[ZNFAF 4 TiBE L SBOBY —2 > a v 7] ERI6EIRZA

Distributed Multimedia Objects in Peer-to-Peer Overlay Networks

Kenichi Watanabe, Tomoya Enokido, and Makoto Takizawa
Dept. of Computers and Systems Engineering
Tokyo Denki University
E-mail {nabe, eno, taki} @takilab.k.dendai.ac.jp
Multimedia objects are distributed and replicated in peer-to-peer (P2P) overlay networks since objects are
cached, downloaded, and personalized in local peer computers. An application has to find target peer computers
which support enough types and quality of service of objects. Each peer has acquaintance peers which support
information on where objects exist and can be manipulated. We discuss how to obtain access rights to detect and
manipulate objects with help and cooperation of acquaintances. We discuss a new type of flooding algorithm to

find target peers based on charge concept so that areas where target peers are expected to exist are more deeply
searched and explosion of messages is prevented.

P2PA—NUVARY T —=O EICHRALIERIVFAT 4TI O b

B fg— EP gt EIRE
WA EBAKERERB T EMARMER AT LLTHFHERK
P2P A—NL ARy bT—U Tl fiXxDIRNFAFAT7AT 7 MRETRIIHBENS, 77
Vr—3add, +972 QoS #RMItTH AT 2/ b2 b DU TERDIIBLNENSH S, &EETIE. #7

V1l FOFEMNBEPZTOREFEICHTOIMBRERRTHIAAET 2D, ERXTRAAET ZHW
7 D AMDBBHERCT T) FOBRBAEIODVWTHRTD, £, ATV 7 b 2RFETHE

T7AYEa—FDOREFEELT, FRICBHEVWIBERER—RELBRBESF RN ERET 2,

1 Introduction

According to the development of common frame-
works of computers and networks, various types and
huge number of computers are now interconnected in
peer-to-peer (P2P) overlay networks [3]. Service sup-
ported by multimedia objects in a P2P overlay net-
work is characterized by quality of service (QoS) like
frame rate and number of colours. In multimedia ap-
plications, multimedia objects are replicated and dis-
tributed in nature on multiple computers since objects
are downloaded, cached, and personalized in local
computers. In addition, only a part of a multimedia
object may be stored in a computer. Furthermore, an
object downloaded in computers may support QoS dif-
ferent from the original object. It is critical to sup-
port applications with sufficient, possibly necessary
QoS in change of services supported by computers and
networks. A P2P overlay network is stateless infras-
tructure where huge number of peer computers are in-
cluded and the membership is dynamically changed.
If a peer would like to obtain some service of an ob-
ject, the peer has to find peers which can manipulate
the object or replica of the object with enough QoS. It
is difficult for each peer to perceive what objects are
distributed to what peers. Each peer has acquaintance
peers which the peer perceives what objects with what
QoS are stored, perceived, or can be manipulated. A
view of a peer is a set of the acquaintances. A peer
first asks acquaintances in its view to detect objects,
obtain access rights, and manipulate objects. If ob-
jects which satisfy QoS requirements are not detected
in the view, an acquaintance in turn asks its acquain-

tances. In flooding algorithms [2, 5] to find objects in
P2P overlay networks, a peer asks every acquaintance
if the peer supports objects and each of the acquain-
tances furthermore asks its acquaintances. Counters
like TTL (time-to-live) [5] and HTL (hops-to-live) [2]
are used to prevent indefinite circulation and explosion
of request messages. If there are multiple candidate
ways to find objects, some way with higher possibil-
ity to find the objects should be more deeply searched.
A request is assigned some charge. The charge of the
request is decreased each time the request is passed
over a peer. If there are multiple routes from a peer,
a request is transmitted to each route with charge. If
there is larger possibility to find an object in a route, a
request to the route is more charged.

In section 2, we present a system model. In sec-
tion 3, we discuss distribution of objects in peers. In
section 4, we discuss acquaintances of each peer. In
section 5, we discuss how to detect objects. In section
6, we evaluate the charge-based flooding algorithm.

