T=AFAF 4 T7WBEENBRRBY—IvavT) FRITENA

Inducing Multivariate Decision Trees
Quickly and Effectively

Qiangfu Zhao, Takaharu Kawatsure and Hirotomo Hayashi
The University of Aizu
Aizuwakamatsu, Fukushima, Japan 965-8580
Email: {qf-zhao,m5081132,m5081141 }@u-aizu.ac.jp

Abstract—Decision tree (DT) is a popular model for machine
learning. Compared with neural networks (NNs), DTs can make
decisions with less computations, and they are more understand-
able. However, conventional axis-parallel DTs (APDTS) are not
efficient for complex problems because their sizes can become
very large. So far different multivariate DTs (MDTs) have been
proposed to solve this problem. In eur research, we have tried the
neural network tree (NNTree) and the nearest neighbor classifier
tree (NNC-Tree). The over all process for inducing an MDT is
the same as that for inducing an APDT. The only difference is
to find a multivariate test function (MTF) in each non-terminal
node instead of finding a univariate one, This difference, however,
makes it very hard to induce MDT's because finding the best MTF
is in general NP-complete. To induce MDTs efficiently, this paper
proposes a method for finding the MTF based on supervised
learning. The efficiency and efficacy of the proposed method is
validated through experiments with several public databases.

I. INTRODUCTION

Decision tree (DT) is a popular model for machine learn-
ing. Compared with neural networks (NNs), DTs can make
decisions with less computations. They are also more under-
standable because a reasoning process can be provided for
each decision. In addition, DTs also provide a natural way
to classify and analyze the patterns hierarchically, which is
often important for many applications such as data mining
and medical diagnosis.

Conventional DTs often perform a test at each non-terminal
node based on one of the features. These kind of DTs are
often called axis-parallel DTs (APDTs) because the decision
boundary made by a univariate test is a hyperplane parallel to
one of the axes. The univariate tests are simple and convenient
for human users to understand. However, the partitioning
ability of univariate tests is often not powerful enough, and the
induced DTs can become very large. Many approaches have
been proposed in the literature to improve the efficiency of
DTs [1]- [10]. The most direct approach is to use a multivariate
test function (MTF) in each non-terminal node.

An example of multivariate DT (MDT) is the oblique
decision tree (ODT) [1], [2]). In ODTs, the MTF used in
each non-terminal node is a general hyperplane which can be
“oblique” instead of being parallel to some axis. We can extend
the DT further by using a non-linear hypersurface instead of
using a hyperplane. A natural way to realize a hypersurface
is to use an NN [3]. In general, MDTs can make decisions
more efficiently than APDTs because an MTF usually has
more powerful partitioning ability.

Structure of a neural network tree

Fig. 1.

The over all process for inducing an MDT is the same as that
for inducing an APDT. The only difference is to find an MTF
in each non-terminal node instead of finding a univariate one.
This difference, however, makes it very hard to induce MDTs
because finding the best MTF is in general NP-complete [2].
To reduce the computational cost, some kind of generate-
and-test algorithm is often used. For example, to find an
oblique hyperplane, we can start from the best axis-parallel
hyperplane, and then perform a local search. Each potential
solution generated during local search is tested using some
evaluation criterion (say, the information gain ratio), and the
best one is used as the result. For more complex MTFs, this
local search approach may not be efficient. For example, if
the MTF is an NN, it is difficult to find the best solution
through local search because a great number of generate-and-
test operations must be performed.

So far we have studied two kinds of MDTs: neural network
trees (NNTrees) [11] and nearest neighbor classifier trees
(NNC-Trees) [12]. These two kinds of MDTs have the same
structure (Fig. 1), but use different MTFs in the non-terminal
nodes. As the MTFs, expert neural networks (ENNs) are
used in NNTrees, and nearest neighbor classifiers (NNCs) are
used in NNC-Trees. To find the MTFs efficiently, we have
proposed to use the genetic algorithm (GA) [11]. However,
experimental results tell us that the GA-based approach is too
time-consuming to be practically useful.

To solve the above problem, we propose in this paper a new
method for finding MTFs. The basic idea is to partition the
data first according to their class labels and their neighborhood
relations. The partition is then realized by an MTF. To find

— 230 —

the MTF, we can use the well-known back-propagation (BP)
algorithm for the ENNSs, or the R*-rule for the NNCs. The
R*-rule is an algorithm proposed by one of the authors for
obtaining the smallest or nearly smallest NNC [13].

