[2NF AT TRIBLABRBY—sayv7 ) FRITHENA

A Notification System for the p-Failure Detector

Makoto Takizawal
tSchool of Science and Engineering,
Tokyo Denki University (TDU)

1School of Information Science,
Japan Advanced Institute of Science and Technology (JAIST)
*“Information and Systems,” PRESTO,
Japan Science and Technology Corporation (JST)
{haya,taki}@takilab.k.dendai.ac.jp, defago@jaist.ac.jp

Naohiro Hayashibaraf Xavier Défagot*

E-mail:

Abstract

It is widely recognized that distributed systems would greatly benefit from the availability of a generic failure
detection service. There are however several issues that must be addressed before such a service can actually be
implemented.

In this paper, we highlight the issue related to propagating information on suspected processes. Traditionally,
failure detection systems provide information on suspects to every processes. However, it is not the efficient way
if the system has lots of nodes and processes. We now propose a notification system that propagates information
on suspicions with content-based filtering. It can provide information to proper receiver and separate the task to
send such information from failure detector modules.

Therefore, the notification system can reduce the amount of information that should be sent. each failure detector
module would be light-weight because it just provide own information on suspected nodes and processes to the

notification system.

1 Introduction

The ability for a distributed system to detect the
failure of its processes is widely recognized as an essen-
tial issue for fault-tolerant systems. In fact, virtually
any practical fault-tolerant distributed application re-
lies on a form of failure detection mechanism or another
to react appropriately in the face of failures. In such
applications, failure detection can be invoked either di-
rectly, or indirectly through the use of a group member-
ship service or other group communication primitives
(e.g., consensus, total order broadcast).

Our objective is to implement and provide a generic
failure detection service for large-scale distributed sys-
tems. The idea of providing failure detection as
an independent service is not itself particularly new
(e.g., {3, 6, 14, 15]). However, several important points
remain to be addressed before a truly generic service
can be proposed.

Specially, mechanisms for finding suspicious pro-
cesses have been developed very well so far. While,
only few have been developed for propagating informa-
tion on suspected processes (e.g., [14, 15, 6]).

In this paper, we discuss on the way for propagat-
ing information of failures in the @ failure detector. In
this context, we have to consider the way to propa-
gate suspicion levels, which are continuous value and
changed over time. Also, the information should be
sent to proper destinations. It means that useless infor-
mation shouldn't be sent by the propagation protocol
and the system. Information of a certain process’s fail-
ure is needed by some specific processes. It means that
some others do not need this information. Thus, noti-
fication of failure information is looks like some form
of publish/subscribe system.

The remainder of the paper is constructed as follows.
In the section 2, we describe the target system of the
paper and some related works. In the section 2.2, we
introduce several failure detectors and existing prop-
agation techniques. Then we discuss on the design of
the notification system and the interaction between the
system and failure detector modules in the section 3.

— 189 —



2 System Model and Related Works
2.1 System Model

We represent a distributed system as a set of pro-
cesses {p1,p2,...,Pn} which communicate only by
sending and receiving messages. We assume that ev-
ery pair of processes is connected by two unidirectional
quasi-reliable communication channels [1]. A quasi-
reliable channel is defined as a communication channel
which guarantees (1) no message loss, (2) no message
corruption, and (3) no creation of spurious messages.
We consider that processes may only fail by crashing,
and that crashed processes never recover.

We assume the system to be asynchronous in the
sense that there exist bounds neither on communica-
tion delays nor on process speed. For each communi-
cation channel, we assume message delays to be deter-
mined by some random variable whose parameters are
unknown, independent of other communication chan-
nels, and whose distribution is positively unbounded.
We assume that the parameters of the random variable
can change over time, but that they eventually become
stable.

2.2 Related Work on Failure Detection

In this section, we briefly introduce some of the most
important concepts related to failure detection in dis-
tributed systems. Firstly, we introduce the theoretical
foundation of failure detection (§2.2.1). Secondly, we
present some of extended solutions for various environ-
ments and/or large number of processes that should be
monitored (§2.2.2). Thirdly, we discuss a second aspect
of failure detection services: the notification of failures

(83).