2 System Model

An object is an instantiation of a class. A class
is composed of attributes and methods for manipulat-
ing its object. An object is an encapsulation of values
of attributes and methods. A collection of attribute
values are referred to as state of an object which is
characterized by QoS like frame rate. Not only state
but also QoS of an object are manipulated through
methods. QoS supported by an object is changed as
well as state of the object if the object is manipulated

- 371 -

by methods. For example, some application degrades
the frame rate of a video object by a method degrade.
Even if a state ¢ of an object supports enough QoS, an
application cannot obtain enough QoS from the state ¢
if a method op is not well facilitated to manipulate the
object with its QoS. Thus, QoS supported by an object
depends on QoS of both state and method.

An access right (or permission) is specified in a pair
{0, op) of an object o and a method op. Only a subject
s who is granted an access right {o, op) is allowed to
manipulate an object o through a method op. A role is
a collection of access rights, which shows a job func-
tion in an enterprise.

Suppose a subject s invokes a method op; on an
object 0, where s is granted an access right {0y, op1).
Then, a method op; on an object og is invoked in the
method op;. There are centralized and distributed ap-
proaches to controlling access to objects. In the cen-
tralized approach, the subject s invokes the method
op2. Here, the subject s is allowed to manipulate the
object o2 only if s is granted an access right (02, 0p2).
In the distributed approach, the method op; is invoked
in a method of an object 02 on behalf of the subject s.
The method op; is allowed to be performed only if the
access right (o2, op2) is granted to the invoker object
01. Even if the subject s is not granted the access right
{02, op2), the method op- is invoked by the object o,
if the object o2 is granted the access right {02, op2).
The object 0, plays a role of surrogate of the subject
s to manipulate the object o).

3 Distribution of Objects

3.1. Layered structure

There are two layers, logical and physical ones, in
a P2P overlay network [Figure 1]. A logical model
is composed of only logical objects which are inde-
pendent of distribution of objects in peers. Each log-
ical object is identified by an logical object identi-
fier (LOID). An application manipulates logical ob-
jects with QoS requirement without being conscious
of where the objects exist in networks. A logical re-
quest is specified in a form (o, op, Q) where o is a log-
ical object, op is a method of the object o, and @ is
QoS requirement.

Each logical object o is distributed to peers at phys-
ical layer. A unit of distribution of the logical object o
is referred to as physical object. A physical model is
composed of physical objects. A physical object may
be a part of the logical object o and may be one ob-
tained by changing QoS of the logical object 0. Each
physical object is identified by a physical object iden-
tifier (POID).

A directory shows a mapping information among
the logical and physical models. For a given identifier

id of a logical object o, physical objects with location
information are found through the directory.

In this paper, we assume that every peer knows a
logical model of a P2P overlay network. Each peer
can only have a part of the mapping information and
the physical model. Peers may be faulty, leave and join
the network, and change their physical objects, e.g.
downloading and caching. It takes time to propagate
the charge to every peer in the network. Hence, some
pair of peers have inconsistent mapping information.

Logical layer

Physical layer

Peer

Figure 1. Layers.

3.2. Physical objects

Let p(o) be a collection {o1,...,0,} of physical
objects of a logical object o (n > 1). A replica of
an object is also a physical object. A term “object”
means a physical object for simplicity in this paper.
Objects are classified with respect to what part of state
and methods of a logical object o are supported by the
objects with what QoS.

1. If an object 0; has same attributes as a logical
object o, o; is fully instantiated (0; =' 0). Oth-
erwise, o; is partially instantiated for a logical
object 0 (0; C7 0).

2. An object o; is fully equipped for a logical object
o (0; =F o) if 0; supports a same set of methods
as the logical object o. Otherwise, o; is partially
equipped (0; CF o).

3. If an object o; supports the same QoS as the ob-
ject o, the replica o; is fully qualified (0; =9 o).

4. If an object o; supports lower QoS than the log-
ical object o, o; is less-qualified (0; C9 o). If
an object o; supports higher QoS than the logical
object o, o; is more qualified than o (0 C2 o;).