This paper is organized as follows. In the next section, we
provide a brief review of the DTs. In Section III, the R4-rule
is revisited because it will be used for inducing the NNC-
Trees. In Section IV, the key technique for inducing MDTs
quickly and effectively is proposed. Section V provides the
experimental results, and Section VI is the conclusion.

II. A BRIEF REVIEW OF DECISION TREES

A. Definition of DTs

A decision tree (DT) is a directed graph with no cycles.
There is one special node called root. We usually draw a
DT with the root at the top. Each node (except the root) has
exactly one node above it, which is called its parent. The
nodes directly below a node are called its children. A node is
called a terminal node if it dose not have any child. A node
is non-terminal if it has at least one child. The node of a DT
can be defined as a S-tuple as follows:

node = {I,F,Y,N,L}

where I is a unique number assigned to each node, F is a
test function that assigns a given input pattern to one of the
children, Y is a set of pointers to the children, N = |Y| is the
number of children or the size of Y, and L is the class label
of a terminal node (it is definred only for terminal node). For
terminal nodes, F' is not defined and Y is empty (N=0).

The process for recognizing an unknown pattern z is as
follows:

o Step 1: Set the root as the current node.

o Step 2: If the current node is a terminal node, assign z
with the class label of this node, and stop; otherwise, find
i = F(z). .

o Step 3: Set the ¢-th child as the current node, and return
to Step 2.

B. Induction of DT

To induce a DT, it is assumed that a training set is available.
Usually, the DT is induced by partitioning the training set
recursively. This procedure involves three steps: 1) splitting
nodes, 2) determining which nodes are terminal nodes, and 3)
assigning class labels to terminal nodes.

To see if a node is a terminal node or not, the simplest
way is to check if all or most examples assigned to this node
belong to the same class. If all or most examples are from
the same class, the node is terminal, and its label is usually
defined as the class label of the majority examples.

The purpose of splitting a node is to find a good test function
F for that node, so that the training examples assigned to this
node can be partitioned into N groups according to the test
results. Here we need a measure to quantify the “goodness”
of the test function. For example, the criterion used in the
well known induction algorithm C4.5 is the information gain
ratio (IGR) [16]. If a test function maximizes the IGR, the

average information required to classify a given example can
be minimized. Many other criteria have also been proposed in
the literature. However, it is known that the performance of a
DT does not appear to vary significantly over a wide range of
criteria [15]. :

C. Definition of MDTs

As shown in Fig. 1, an MDT is a DT with each non-terminal
node containing an MTF (multivariate test function). In this
paper, we consider two kinds of MDTSs: the NNTrees and the
NNC-Trees. In an NNTree, each MTF is ENN, which is a
multilayer perceptrons (MLPs) in our study. Using an NNTree,
an example = can be recognized as follows:

¢ Step 1: Set the root as the current node.

o Step 2: If the current node is a terminal node, assign z

with the class label of this node, and stop; otherwise, find
F(z)=i= a.rglxsx}‘aéxN or ¢))]
where o is the k-th output of the ENN.

o Step 3: Set the i-th child as the current node, and retum

to Step 2.

An NNC-Tree is an MDT with each MTF being an NNC.
The process for recognizing an unknown pattern z is as
follows:

o Step 1: Set the root as the current node.

o Step 2: If the current node is a terminal node, assign z
with the class label of this node, and stop; otherwise, find
the nearest neighbor of z from the prototypes of the NNC,
Suppose that p* is the nearest neighbor of z, the value
of the test function is then given by F(z) = i = g(p*),
where g(p*) is the group label of p*.

o Step 3: Set the i-th child as the current node, and return
to Step 2.

D. GA-based Induction of NNTrees

To induce an NNTree, we can follow the same procedure for
inducing an APDT. The only difference is to find an ENN for
each non-terminal node. From the above discussion we know
that the ENN should be able to partition the training examples
assigned to the current node into N groups. The problem is
that we do not know which example should be assigned to
which group in advance. This is why we have tried to use a
GA first for inducing NNTrees [11].

To use a GA, we need two definitions and three operators.
The two definitions include: definition of the genotype and
that of the fitness function. The three operators are: selection,
crossover and mutation. In [11], we adopted a simple GA with
three operators: truncation selection, one point crossover, and
bit by bit mutation. By truncation selection we mean that in
each generation, 7, x 100 percent of the worst individuals are
replaced with the off-spring of the best ones, where r, is called
the selection rate. The genotype of an ENN is defined as the
concatenation of all weight vectors (including the threshold
values) represented in binary numbers. The fitness of an
individual ENN is defined as the information gain ratio.