2.2.1 TUnreliable Failure Detectors

Chandra and Toueg [3] define failure detectors as a dis-
tributed oracle with well-defined properties. A failure
detector is a distributed entity which consists of a set of
failure detector modules, one attached to each process.
A failure detector module FD,, attached to a process p,
maintains a set of suspected processes. Process p can
query its failure detector module at any time. When-
ever some process ¢ appears in the set maintained by
FD,, we say that p suspects g (that is, p suspects that
q has crashed). The failure detector is however unreli-
able in the sense that its modules are allowed to make
mistakes (1) by erroneously suspecting some correct
process (wrong suspicion), or (2) by failing to suspect
a process that has actually crashed. A module can also
change its mind, for instance, by stopping to suspect
at time t + 1 some process that it suspected at time ¢.

2.2.2 Adaptive Failure Detectors

Adaptive failure detection mechanisms are designed to
adapt dynamically to their environment and, in partic-
ular, to adapt their behavior to changing network con-
ditions. Failure detectors can also be made to adapt
to changing application behavior. They are basically
extension of the notion on failure detectors proposed
by Chandra and Toueg. Roughly speaking, they can
adjust a timeout according to the network condition.
Deciding suspicions is done by the same way as the
traditional one introduced above.

Adapting to network conditions There exist sev-
eral propositions of adaptive failure detection mecha-
nisms (e.g., [2, 4, 7, 13]). The proposed solutions are
based on a heartbeat strategy, although nothing seems
to preclude the use of other strategies such as inter-
rogation. The principal difference with the heartbeat
strategy is that the timeout is modified dynamically
according to network conditions.

Chen et al. {4] propose a different approach based
on a probabilistic analysis of network traffic. The pro-
tocol uses arrival times sampled in the recent past to
compute an estimation of the arrival time of the next
heartbeat. The timeout is set according to this esti-
mation and a safety margin, and recomputed for each
interval. The safety margin is determined by applica-
tion QoS requirements (e.g., upper bound on detection
time) and network characteristics (e.g., network load).

Bertier et al. [2] propose a different estimation func-
tion, which combines Chen’s estimation with another
estimation of arrival times developed by Jacobson [12]
for a different context.

Adapting to application requirements Some of
the adaptive failure detectors mentioned above [4, 2]
can be tailored to match diverse applications require-
ments. This is done by using QoS requirements to com-
pute the parameters of the failure detector. Then, the
failure detectors adapt to changing network conditions
in such a way that the QoS requirements are met with
high probability.

The main drawback of the failure detectors men-
tioned above is that they are designed with one single
application in mind. This means that, even if parame-
ters can be adjusted to match QoS requirements, they
can only meet those of one single application at a time.
Arguably, QoS requirements could be set as a least
common factor of all concurrent applications. How-
ever, this is unfortunately not that simple in practice,
afl gfmg only results in tradeoffs that are impossible to
address.

— 190 —



2.3 Related Work on Propagation Techniques
with Failure Detectors

2.3.1 Tree-based Protocol for Globus

Stelling et. al. [14] propose a failure detection service
for the Globus Grid toolkit, a middleware platform to
support Grid applications [8]. The architecture of the
proposed failure detector is based on two layers. The
lower layer consists of local monitors, while the upper
layer consists of data collectors. A local monitor is re-
sponsible for monitoring all processes that run on the
same host. The local monitor periodically sends heart-
beat messages to data collectors, including information
about the monitored processes. Data collectors gather
heartbeats from local monitors, identify failed compo-
nents, and notify the applications about the suspicions.

2.3.2 Gossip-based Protocols

Gossip-style failure detectors [15, 9], also sometimes
called epidemic-style failure detectors, are based on the
observation that rumors (or diseases) can propagate
very efficiently within a system, even a very large one.
More concretely, failure detector modules pick random
partners with whom they exchange information about
suspected processes. Doing so ensures that suspicions
are eventually propagated over the whole system.

One of the very strong advantage of gossip-style pro-
tocols is that they are completely oblivious of the un-
derlying topology, and hence are completely oblivious
to topology changes. In other words, topology changes
do not need to affect the performance of this class of
failure detectors.