Let us consider an example of a movie object o
which is composed of plane and background objects
[Figure 2]. The movie object o supports methods dis-
play and delete. An object o) is full for a logical ob-
ject 0 (01 = o or 0; ='E2 0). Then, an object o, is
derived by copying the background object of the ob-
ject 0;. The object o, has a same set of methods as 0.
Here, 02 C! 0; and 02 =F2 0;. A pair of objects o3
and o4 are also derived from the object 0,. 03 CF 0,
and o3 =/ 0;. A display method is less qualified in the
object o3 than display of 0;. 03 C? 0y. 04 =! 0y and
04 CF 0,. In addition, QoS of a background object

- 372 -

in the object o4 is more degraded than o;. Here, o4 is
less qualified than oy, i.e. 04 C9 o;.

O n

QO :ishrerotstion disptey () 1 low-resobution daplay £\ dchete
Figure 2. Relations among Objects.

Relations among objects are represented in a di-
rected graph named object graph. Each node shows
an object. A directed edge from a node o; to another
node o; shows the relations =, =/, =9, =F !, C@,
and Q% . For types of full relations o; = o;, 0; =/
0j, 0; =F 0;, and 0; =@ 0; among objects o; and o;,
there are following directed straight edges from an ob-
ject node o; to another node 0;; 0; - 0; if 0; = 0; and

0; z o; if 0; =* oj for a € {I, Q, E}. For types of
partial relations o; C 0;, 0; c! o, 0j CE o;, and 0
C? o; among objects o; and o;, there are following
directed dotted edges from a node o; to another node

. a .
0j; 0; --+ 0; if 0; 2 05 and 0; --» 0; if 0; 2% 0;.

4. Acquaintances

We discuss how to find a peer what has multimedia
objects which satisfies QoS requirement and manipu-
late the objects in P2P overlay networks. An applica-
tion has to find peers which can manipulate objects,
maybe replicas of a logical object with QoS which
satisfy applications’ requirements. Here, a target ob-
ject shows an object which a peer would like to ma-
nipulate. In addition, services supported by peers are
dynamically changed. Since types of objects are dis-
tributed to a large number of peers and objects are
changed time by time, it is not easy to find target peers.

Each peer computer ¢ is composed of an object
base OB which is a collection of objects. We discuss
what kinds of relations exist among subjects, i.e. peers
and objects. First, a peer cis referred to as serve an ob-
ject o (written as ¢ | o) if the object o is stored in the
object base of the peer c. The peer c s also referred to
as server of the object 0. An object o is manipulated
through a method op even by a remote peer.

A peer ¢ can manipulate an object o through a
method op (¢ |=0p 0) if the peer c is granted an access
right (0, op). The server c of an object o is assumed to

manipulate the object o for a method op (¢ =, 0) if
c serves o (c | 0). A peer ¢ can manipulate an object
o (c = 0) if ¢ |=4p 0 for some method op. If access
to an object o is controlled in a discretional way, ac-
cess rights granted to a peer ¢ can be further granted to
other peers by the peer c. A peer c can grant an access
right (o, op) to another peer (c F-op 0) if the peer ¢ is
granted the access right {0, op). The peer ¢ can revoke
access rights. Here, the peer c is referred to as granter
of the object 0. Another peer ¢’ can ask the granter
peer c to grant an access right (o, op) on the object o
to ¢’ if ¢/ is not granted the access right {0,o0p). A
peer ¢ can grant an access right on an object o to an-
other peer (c I o) if ¢ Fop 0 for some method op. If
an object o takes a mandatory access control, a peer ¢
cannot grant an access right to other peers (c ¥ o) even
if ¢ |= 0. Only an owner peer of the object o can grant
access rights on the object o to other peers. A peer ¢
can do something on an object o (¢ A o) iff one of the
relations c | o, ¢ |= 0, and c - o holds but it is not sure
which one holds. A perception relation O denotes one
of the relations |, |=,F, and A, i.e. O € {|, |=, F, A}