— 231 —

AN
]

Fig. 2. The R4-rule

Actually, GAs are also “generate-and-test” search algo-
rithms. Experimental results have shown that GAs are usually
better than conventional local search algorithms in the sense
that they can find the global optimal solution with higher
probability. However, the computational costs of GAs are often
very large, and cannot be used easily.

III. A REVIEW OF THE R*-RULE

In [13], one of the authors proposed a non-genetic evolu-
tionary learning algorithm called the R%-rule for designing
the smallest or nearly smallest NN-MLP (nearest neighbor
based multilayer perceptron). In fact, NN-MLP is just a neural
network realization of the NNC. Therefore, the R*-rule can be
used to design the smallest or nearly smallest NNC directly.
The R*-rule consists of four basic operations: recognition,
remembrance, reduction, and review. One leaming cycle is
defined as recognition A (remembrance V reduction) A
review, where A and V are logical AND and OR operations,
respectively. The learning can be performed cycle after cycle
until some criterion is satisfied (Fig. 2).

In the R*-rule, each operation is performed by a process
or a subroutine. Briefly speaking, recognition is a process to
test the ability of the current NNC, and the fitness of each
prototype. After recognition, we can know how the NNC
performs and how important each prototype is. If there are
too many recognition errors, some of the prototypes should be
added in the process remembrance. On the other hand, if the
recognition rate is already very high, some prototypes with
very low fitness can be removed by reduction to make the
NNC more compact and more efficient. The process review
is necessary when some prototypes are removed or added. In
review, the prototypes are readjusted so that the NNC can
achieve better performance using recent prototypes.

Each leaming cycle can be briefly described as follows.
First, present all training examples to the subroutine recogni-
tion. If the recognition rate is higher than a desired value rg,
call subroutine reduction to remove an unimportant prototype;
otherwise, call subroutine remembrance to add a new proto-
type. When some prototype is removed or added, call review
to achieve higher performance. After review, another learning

cycle starts.

The goodness or fitness of a prototype is defined as follows.
At the beginning, the fitness values of all prototypes are given
at random. The fitness values are updated in recognition.
Specifically, if a prototype is a winner for a given example,
its fitness value is increased by a factor J; otherwise, if the
prototype is a loser; its fitness value is decreased by 4. A
prototype is the winner/loser if its current fitness value is the
highest/lowest among all prototypes that can recognize the
given example correctly. In the process reduction, we select
at random one of the prototypes with fitness value less than a
respecified value fnin, and remove it from the NNC.

To use the R*-rule, we need to specify at least three
parameters: 7o, 8 and fmin. To select a set of good parameters,
however, is not easy if we do not know the domain knowl-
edge well. We can modify the R*-rule can be modified as
follows. First, the desired recognition rate r¢ can be obtained
automatically as follows:

o Initialize the NNC with sufficiently many prototypes,

which are given at random.

o Train the NNC using some existing learning vector quan-

tization (LVQ) algorithm.

o Use the recognition rate of the NNC after training as rg.
To delete the parameter §, we can change the way to evaluate
the fitness of the prototypes. In each learning cycle, the
fitness values of the prototypes are first reset to zeros. For
an given example z, if it can be classified correctly only by
the prototype p, the fitness of p is increased by 1. On the other
hand, if z is mis-classified only if p exists, the fitness of p is
decreased by 1. The parameter f,,:, can also be deleted if we
remove a prototype whenever its fitness is the lowest.

IV. INDUCING MDTS QUICKLY AND EFFECTIVELY

As stated earlier, to find the best MTF in each non-terminal
node of an MDT is a very hard problem. So far researchers
bave tried different *“‘generate-and-test” approaches. These
approaches are usually very time consuming, and cannot be
used easily. To solve this problem, we propose a different
approach here. First, we define the teacher signals (group
labels) for all examples assigned to the current node. Based
on the teacher signals, we can obtain a good MTF through
supervised learning.

