mathematica1 and Meth叫ological恥 undations，"Pcr伊monpr官民

Oxforo，

- 239ー