If a peer ¢ knows that another peer c; serves an ob-
jecto, “c — ¢; | 0”. Similarly, ¢ — ¢; |=op 0 if a peer
¢ knows that another peer c; can manipulate an object
o through a method op. Here, it is noted that the peer
¢; may not be a server of the object 0. A peer ¢ knows
that a peer ¢; can manipulate an object o with some
method (¢ — ¢; = 0), i.e. ¢ — ¢i [=op 0 for some
method op. ¢ — ¢; Fop 0 if a peer ¢ knows that an-
other peer ¢; can grant an access right {0, 0p). ¢ — ¢;
F oif ¢ — ¢; Fop 0 for some method op. Knowledge
on what a peer ¢ knows is stored in an acquaintance
base (AB) of the peer c. Furthermore,c —¢; — c2| 0
means ¢ — (¢; — (c2 | 0)). Thatis, a peer ¢ knows that
another peer ¢; knows that the other peer c3 serves an
object o [Figure 4]. A relation ¢; —* ¢2 holds for a
pair of peers ¢; and ¢z iff ¢ — c2 orc; — ¢c3 =% c2
for some peer c3. A peer ¢ may know that another peer
¢; knows something about an object o but is not sure
which relationc — ¢; |o,ce — ¢ = o,orc—c ko
holds. This relation is showninc — ¢; N o.

[o Ci C Ci

A
© ©

c-cilo

—: per i —_—
-V P . P

C-Cic0

Figure 3. Acquaintances.

Each peer ¢; has its own view which is a subset of
peer computers to which the peer ¢; can directly per-
ceive in a P2P network. An acquaintance of a peer
computer c; is another peer ¢; which knows where
objects are served and can be manipulated. That is,

- 373 —

(o G, C:
V-G SSAN

0 @

cCoC»cGlo

G,

XTRTAA
] O O @

CoC -2Cr0

Figure 4. Acquaintances.

a peer ¢; is an acquaintance of a peer c; for an object
o with respect to a perception relation O (written as c;
=D ¢;) if ¢; = ¢; O* o for an object 0. A peer c; is an
acquaintance of a peer ¢; for an object o (c; =, ¢;) if
¢; —3 c; for some relation O. A peer ¢; is an acquain-
tance of another peer c; (¢; = ¢;) if ¢; =, ¢;j for some
object 0. Let view(c;) be a set of acquaintance peers
of a peer ¢;, view(c;) = { ¢; | ¢i = ¢; }. The acquain-
tance relation => is reflexive but is neither symmetric
nor transitive. Even if a peer ¢; thinks another peer c;
to be its acquaintance, the peer c; may not think the
peer ¢; to be an acquaintance. A pair of peers ¢; and
c; are friends iff ¢; = ¢; and ¢; = ¢;. For a peer ¢;
and an object o, the following sets are defined.

e O(c;)={o0|ci =,c;jforsomec; }.

o A(ci,0) ={ ¢j | ci 2o c;j } (C view(c:)).

® S(ci,0)={cjlci =>Lcj,i.e. ci—cj|*o}.

e M(c;,0)= { Cj | ci =>lo= Cj}.

e G(ci,0)={¢j|ci=h ¢}

e Ui, 0)={cj|ci =& cj,ie. c; = c; A* o}

Here, A(c;, 0) = S(¢;, 0) U M(e;, 0) U G(c;, o) U
U(e;, 0).

Suppose a peer ¢; would like to manipulate an ob-
ject o. First, a peer c; asks an acquaintance ¢; on an
object o in its view view(c;), ¢; € A(c;, 0). Suppose
that a server c; of the object o (c; | 0) is detected,
which satisfies the QoS requirement. Otherwise, the
peer ¢; has to find another peer ¢, which can manipu-
late an object o (cx |= 0) or can grant an access right
(cx - 0). There are two cases. The peer ¢; can make
an access to the object o in the server c;. A peer which
is granted an access right on an object is a surrogate of
the object. If the peer ¢; has a surrogate c; of a server
¢k of an object o, the peer ¢; can ask the agent c; to
access to the server c;. [Figure 5]. The surrogate c;
issues requests to the server peer ¢i on behalf of the
peer c;. In another case, the agent ¢; knows that ¢y is
granted an access right to the object o [Figure 6). The
acquaintance cj, notifies the peer ¢; of the granter cy.
Here, ¢, is now an acquaintance of the peer ¢; (¢; —
¢k - 0). Then, the peer ¢; asks the granter peer ci to
grant an access right on the object o to ¢;. If granted,
the peer c; manipulates the object o.