In general, we do not know the best way to partition the
training examples assigned to a non-terminal node. However,
we can get a relatively good one as follows. Suppose that we
want to partition S (which is the set of examples assigned to
the current node by the tree) into N sub-sets S1,92, -, SN,
which are initially empty sets. For any given example z € S,

1) if there is a y € S;, such that label(y) = label(z),

assign z to Sy;

2) else, if there is a S;, such that S; = ®, assign z to S;;

3) else, find y, which is the nearest neighbor of z in US;,

and assign 2 to the same sub-set as y.
where U represents the union of sets, and & is the empty set.
When z is assigned to S;, the teacher signal of z is defined by

— 232 —

TABLE 1
PARAMETERS OF THE DATABASES

Name Number of | Number of | Number of

examples features classes
car 1728 6 4
crx 690 15 2
dermatology 366 34 6
ecoli 336 7 8
housevotes84 435 17 2
ionosphere 351 34 2
iris 150 4 3
optdigits 5620 64 10
pendigits 10992 16 10
tic-tac-toe 958 9 2

g(z) = i. We call g(z) the group label of z. Once the group
labels are defined, we can obtain an MTF through supervised
learning. If we realize the MTF by an ENN, we can use the
BP algorithm. If we realize the MTF by an NNC, we can use
the R*-rule.

V. EXPERIMENTAL RESULTS

To verify the effectiveness of the method proposed here, we
conducted experiments with databases taken from the machine
learning repository of the University of California at Irvine.
The databases used include: Car Evaluation Database (car),
Credit Approval Database (crx), Dermatology Database (der-
matology), Protein Localization Sites Database (ecoli), 1984
United States Congressional Voting Records Database (hou-
sevotes84), Johns Hopkins University Ionosphere Database
(ionosphere), Iris Plants Database (iris), Optical Recognition
of Handwritten Digits Database(optdigits), Pen-Based Recog-
nition of Handwritten Digits Database (pendigits), and Tic-
Tac-Toe Endgame Database (tic-tac-toe). Table I shows the
parameters of the databases.

In all experiments, 2/3 of the data were used for training,
and 1/3 of the data were used for testing. To increase the
reliability, 30 runs were conducted for each databases. The
database was shuffled before each run. The computer used in
the experiments is Sun Blade 150 with 1 CPU, UltraSPARC-
Ile 550MHz,

For comparison, the following results are used:

o APDTs obtained by C5 (a commercial version of C4.5).
o NNTrees obtained by GA-based approach.

o NNTrees obtained by BP-based approach.

o NNC-Trees obtained by R*-rule.

Note that in the BP-based induction of NNTrees and the R*-
rule based induction of NNC-Trees, the technique proposed in
the last section is used.

Parameters used in the GA-based NNTree induction are: 1)
the number of generations is 1,000, 2) the population size is
200, 3) the number of bits per weight is 16, 4) the selection
rate is 0.2 (truncation selection), 5) the crossover rate is 0.7
(one point crossover), and 6) the mutation rate is 0.01 (bit by
bit mutation).

Parameters related to the ENN are: 1) the number of inputs
is the number of features of the given problem, 2) the number

of output neurons (or the number of branches for each non-
terminal node) is 2 (e.g., we consider only binary trees here),
and 3) the number of hidden neurons is 4.

Parameters used in BP are : 1) the learning rate is 0.5, and
2) the number of epochs is 2,000.

Parameters used in the R*-rule based NNC-Tree induction
are: 1) the method for review (and also for training the initial
NNC) is DSM [22], 2) the learning rate for DSM is 0.2, 3) the
maximum number of prototypes per NNC is 16, 4) the initial
size of each NNC is 10, 5) the number of learning cycles is
32, 6) the number of epochs for review is 20, 7) the number of
epochs for training the initial NNC is 200, and 8) the number
of branches for each non-terminal node is 2.

Table II - V show the experimental results. In the tables,
“Number of non-terminal nodes” is used to measure the size
of a tree, “E(%)” is the error rate for the test set, and “Time in
seconds” is the computing time used for one run. All results
are the average of 30 runs. From these tables, we may draw
the followings conclusions:

1) About the accuracy: In 10 cases, the NNTrees obtained
using the BP-based approach win 4 times, the NNC-
Trees obtained using the R*-rule based approach win
3 times. For large databases such as optdigits and
pendigits, the MDTs usually outperform the APDTs
obtained by CS5.

2) About the size: In all cases the NNC-Trees the NNTrees
obtained using the proposed technique are much smaller
than the APDTs. In most cases the NNTrees obtained by
the GA-based approach are also smaller, but for some
databases they are even larger. If we increase the number
of generations and the population size, GA may also get
better results, but this will increase the computing time
further.

