
fマルチメディア通信と分散処理ワークショップJ 平成16年12月

Transactional Agent Model for Distributed Objects

Tomoaki Kaneda， Youhei Tanaka， Tomoya Enokido， and Makoto Takizawa

Dept. 01 Computers and砂'slemsEngineering
おかoDenki Universi似 Japan

{kaneda， youhei， eno， taki}@takilab.k.dendai.acJp

Abstract

A回 nsactionalagent is a mobile agent which manipulates objects in one or more than one computer by autonomously
'1 nding a way to visit the computers so as to satisfシsomecommitment condition like atomicity in presence of faults of
computers. A surrogate can recreate a new incamation of the agent if the agent itself is faulty. If a destination computer is
faulty， the transactional agent ? nds another operational computer to visit. Objec匂 ineach computer are locally manipulated

byan agent for由ecomputer. After visiting computers， a tI加sactionalagent makes a destination on commitment. In addition，
objects obtained from a computer have to be delivered to 0出ercompute四 wherethe回 nsactionalagent is performed. We

discuss a model of回 nsactionalagent and logistics on how to deliver classes for manipulating 0対ectsand derived objects
to compute四 wherethe routing agent to visit. We discuss how to implement a transactional agent on database servers and
evaluate the transactional agents.

分散オブジェクトを操作するためのトランザクショナルエージェントモデル

兼田知明田中洋平榎戸智也滝沢誠
東京電機大学大学院理工学研究科情報システム工学専攻

トランザクショナルエージェントは、複数の障害計算機上にあるオブジェクトを計算機障害に対処してから操作
する移動エージェントである。計算機上で操作を終了したならば、代理エージェントを生成し、次の計算機に移動す
る。移動先計算機が臨書していたならば、エージェントは他の計算機を探し移動する。また、エージェントが居る計
算機がに障害した場合、代理エージェントがエージェントを再生成する。本論文では、トランザクショナルエージェ

ントのフォールトトレランス技術の実装について論じる。

1 Introduction

Various types of objects are distributed in computers. A
transaction manipulates multiple objects distributed in com-

puters. A住ansactionis modeled to be a sequence of meth・
ods which satis'1 es the ACID (atomicity， consistency， isola-
tion， and durability) properties [2]. Huge number and var-
ious types of peer computers are interconnected in pe俳句・

peer (P2P) networks [3]. A mobile agent can autonomously
escape合'omfaulty computers and '1 nd another operational
computers. Mobile agen隠 [5，14，22] are programs which
move to remote computers locally manipulate objects. We
discuss how to realize distributed釘副首actionsin mobile
agents. A岡田actionwi出 theACID properties [2， 8， 9]
initiates a subtransaction on each database server， which is
realized in mobile agents [9，13，17]. In this pape巳atransac-

tional agent is a mobile agent which autonomously moves

around computers [6].

In addition， we discuss how to reduce communication
overheads to transmit classes and objects to a transactional

agent in another compute巴

After manipulating a11 or some objects in computers， an
agent makes a decision on commit or abort. In addition，
an agent negotiates with another agent which would Iike to
manipulate a same object in a con'1 icting manner. Through
the negotiation， each agent autonomously makes a decision
on whether the agent holds or releases the objects [6， 15].

Ifan agent leaves a computer， objec臼lockedby the agent
are automatica11y released by the after manipulating objects.

Hence， an agent creates a surrogate agent on leaving a com-
puter so由atan agent can abort even after the agent leaves

the computer. A surrogate agent still holds locks on 0対ects
in a computer on behalf of the agent after the agent leaves

the computer.
In this paper， we assume computers may stop by fault. A

transactional agent autonomously '1 nds another destination
computer if a computer where the agent to move is faulty.
In addition， an agent and a surrogate are faulty due to the
fault of a cuπent computer where the agent and surrogate
exist. Some surrogate of the agent which exists on another
computer recreates the agent. The new incamation starts as
an agent. Similarly， when a surrogate may be faulty， another
surrogate takes a way to recover from the fault.

In section 2， we present a system model. In section 3， we
discuss甘ansactionalagents. In section 4， we discuss fault-
tolerant mechanism of the住ansactionalagent. In section
5， we discuss implementation of transactional agents. In

section 6， we evaluate the甘ansactionalagent through ex-
penments.