The acquaintance relation “c; = ¢;” is weighted

by the trustworthy factor f (= W(c;, ¢;)) (ci =f> cj).
Suppose ¢; i cjand ¢; & ck. If fi > fo, the peer ¢;

peer surrogate server

Figure 5. Surrogate.

oG

W

Figure 6. Acquaintances.

considers a peer ¢; to be more reliable than c. Here,
the weight |c O o] of a relation ¢ O o for a peer ¢ and
an object o is defined to be as follows: |cF o] =3, |¢
[Eo|=2,and |c]o|=). |ey — c2 O* o] is |e2 O* o] +
1. The trustworthy factor f; of ¢; =, ¢; is defined to
be 1/c; 0" of.

Each peer computer c; has an acquaintance base
AB;. The acquaintance base AB; is composed of in-
formation on what objects are stored in what comput-
ers, S(c;, o) for every object o in O(¢;)

5. Detection of Objects

An application issues a request {0, op, Q) where o
is a logical object, op is a method of the logical object
o, and @ is QoS. We have to find target physical ob-
jects of the logical object o supporting the method op
which satisfies QoS requirement Q. There are many
discussions on how to find target objects in a P2P over-
lay network. In the centralized way like Napster [1],
an index showing locations of objects is stored in one
peer . Every peer first asks the centralized index com-
puter to get location information of an interesting ob-
ject. Then, a peer is selected in the location informa-
tion and a request is sent to the peer. In the flooding
algorithms {2, 5], a peer asks some number of other
peers if they have objects which the peer would like
to get. If not, each of the peers furthermore asks other
peers. In order to resolve indefinite circulation and
explosion of messages, each peer sends a request to
only a limited number of peers and each request is as-
signed with counters like TTL (time-to-live) [5] and
HTL (hops-to-live) [2]. Each time a request is for-
warded to another peer, the counter is decremented.
If the counter gets zero, the message is thrown away.
In the distributed hashing way [4, 6-8], peers are to-
tally ordered, e.g. by their addresses. Peers to which
a request is issued are selected by a hashing function.
However, it is not easy to adopt the distributed hash-
ing mechanism if objects are a priori distributed and
objects dynamically join, leave, and change.

In this paper, we discuss a new type of flooding al-

- 374 —

gorithm. Even if there might be bigger possibility to
find a solution in one way, some integer value of TTL
or HTL is assigned for a request on every way in tra-
ditional flooding algorithms. We newly introduce a
concept of charge which is allocated to a request. The
charge of a request shows the total amount of commu-
nication overheads to find objects. The more a request
is charged, the more number of peers can be accessed.

For each request (o, op, @), the application agent
tries to find a peer as follows:

1. First, a surrogate peer which is granted an ac-
cess right (o, op) and can support enough QoS is
found in an overlay network. If found, the appli-
cation agent negotiates with the surrogate peer to
manipulate the object o through the method op.

2. If not found or no surrogate agrees on manipu-
lating the object o, a granter peer of the object is
searched. If found, the application agent negoti-
ates with the granter peer to grant to access right.

Initially, an application agent in a peer computer is-
sues a request A to find an object 0. The request A is
charged for some integer value V', A.charge :=V. The
request A is sent to another peer c. Here, A.charge
is decremented by one, A.charge := A.charge - 1. If
the request A is not satisfiable on manipulating objects
in the peer ¢ and is still charged, a set Cand(A, c) of
candidate acquaintance agents ¢ which knows some-
thing about objects which A would like to manipu-
late is found. The request A is hopeful on a peer c if
Cand(A, ¢) # ¢. Otherwise, the request A is hope-
less. The hopeful request A selects some acquain-
tances Target(A, ¢) (C Cand(A, ¢)). If |Target(A, c)|
> 1, ie. Target(A, ¢) = {c1, -+, tm} (m > 1), the
request A is split into sub requests A,, - - -, A,,. Each
sub request A; is sent to a peer¢; (1 = 1,---,m).
Here, the charge is allocated to the sub requests A,
-+, Ap, based on the weight factors. Let Wi(c, ¢;)
show the weight of a peer ¢; for a peer ¢. A;.charge :=
A.charge - a; where a; = W(c, ¢;)/ Z;."zl W(e, cj).
That is, the more trust a peer ¢; is, the larger amount
of charge is allocated to a request A;.