3) About computing time: Needless to say, C5 is the
fastest method to obtain a DT. If we compare the other
three methods, the BP-based approach can induce MDTs
very quickly. As stated above, the BP-based approach
can also produce smaller and more accurate NNTrees.

4) About the comprehensibility: Usually, the APDTs
obtained by C5 are most comprehensible. However, for
large databases, the APDTs are very large, and cannot
be understood easily. The NNC-Trees are actually more
comprehensible because they can be transformed into a
set of if-then rules, and the decisions are made based
on the similarity between the prototypes and the input
patterns. For example, in the case of optdigits, we can
often get the minimum MDT which can be transformed
into a small set of comprehensible if-then rules.

VI. CONCLUSION

In this paper, we have proposed a new method for inducing
MDTs (multivariate decision trees). Our purpose is of two-
fold. One is to reduce the computation time (to induce the
MDTs more quickly), and another is to reduce the tree size (to
induce the tree more effectively). Experimental results with 10
public databases show that the BP-based approach is the best

— 233 —

in the sense that it can result in smaller NNTrees quickly. The
generalization ability of the NNTrees so obtained (measured
by their recognition rates for the test sets) is also better than
or comparable with the DTs obtained by other approaches. If
we want to induce comprehensible MDTs, the R%-rule based
approach is better because it can produce smaller and more
understandable MDTs

ACKNOWLEDGMENTS

This research is supported in part by the Grants-in-Aid for
Scientific Research of Japan Society for the Promotion of
Science (JSPS), No. 17500148.

REFERENCES

[1] E. Canti-Paz and C. Kamath, “Inducing oblique decision trees with
evolutionary algorithms,” IEEE Trans. on Evolutionary Computation,
Vol. 7, No. 1, pp. 54-68, 2003.

[2] S. K. Murthy, S. Kasif and S. Salzberg, “A system for induction of
oblique decision trees,” Journal of Artificial Intelligence Research, Vol.
2, No. 1, pp. 1-32, 1994.

[3] H. Guo and S. B. Gelfand, “Classification trees with neural network
feature extraction,” IEEE Trans. on Neural Networks, Vol. 3, No. 6, pp.
923-933, Nov. 1992.

[4] C. Z. Janickow, “Fuzzy decision trees: issues and methods,” IEEE Trans.
Systems, Man, and Cybemnetics B, Vol. 28, No. 1, pp. 1-14, 1998.

[5] M. Golea and M. Marchand, “A growth algorithm for neural network
decision trees,” Europhysics Letters, Vol.12, pp. 105-110, 1990.

[6] J. Basak, “Online adaptive decision trees,” Neural Computation, Vol. 16,
pp. 1959-1981, 2004.

[7] M. L Jordan and R. A. Jacobs, “Hierarchical mixtures of experts and
EM algorithm,” Neural Computation, Vol. 6, pp. 181-214, 1994,

[8] R. G. Adams, K. Butchart and N. Davey, “Hierarchical classification
with a competitive evolutionary neural tree,” Neural Networks, Vol. 12,
pp. 541-551, 1999.

[9] T.Li, L.Y. Fang and K. Q-Q. Li, “Hierarchical classification and vector
quantization with neural tree,” Neurocomputing, Vol. 5, pp. 119-139,
1993.

{10] J. Basak and R. Krishnapuram, “Interpretable hierarchical clustering by
constructing an unsupervised decision tree,” IEEE Trans. on Knowledge
and Data Engineering, Vol. 7, No. 1, pp. 121-132, 2005.

[11] Q. F. Zhao, "Evolutionary design of neural network tree - integration
of decision tree, neural network and GA,” Proc. IEEE Congress on
Evolutionary Computation, pp. 240-244, Seoul, 2001.

[12) T. Kawatsure and Q. F. Zhao, "Inducing multivariate decision trees with
the R4-rule,” Proc. IEEE International Conference on Systems, Man and
Cybernetics (SMC’05), pp. 3593-3598, , Hawaii, 2005.

[13] Q. F. Zhao and T. Higuchi, “Evolutionary learning of nearest neighbor
MLP;” IEEE Trans. on Neural Networks, Vol.7, No. 3, pp. 762-767,
1996.

[14] Q. F. Zhao, "Stable on-line evolutionary learning of NN-MLP,” IEEE
Trans. on Neural Networks, Vol. 8, No. 6, pp. 1371-1378, 1997.