3 Notification System for the ¢ Failure
Detector

In practice, failure detection service should play two
fundamental roles: suspecting when monitored pro-
cesses fail, and conveying this information to the mon-
itoring processes. In local networks, these two roles
are combined. This is not the case in large-scale dis-
tributed systems, where the two aspects should be dis-
tinguished. Doing so allows to ensure that the detec-
tion of failures remains a local mechanisms, whereas
the distribution of failure suspicions is done by some
notification mechanism.

We now focus on the design of a notification system
for the ¢ failure detector. It means that the system
helps this type of failure detector to propagate suspi-
cion levels to proper destinations.

3.1 The ¢ Failure Detector

Towards a generic failure detection service, we need
to build a scalable and precise failure detection mecha-
nism because failure detector modules are parts of the

service. However, lots of problems lay on this goal [10]
and no solution has succeeded completely so far. Now
we focus on the ability of adapting to network condition
and requirements of processes for failure detection.

To address the problems mentioned above, we have
recently developed a novel approach to failure detec-
tors, called the y-failure detector [11]. -failure detec-
tors are based on the notion of Accrual failure detec-
tors [5], which use no timeout and reconcile all three
types of adaptation. The key idea is that a -failure
detector provides information on the degree of confi-
dence, called suspicion level, that a given process has
actually crashed. More specifically, the failure detector
associates a value ¢, to every known process p. The
value ¢, increases dynamically according to a normal-
ized scale and represents the degree of confidence, at
the time of query, that process p has crashed.

The interactions between the applications and the
failure detector are hence different than in the tradi-
tional case. Indeed, distributed applications use the
value p, associated with a process p to decide on a
course of action. For instance, applications can set
some finite threshold for ¢, and decide to suspect p if
p crosses that threshold. Different applications can
then set different thresholds for the same process. For
instance, some applications would set a low threshold
to obtain prompt yet inaccurate failure detection (i.e.,
with many wrong suspicions), while applications with
stronger requirements would set & higher threshold and
obtain more accurate suspicions. Consequently, this
approach can effectively adapt to application require-
ments because the threshold can be set on an per-
application basis (and also on a per-communication
channel basis within each application). Beside, the
scale ensures that the value set as a threshold is mean-
ingful for the application (it represents the degree of
confidence). In practice, we compute the value ¢,
based on the history of arrival intervals between heart-
beat messages (see [11] for details).

Let us illustrate with a simple example what we de-
scribe as the adaptation to application requirements.
Consider for instance two applications A;, and A,
where A;, is an interactive application and Ag is a
heavyweight database application. Consider also than
both applications run simultaneously and rely on the
same system-wide failure detection service. With A4;,,
the actual crash of a process must be detected quickly
to prevent the system from blocking. In contrast, Ag
launches a multi-terabytes file transfer whenever a pro-
cess is suspected, and hence requires accurate suspi-
cions. While 4, favors the reactivity of the failure
detector, Agp requires high accuracy.

On the view of propagating information given by the
-failure detector, we can not use the exist mechanisms
introduced in the Sect. 2.3, because no one consider
to disseminate suspicion levels, which are continuous
values changed over time. This problem is a serious for
the p-failure detector. It can realize the adaptability
for network condition and application requirements by

- 191 —



many processes. Each failure detector module outputs
suspicion level on a certain process. Suspicion level
means how much chance to get a correct suspicion if the
failure detector module suspects the process at certain
time. It is also represented as a positive real value. It
means that this information should be delivered as soon
as possible by application processes that are interested
in it.

Thus, we now discuss on the content-based propa-
gation of information given by failure detector mod-
ules. Propagating information based on requirements
were investigated in the context of multicasting and
group communication. While it is also studied as pub-
lish/subscribe interaction model.

In the viewpoint from application processes, nor-
mally they don’t need information about every pro-
cess. They are interested only in some specific groups
of processes. In this case, the notification system has
to provide information matched to their interests. This
kind of interaction looks like publish/subscribe model.

3.2 Design of The Notification System for the ¢
Failure Detector

In this section, we describe the overview of the noti-
fication system for the ¢ failure detector. It maintains
suspicion levels given by failure detector modules in a
database and responds for inquiries by failure detector
modules properly.