Each request A has some condition Cond(A). The
request A tries to find peers which satisfies Cond(A).
Suppose the request A finishes manipulating objects
in a peer c. The request A carries a variable A.state
whose initial value is U (unsuccessful). If Cond(A)
is satisfied on a peer ¢;, A.state = S (successful). If
A.state = S, the request A has so far visited some peer
where objects are successfully manipulated.

Suppose a request A finishes manipulating objects
in a peer cand A.charge = ¢. The request cannot move
to other peers due to out-of-charge. The request A
backs to the preceding peer from the current peer c if
A.state = S. Otherwise, the request A is discarded. In
another case, the request A is hopeless, i.e. Cand(A,
¢) = ¢ but A.charge > 0. The request A backs to the

preceding peer ¢’. The request A waits for responses
other requests. If a sibling request A’ backs to the
peer ¢, A.charge := A.charge + A'.charge. A.state
= S if Astate = U and A’.state = S. Suppose all
the sibling requests back to the peer ¢’. If A.charge
=0, the request A further backs to the preceding peer
c. Target(A, ') := Cand(A, c) - Target(A, c'). If
Target(A, ') # ¢, the request A moves to peers in
Target(A, ¢’). A request A is transmitted as follows:
[Transmission of a request A on a peer c]

1. Initially, an application is initiated on a peer
c. The application peer issues a request A.
A.charge .=V and A.state :=U.

2. A set Cand(A, c) of acquaintance peers of ¢ for
the condition Cond(A) is obtained for the request
A. If the request A is hopeless, A backs to the
preceding peer from c.

3. The request A obtains a set Target(A, c) (C
Cand(A, ¢)) = {c1,- - - ,em } of target peers.

4. The request A is split to sibling requests
Ay, -, An which move to the target peers
C1, ' *,Cm, respectively. Here, A;.charge :=
Acharge - a; i=1,...,m).

5. If a request A moves to a peer ¢, A.charge =
A.charge - 1. A manipulates objects if the objects
can be manipulated in the peer c.

6. If a response of sibling request A’ backs to a peer
¢, A.charge .= A.charge + A'.charge. A.state :=
S if A'.state = S. go to 2.

7. If responses of all the sibling requests return to
the request A, other targets Target(A, c) is found
for the request A. If the target peer is found, go
to 4. Otherwise, the request A furthermore backs
to the preceding peer.

6 Evaluation

We evaluate the charge-based flooding algorithm
compared with the Gnutella flooding algorithm [5].
Here, peers are interconnected in mesh structure. That
is, each peer is physically connected with four neigh-
boring peers. Replicas of an object are randomly dis-
tributed to peers in the network. In the Gnutella flood-
ing algorithm, one peer sends a request to four neigh-
boring peers. If none of the neighboring peers has
an object, each of them forwards the request to three
neighboring peers. If a same request is received af-
ter receiving a request by a peer, the request is dis-
carded. In the full flooding, duplicate requests are
not discarded. By using TTL, if some number TTL
of peers are hopped by a request, the request message
is discarded to avoid the explosion of messages. In
the charge-based algorithm, the trustworthy factor is
randomly assigned to each peer. Based on the factors
of neighboring peers, each peer decides on the charge.
Following the figures, the charge-based algorithm sup-

— 375 —

ports smaller communication and higher hit ratio than
the flooding algorithm. In the evaluation, 500 x 500
peers are distributed in a mesh. Here, let 7 show how
many percentages of the peers have target objects.

Figures 7 and 8 show the total number of messages
transmitted to find a target peer for the charge-based
and Gnutella algorithms where 7 = 10 [%] and 1 [%],
respectively. Figures 9 and 10 show the hit ratio for 7
=10 [%] and 1 [%]), respectively. In the charge-based
algorithm, each request is charged with the number of
messages which are transmitted by the flooding algo-
rithm for each TTL. For example, 8744 messages are
transmitted for TTL = 7. For TTL = 7, a request is
charged 8744 in the charge-based algorithm.

o0
L4
2300 L4 .
¥
? '. '
200 ‘ -
P e
,
/
}) A
d1%0 . I's
» ' L
i R vy
Jo00 B .-
2 . ~
. P
L&
00 o~
Full floodrag —M—
Gasella-bis - ©
- Sharge somorpt = &
T2 % 8 5 6 1T 8 9 10 K 12 I} 1 IS 6 M 49

TTL cime-te-live) variable

Figure 7. Number of messages (r = 10

[%]).