2 System Model
2.1 Objects

A system is composed of computers interconnected in
reliable networks. Each computer is equipped with a class

-107-

base (C B) where classes are stored and. an 0旬ectbase
(OB) which is a collection of persistent objects. A class
is composed of at町ibutesand methods. An object is an in-
stantiation of a class which is an encapsulation of data and
methods for manipulating the data. If result obtained by

performing a pair of methods OPl and仰 2on an 0句ectde-
pends on the computation order of opl and叩 2，opl and停 2

con?ict with one another.

A transaction is modeled to be a sequence of methods，
which satis?es the ACID properties [4]. Especia11y， a trans-
action can commit only if a11 the objects are successfully
manipulated. A transactional aboはsif at least one object
can be successfu11y manipulated. The two-phasecommit-
ment protocol [4，15] is used to realize the atomic commit-
ment. If a method opl from a transaction T1 is performed
before a method OP2合omanother transaction T2 which
con? icts with OPlt every method句73合omT1h邸 tobe peト
formed before every method op4 from T2 con? icting with
the method句為・ Thisis the serializability property [2，4].
百四reare locking protocols [2，4，7] and timestamp ordering
protocols [2] t'O realize the serializability 'Of transacti'Ons.

In the l'Ocking pr'Otoc'Ol， a transaction l'Ocks an 'Object be-
f'Ore manipulating the 'Object. Each c'Omputer supports an
agent with an isoJation level [11] which shows when the
agent releases 'Objects. In the strict tw'O-ph邸 el'Ocking pr'O-
t'Oc'Ol [2]， neither dirty read n'Or cascading ab'Ort occur since
a11 the l'Ocks are n'Ot released before commit 'Or ab'Ort.

2.2 Mobile agents

A mobile agent is a program which moves around c'Om-
puters and l'Ocally manipulates objects in each c'Omputer
[19，22]. M'Obile agent systems like Aglets [5]， Telescript
[22]， and AgentSpace [14] are so far discussed. A m'Obile
agent is c'Omp'Osed 'Of classes. A home c'Omputer home(c)
'Of a class c is a c'Omputer where c is st'Ored. A h'Ome c'Om-
puter home(A) ofa m'Obile agent A is a home c'Omputer 'Of
the class of the agent A.

(MI副官官II刊 (BIBa励
loadiq 1000ioB

_ Lミll:I ，." ~ ~
CBパ臥一一-~ ω/EDL.. . I守宅~
Lc大ーー』寸OO()() I 1.1百て、-t-μQUII

中~r====='IOBhomc~ 巴伺

師長両官 官間開畑

Figure 1. Ways to load classes.

An agent inv'Okes a method op in a class. Then， a meth'Od
'Of another class is inv'Oked in op. The class is required t'O be
l'Oaded to the current computer 'Of the agent. There are two

ways t'O l'Oad classes 'Of an agent A合oma home computer
[Figure 1]. In an interactive way， a class c is l'Oaded合''Oma
h'Ome c'Omputer home(c) each time a meth'Od 'Of c is inv'Oked
by the agent A. Another way is a batch 'One where a c'Ol-
lecti'On of multiple classes are loaded. If an agent inv'Okes
more number of meth'Ods， the interacti'On time between the
current c'Omputer and the h'Ome c'Omputer can be m'Ore re-

duced than the interactive way.

3 Transactional Agents

3.1 Model of transactional agent

We discuss h'Ow t'O realize a transacti'On which manipu-
lates m'Ore than 'One 'Object 'On c'Omputers with s'Ome c'Om-

mitment c'Onditi'On in a m'Obile agent. A transactionaJ agent
is a m'Obile agent which satis? es the f'Oll'Owing pr'Operties:

1. aut'On'Om'Ously decides 'On which c'Omputer t'O visit.

2. manipulates 'Objects 'On 'One 'Or m'Ore than 'One c'Ompute巴

3. commits 'Only if.s'Ome c'Ommitment conditi'On intrinsic

t'O出eagent is satis? ed， 'Otherwise ab'Orts.