The notification system has three types of tables in
a database to manage information on hosts and their
processes as follows.

e Monitored Host table: It contains a host iden-
tifier (e.g., IP address), latest reported suspicion
level, mean of suspicion level reported so far,
smallest threshold registered so far and the num-
ber of monitors in each line of the table.

o Process tables: It could be made for each host and
contains a list of processes running on a host with
network connection. Each line has a process iden-
tifier (e.g., httpd, mountd), status flag (boolean
value).

e Monitoring Host tables: It could be made for each
monitoring host/failure detector module. Each of
them contains a process identifier with a host iden-
tifier that it’s running on and its threshold.

The system updates the database whenever a fail-
ure detector report information on hosts or processes.
While, it starts to send notification messages when the
smallest threshold of some host in the Monitored Host
table.

3.3 Interaction with The Notification System

The propagation of information should be separated
from failure detection in large-scale systems. The sys-

Node X Nodo ¥ Node Z

: (+)
uluw qis suspectad

Figure 1. The design of the notification sys-
tem for the failure detection service

tem plays a role that it propagates information on sus-
picions as events to proper receivers. Failure detector
modules ask the notification system to propagate in-
formation on a certain process’s failure. Therefore, the
service should lay among failure detectors.

The notification system also has the similar
APIs, as ones in the publish/subscribe system (e.g.,
s;;bscribe(), notify()), to propagate suspicion lev-
els.

A failure detector module at a host H;
periodically provides suspicion levels on the
set of hosts {Hi,..,Hp}, which the mod-
ule is currently monitoring, using the API
publish({Hy, Ha, ..., H. }, {¢H,, ¥H, ..., oH, , Hi})
given by the system. This event includes host iden-
tifiers and corresponding suspicion levels, which are
computed just before the occurrence of the event. Host
identifier is represented, for example, by IP address.
In only the first step, a failure detector module could
get a list of network connected processes for each host.
Then, it sends the lists to the notification system. to
make process tables for each host.

We assume a node is monitored by several
nodes (failure detector modules). It means that a fail-
ure detector module at a host sends heartbeat messages
to several failure detector modules. Thus, several fail-
ure detector modules can provide different suspicion
level on the node.

When a failure detector module at H; detects that
some process p; has stopped while its execution, it
sends a state change event to the notification system
using the API statechange(H;, p;). Then, the noti-
fication system change the flag of the process and sends
notification events to proper destination by using the
registration host tables by using notify(H;.p;). It
would be also sent if a threshold of host H; given by
some failure detector module has be smaller than a re-
ported suspicion level of H;.

While, application processes can ask to the fail-
ure detector module in the local host about the sta-

— 192 —



tus of processes which they want to know. Then, the
failure detector module can use the API subscribe to
register a monitoring requirement for some processes
or nodes to the notification system (e.g., If a fail-
ure detector module has requirements to monitor pro-
cess p; at Hp with Qﬁ;f;;’"and process ps at Hy with
Qﬁ:‘_‘;;‘", it would issue subscribe({H2.p1, Hs.ps},

{@ffznder, ®f2ender}), where it includes target host
identifiers for monitoring and corresponding desired
threshold 1.) The system also has a facility of filtering
information based on their contents. Thus, it can pro-
vide required suspicion levels to application processes.

Failure detector modules could receive a notification
event whenever the registered threshold is exceeded.
This event is also delivered by a failure detector module
to each application.

When no application process wants to have any in-
formation on process p; at the node H;, the failure de-
tector module could issue unsubscribe(H;.p;). This
API suspends to notify them such information/events.

Therefore, the notification system sends events to
proper destination whenever the threshold is exceeded
by the suspicion level or changing process’s state.

Failure detector modules can also adjust the thresh-
old of H;, which has been registered, by using
chack(H;). This API returns the mean of suspi-
cion levels reported to the notification system, so far.
Failure detector modules can get the mean value and
change the threshold, to be grater than the previous
one, with the subscribe API. Then, the notification sys-
tem could override the new threshold in the database.

4 Conclusion

In this paper, we described the design of the noti-
fication system for the ¢ failure detector. Then, we
discussed the way of propagating information in the
i failure detector with the proposed notification sys-
tem. This approach can deliver desired information
to appropriate failure detector modules immediately.
Moreover, it can reduce the amount of messages sent
by failure detector modules and the notification service.
Because the notification system can provide informa-
tion only to the failure detector modules that require
it, and ask failure detectors to suspend sending unnec-
essary information.