[15] L.Brieman, J. H. Friedman, R. A. Olshen and C. J. Stong, Classification
and regression trees, Belmont, CA: Wadsworth, 1984,

[16] J. R. Quinlan, C4.5: Programs for Machine Learning, Morgan Kauf-
mann Publishers, 1993.

[17] T. M. Cover and P. E. Hart, “Nearest neighbor pattern classification,”
IEEE Trans. on Information Theory, Vol. IT-13, No. 1, pp. 21-27, Jan.
1967.

[18] T. Kohonen, “Self-organized formation of topologically correct feature
maps,” Biolog. Cybem.,Vol. 43, pp. 59-69, 1982.

[19] T. Kohonen, “The self-organizing map,” Proc. IEEE, Vol. 78, No. 9, pp.
1464-1480, Sept. 1990.

[20] G. A. Carpenter and S. Grossberg, “ART 2: self-organization of stable
category recognition codes for analog input patterns,” Applied Optics,
Vol. 26, No. 23, pp. 4919-4930, Dec. 1987.

[21] G. A. Carpenter and S. Grossberg, “The ART of adaptive pattemn
recognition by a self-organizing neural network,” IEEE Computer, Vol.
21, No. 3, pp. 77-88, Mar. 1988.

[22] S. Geva and J. Sitte, “Adaptive nearest neighbor pattern classification,”
IEEE Trans. on Neural Networks, Vol. 2, No.2, pp. 318-322, Mar. 1991.

— 234 —

TABLE II
RESULTS OF GA-BASED NNTREE INDUCTION
Database Number of | Number of | E(%) | Time in
neurons | non-terminal seconds
per ENN nodes
car 4.00 1797 | 7.54 | 2575.98
Crx 4.00 17.37 | 21.75 1398.36
dermatology 4.00 527 8.72 77.82
Ecoli 4.00 19.23 | 23.30 349.00
housevotes84 4.00 6.00 | 1543 578.86
ionosphere 4.00 393 | 9.6 | 463.82
ins 4.00 263] 5.07 16.72
optdigits 4.00 44.24 | 5.51 | 13982.68
pendigits 4.00 5570 | 241] 11399.34
tic-tac-toe 4.00 §3.07 | 3095 | 317170
TABLE Ill
RESULTS OF BP-BASED NNTREE INDUCTION
Database Number of Number of | E(%) | Time in
neurons | non-terminal seconds
per ENN nodes
car 4.00 83] 346 10.58
orx 4.00 5.7 1 18.22 25.33
dermatology 4.00 6.44 3.20 0.22
Ecoli 4.00 8.14 | 17.29 6.75
housevotes84 4.00 1.96 | 5.56 1.32
tonosphere 4.00 2.57 | 10.37 2.89
iris 4.00 224 | 3.80 0.88
optdigits 4.00 13.94 | 4.44 8.05
pendigits 4.00 1647 | 2.87 66.39
tic-tac-toe 4.00 22| 183 0.94
TABLE IV
RESULTS OF R4-RULE BASED NNC-TREE INDUCTION
Database Number of Number of | E(%) | Time in
prototypes | non-terminal seconds
per NNC nodes
car 4.30 407 | 178 15.06
CrX 6.95 5.00 | 20.99 16.23
dermatology 2,01 5.00 | 4.56 7.27
Ecoli 4.09 893 | 23.42 5.02
housevotes84 544 1.07 | 15.08 4.18
ionosphere 4.59 1.07 | 11.51 4.68
iris 2.30 2.03 | 4.20 0.47
optdigits 3.13 9.00 | 332 | 452.70
pendigits 3.90 17.77 | 1.81 | 286.95
tic-tac-toe 6.68 470 | 17.17 31.40
TABLE V

RESULTS OF C5 (ALL PARAMETERS TAKE DEFAULT VALUES)

Database Number of | E(%) | Time in

Non-terminal nodes seconds
car 42,73 3.60 0.32
e 16.93 | 13.19 0.04
dermatology 813 | 4.59 0.10
Ecoli 1091 | 18.55 0.10
housevotes84 4.30 432 0.10
tonosphere 10.60 | 10.77 0.12
Iris 3.75 7.07 0.10
optdigits 156.57 | 10.36 1.54
pendigits 156.00 3.95 1.22
tic-tac-toe 46.67 | 10.69 0.17