For simplicity， a term αgent means a transacti'Onal agent

in曲ispaper. An agent A is c'Omp'Osed 'Of three su'ト
agents: routing agent RC(A)， commitment agent CC(A)，
and manipuJation agent AI C(A， Dt}， …， MC(A， Dn)，
where Di stands f'Or a target c'Omputer 'Of the agent A.
That is， A = (RC(A)， CC(A)， l¥lC(A)) where l¥IIC(A) =
{AIC(A， D1)，…， l¥lC(A， Dn)} . Here， let Dom(A) be a

set 'Of target c'Omputers Dl，…， Dn 'Of an agent A. Fi隠し an
agent A on a cu町entc'Omputer has t'O move t'O a c'Omputer
in出etarget domain Dom(A). A c'Omputer Dj t'O which
an agent A 'On a current c'Omputer Di m'Oves is referred t'O
as destination c'Omputer 'Of A 'On Di. An agent A has t'O
aut'On'Om'Ously make a decisi'On 'On which c'Omputer in出e
target d'Omain Dom(A) t'O visit. In RC(A)， a destinati'On
c'Omputer is selected. Then， the agent A m'Oves t'O the des-
tinati'On c'Omputer. Here， an agent ? rst ? nds a candidate set
'Of p'Ossible destinati'On c'Omputers which have 'Objects t'O be
manipulated after manipulating 'Objects in the current c'Om-

puter. Then， the agent selects 'One target c'Omputer in the
candidate computers and m'Oves t'O the c'Omputer.

Secondly， an agent A manipulates '0句ectsin a current

c'Omputer D. The agent A l'Oads a manipulation agent
AIC(A， D) f'Or manipulating 'Objects合omthe h'Ome c'Om-
puter home(AlC(A， D)).

Lastly， an agent makes a decisi'On 'On whether the agent
can c'Ommit 'Or ab'Ort after visiting target c'Omputers.

3.2 Routing agent

The agent A visi胞 ac'Omputer D j・ Here，'Objects
in Dj are manipulated thr'Ough the manipulati'On agent
l¥lC(A， Dj) by using 'Objects which町'e'Obtained in 'Other

c'Ompute四.Thus， the manipulati'On classes in an agent are
related with input-'Output relati'On. Objects which are inputs
and 'Outputs are referred t'O as intermediate 'Objects. Here，
Di ~ Dj sh'Ows that the manipulati'On agent l¥IIC(A， Di)
'Outputs an intermediate 'Object x and l¥lC(A， Dj) in Dj

uses x as an input. If Diヰ Djf'Or an agent A， the agent
Ah部 t'Ovisit Di bef'Ore Dj・Theinput-ou甲utrelati'On is

sh'Own in an input-'Output graph as sh'Own in Fi仰向 2.

.@-..・也.

@...~..・H・・……・・・・…羽

田..・0 ・・国・・・..(i)・
ロs開明tu 0・邑帽伊同町。b:l・ct

Figure 2. Input-output graph

-108-

There are two types of nodes， computer and object. A
directed edge合'oma computer Di to an object x shows that
the manipulation agent lvIC(A， Di) outputs x. A directed
edge from x to a computer Di indicates that .1¥lC(A， Dj)
outputs x.

From the input-output graph， an agent A decides in
which order the agent visi臼. A directed acyclic graph
(DAG) lvIα.p(A) named a map is created合omthe input-
output graph [Figure 3]. In a map， a node D shows a com-
puter D with a manipulation agent .1¥fC(A， Di). A directed
edge Dl→D2 shows that an object base (OB2) in a com-
puter D2 is required to be manipulated by AJ C(A， D2) after
AIC(A， D1) in a computer D1• D1→・ D2if and only if

(iff) Dl→D2 or Dl→D3→・ D2 for some computer
D3・Dland D2 are independent (D1 11 D2) if neither Dl
→・ D2nor D2→・ Dl.Here， an agent A can in paral-
lel visit Dl and D2・ Eaehnode D1 is assigned AJ C(A，
D1) through which objects in D1 are manipulated. Figu問 3
shows an example of a map .1¥Jαp(A).

Intermediate objects in Out(A， Di) obtained by manipu-
lating ta唱etobjects in the computer Di are used to manip-
ulate objects in another computer D j・百lereare following
ways to bring an intermediate 0句ectx obtained in Di to
Dj:

1. An agent A carries x to Dj.

2. T is transfered from Di to the computer before the
agent A arrives at Di.

3. T is transfered針。mDi to Dj on request of the agent

AonDj・

DJ一一DJ一一Dj

D1ここD~/

Figure 3. Map.