In the future direction of our work is to customize
the existing publish/subscribe system for building the
notification system and define APIs more precisely.

References

(1] A. Basu, B. Charron-Bost, and S. Toueg. Solving
problems in the presence of process crashes and lossy

1Threshold represented as o H .p; Means the failure detector

module at host Hj. requires to monitor a process p; at host H;
with the threshold &

links. Techmnical Report TR96-1609, Cornell Univer-
sity, USA, Sept. 1996.

[2] M. Bertier, O. Marin, and P. Sens. Implementation
and performance evaluation of an adaptable failure
detector. In Proc. of the 15th Int’l Conf. on Depend-
able Systems and Networks (DSN’02), pages 354-363,
Washington, D.C., USA, June 2002.

(3] T. D. Chandra and S. Toueg. Unreliable failure de-
tectors for reliable distributed systems. Journal of the
ACM, 43(2):225-267, 1996.

(4 wW. Chen, S. Toueg, and M. K. Aguilera. On the qual-
ity of service of failure detectors. IEEE Transactions
on Computers, 51(5):561-580, May 2002.

[6) X. Défago, P. Urbén, N. Hayashibara, and
T. Katayama. Definition and specification of accrual
failure detectors. In Proc. Int’l Conf. on Depend-
able Systems and Networks (DSN), Yokohama, Japan,
June 2005. To appear.

[6] P. Felber, X. Défago, R. Guerraoui, and P. Oser. Fail-
ure detectors as first class objects. In Proc. 1st IEEE
Intl. Symp. on Distributed Objects and Applications
(DOA’99), pages 132-141, Edinburgh, Scotland, Sept.
1999.

{7} C. Fetzer, M. Raynal, and F. Tronel. An adaptive
failure detection protocol. In Proc. 8th IEEE Pa-
cific Rim Symp. on Dependable Computing(PRDC-8),
pages 146-153, Seoul, Korea, Dec. 2001.

(8] I. Foster, C. Kesselman, and S. Tuecke. The anatomy
of the grid. Intl. Journal of High Performance Com-
puting Applications, 15(3):200-222, 2001.

(9} I. Gupta, T. D. Chandra, and G. S. Goldszmidt. On
scalable and efficient distributed failure detectors. In
Proc. 20th Annual ACM Symp. on Principles of Dis-
tributed Computing (PODC-20), pages 170-179, New-
port, RI, USA, Aug. 2001. ACM Press.

[10] N. Hayashibara, A. Cherif, and T. Katayama. Failure
detectors for large-scale distributed systems. In Proc.
21st IEEE Symp. on Reliable Distributed Systems
(SRDS-21), Intl. Workshop on Self-Repairing and
Self-Configurable Distributed Systems (RCDS’2002),

pages 404-409, Osaka, Japan, Oct. 2002.

[11] N. Hayashxba.ra, X. Défago, R. Yared, and
T. Katayama. The ¢ accrual failure detector. In
Proc. 23nd IEEE Int’l Symp. on Reliable Distributed
Systems (SRDS’04), pages 66-78, Florianépolis,
Brazil, October 2004.

[12] V. Jacobson. Congestion avoidance and control. In
Proc. of ACM SIGCOMM’88, Stanford, CA, USA,
Aug. 1988.

[13] 1. Sotoma and E. R. M. Madeira. Adaptation - al-
gorithms to adaptive fault monitoring and their im-
plementation on CORBA. In Proc. of the Third
Int’l Symp. on Distributed-Objects and Applications
(D0OA’01), pages 219-228, Rome, Italy, Sept. 2001.

[14] P. Stelling, I. Foster, C. Kesselma.n, C. Lee, and G. von
Laszewski. A fault detection service for wide area dis-
tributed computations. In Proc. 7th IEEE Symp. on
High Performance Distributed Computing, pages 268~
278, July 1998.

{15] R.van Renesse, Y. Minsky, and M. Hayden. A gossip-
style failure detection service. In N. Davies, K. Ray-
mond, and J. Seitz, editors, Middleware’98, pages 55—
70, The Lake District, UK, Sept. 1998.

— 193 —