T
L
L
2300 ,'. I‘
..' ’,'
SR
2000 LR
} «
.
,
d1%0
1]
gww
S0
fu J
Gmaella-hke + @
of Barge concepe =
[S O Nk T D A A C I L TR A T 1]

TTL umrte-kve) vansble

Figure 8. Number of messages (v =1 [%]).

otz
A
™
S
aret 2 Ny,
N
ol 4 s,
' a
. .
ab ¢
(18] 3 \
asoip. \ A
. Ay
’ Y A
ool e, &“‘ " AL
e DN N Aeget A
Voo, Y a N . RAN
o ‘.-a \.',A \
N - /
o ‘e .o..0.0 &
e p. 0 -0.90.-0.0..0-0-0-0..
i
oo p Gouteitatibe ~H—
charge conceps - @+
o [m.': A~
12) & S 6 7T $ % 10 1 121 115 Kooy

TTL ttisme-do kve) varioble

Figure 9. Hit ratio (= 10 [%]).

0016
7y
LU A
o
' .
‘
ooz ' .
'
.
]
oo '
’
‘ 3
’)
X oo N i
M)
A A
TN
[-,
. can
» 4 - P
oosh v e [3 A _acd. T A
» O.‘ . ‘.'_..o..._.'......0..-0-:‘-0-0..
»” .o
Y
0002 »
v Coseila-bite ~H—
v charge concept - @
hrge comepe = A

O 1 2 3 4+ 3 & 7T 5 % [0 U 2B K I3 KN 3N
TTL (time-40-rve) vanable

Figure 10. Hit ratio (r = 1 [%]).

7 Concluding Remarks

We discussed how to manipulate multimedia ob-
jects distributed in P2P overlay network. The objects
are replicated in various ways, fully or partially instan-
tiated, qualified, and equipped in the networks. These
relation among objects and replicas are represented in
the object graph. Then, we discussed charge-based
flooding algorithm to manipulate objects through ac-
quaintances. We evaluated the algorithm for detecting
peers compared with other flooding algorithms.

References

[1] Napster. http://www.napster.com.

[2] L Clarke, O. Sandberg, B. Wiley, and T. W. Hong.
Freenet: A Distributed Anonymous Information Stor-
age and Retrieval System. Proc. of the Workshop on
Design Issues in Anonymity and Unobservability, pages
311-320, 2000.

[3] Y. Liu, Z. Zhuang, X. Li, and M. N. Lionel. A
Distributed Approach to Solving Overlay Mismatching
Problem. Proc. of the 24th IEEE International Confer-
ence on Distributed Computing System (ICDCS2004),
pages 132-139, 2004.

[4] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Schenker. A Scalable Content-Addressable Network.
Proc. of the 200! Conference on Applications, Tech-
nologies, Architectures, and Protocols for Computer
Communications, pages 161-172, 2001.

[5] M. Ripeanu. Peer-to-Peer Architecture Case Study:
Gnutella Network. Proc. of International Conference
on Peer-to-Peer Computing (P2P2001), pages 99-100,
2001.

[6] A. Rowstron and P. Druschel. Pastry: Scalable, dis-
tributed object location and routing for large-scale peer-
to-peer systems. IFIP/ACM International Conference
on Distributed Systems Platforms (Middleware), pages
329-350, 2001.

[7] 1. Stoica, R. Morris, D. Karger, F. Kaashoek, and
H. Balakrishnan. Chord: A Scalable Peer-to-Peer
Lookup Protocol for Internet Applications. /JEEE/ACM
Transactions on Networking (TON), 11(1):17-32, 2003.

[8] B.Y.Zhao, J. Kubiatowicz, and A. D. Joseph. Tapestry:
An Infrastructure for Fault-resilient Wide-area Location
and Routing. Technical Report UCB/CSD-01-1141,
2001. .

— 376 —