A routing agent RC(A) with a map .1¥1α:P(A) is mov・
ing around computers [Figure 3]. A collection 1 of com-
puters which do not have any in-coming edge are found in
Mαp(A). One node Di is selected in the set 1 soぉ tosat-
isfy some condition. The agent A moves to出ecomputer
Di・Here，a manipulation agent AIC(A， Di) is loaded to
Di from the home computer. After manipulating objects
in Di， Di is removed from 1¥1α:p(A). Another destination
node D j is selected as presented here. Then， the agent A
moves ωDj with.1¥Jαp(A).

Then the agent A is started on the computer. The com-
puter is refeπed to凶 basecompuler of the agent A. An
agent A leaves the base computer for a computer Di to ma-
nipulate objects. Here， Di is a currenl computer of the agent
A， denoted currenl(A). If the agent A invokes a method t
of a class c， c is searched in the network as follows:

1. The cache of the cuπent computer is ? rst searched for
c. If c is found， t is invoked.

2. Ifnot， the cIass base (CBj) of Di is locally searched.
If c is found in C Bi， c is taken to invoke t.

3. Otherwise， c is transferred合omthe home computer
home(c) into Di.

A history H (A) of an agent A shows a sequence of com・
puters which the agent A has visited. On leaving a com-
puter， the computer is recorded in the history H(A).

3.3 Manipulation agent

A manipulation agent is composed of application-
speci? c cIasses and library cIasses.

Figure 4. Home computer.

If an agent A invokes a method t of a cIass c in a com-
pute巳thecIass c is loaded合'omthe home computer home(c)
to the cache in the computer [Figure 4]. Then， the method
t of c is performed in the compute工 1f another agent B
invokes t of c in the computer， c in the cache is used to in-
voke t without loading c. Thus， if cIasses are cashed in a
computer， methods in thecIasses are locally invoked in the
computer without any communication.

3.4 Commitment agent

A scope Scp(A) ofan agent A means a set ofcomputers
where the agent A possibly manipulates objects. If an agent
A ? nishes manipulating objects in each compute巳thefol-
lowing commitmenl condition of the agent A is checked by
the commitment agent CC(A):

1. Atomic commitment: an agent is successfully per・
formed on all the computers in Scp(A).

2. 向̂;oritycommitment: an agent is successfuIIy peト
formed on more than half of the computers in S併 A).

3. At-Ieast-one commitmen/: an agent is successfully per-
formed on at least one computer in S噺 A).

4. (~) commilment: an agent is successfully pe巾 rmed
on more than r out ofn computers (r三11)in Scp(A).

5. Application speci?c commitment: condition speci? ed
by application is satis? ed.

A commitment condition is speci? ed for each agent A
by an appIication. The commitment condition is checked
by a commitment agent CC(A) of the agent A. There are
still discussions on when the commitment condition of an
agent A can be checked while the agent A is moving around
computers. Let H(A) be a history of an agent A.

3.5 Resolution of con?iction

Suppose an agent A moves to a computer D j from an-

o由ercomputer Di・Theagnet A cannot be penormed on
Dj if there is an agent or surrogate B con? icting with A.
Here， the agent A can take one of the following ways:

1. J，Vait: The agent A in Di Wαits until the agent A can
land at Dj・

2. Escαpe: The agent A finds αl10ther computer Dk
which has objects to be possibly manipulated before

Dj.

-109一

3. Negotiate: The agent A negotiates with the agent B
in Dj. After出enegotiation， the agent A takes over B.

4. Abort: The agent Aαborts.

If the agent B waits for release of an object held by the
agent A， a pair ofthe agent A and B are deadlocked. Ifthe
timer expires， the agent A takes a following way:

1. The agent A retr芭atsto a computer Dj in the history
H(A). A日出esurrogates of A which have been per-
formed after performed on Dj are aborted.

2. Then， the suπogate agent Aj on Dj recreates a new
incamation of the agent A. The agent A ? nds another

destination computer Dh [Figure 5).

Thesuπogate Aj to which the agent A retreats plays a
role of chec匂oint[12) of A. Differently合omtraditional
checkpoints [12)， the agent A retreating to some surrogate
Aj autonomously ? nds an operational computer which may
bedi自erentfrom one which the agent A h部 visited.

二;ぉ /@日仏

@/一\'~~-\①

白一色白一巳

Figure 5. Retreatment.

Suppose a surrogate agent B holds an object in a com-

puter Dj・Anagent A would like to manipulate the object
but con? icts with the surrogate agent B in Dj・Thesuη0・
gate agent B makes a following decision depending on the
commitrnent conditions of B:

1. Atomic commitment: The agent A waits until the sur-
rogate B ? nish邸.

2. At・least-onecommitment: If the surrogate B knows at
least one sibling surrogate of B is committable， B re-
leases出eobject and aborts. B informs血eother sib-
ling surrogates of this abort.

3. J.勾'oritycommitment: If the surrogate B knows more
than half of the sibling surrogates are committable， B
releases the 0句ectand aborts. B informs the other
surrogates of this abort.

4. (~) commitment: Ifthe surrogate B knows more than
or equal to r sibling surrogate agents are committable，
B releases the object and aborts.

4 Fault-Tolerance

4.1 Forwarding and backwarding

Computers may be faulty in networks. We assume com-
puters may stop by fault. An agent is faulty only if a cur-
rent computer of the agent is白.ulty. Suppose a甘ansac-
tional agent A ? nishes manipulating objects on a computer
Di. The agent A selects one computer Dj from the map
A-fα.p(A). The agent A detects by timeout mechanism that
出ecomputer Dj is白ultyif the agent A does not receive
any response合omD j. If the computer D j is operational，
the agent A leaves Di for Dj. Here， suppose Dj is faul与

The agent A tries to ? nd ano出erdestination computer Dk
in出emap A-f ap(A). If found， the agent A moves to血e

computer Dk if Dk is operational， as presented here.
If the transactional agent A cannot ? nd another destina-

tion computer in the map 11:/α.p(A)， the agent A backs to
the preceding Dk， i広 theagent A has come to出ecurrent
computer Di合omDk. The map M ap(A) is restored to one
when the agent A had left the computer Dk. The node Di is
removed世'omthe map Alα.p(A).百四n，theagent in Dk tries
to ? nd another destination computer in the map /11/α.p(A).

4.2 Fault of agent and surrogate

A transactional agent A leaves its surrogate agent Ai on
a computer Di. The surrogate agent Ai holds 0対ec臼 after
the agent A leaves the computer Di. The surrogate agent Ai
rele蹴 so同ectson before the agent A terminates depending
on the solution condition of the agent A.

A釘ansactionalagent A and surrogate agent Ai are faulty
ifa cu町'entcomputer when A and Ai exist is faulty. Fi路 t，
let us considerωse an agent A is fault弘ona computer Di.
Suppose由atthe agent A comes合'omanother computer Dj
named predecessor of Di to the computer Di. The surrogate
Aj on the computer Dj detects that the agent A is faulty on
出ecomputer Di. Here， the surrogate agent Ai recreates a
new incamation of the agent A. The agent A takes another
destination computer Dk in出emap!v/α.p(A). Iffound， the
agent A one of the following strategies:

1. waits until the computer Di is recovered.

2. backs to the precedent computer from Dj・

A surrogate Ai on a computer Di may be faulty邸 well.

The precedent surrogate Aj on computer Dj detects the
fauIt ofthe surrogate agent Ai.

5 Implementation of Transactional Agent
5.1 Surrogate agents

When an agent A leaves a computer Di， a surrogate Ai
still holds objects in Di which are manipulated by the agent
A. Surrogate agents commit or abort according to the deci-
sion ofthe agent. Surrogates of an agent A are referred to as
sibling surrogates of A. The agent A creates Aj and moves
to ano出ercomputer Dk. Here， Ai and Ak are most pre・
ceding and most succeeding agen胞 ofAj. Thus， when the
agent A ? nishes visiting all the computers， some surrogate
agent may not exist due to the fault and abortion in negoti-
ation with other agents. The agent A st創tsthe negotiation

procedure with its surrogates Al' . . .， Am. Ifa commitrnent
condition on Alt ...， Am is satis?ed by the commitrnent
agent CC(A)， the agent A commits. On the other hand， the
commi加lentcondition is not satis? ed， the agent A aborts.

Suppose an agent A moves to a computer D j合'oman-

other computer Di. The agent A cannot be performed on
Dj ifthere is another agent or su町ogateagent B con? icting
with the agent A. The authors [6， 15) discuss how to resolve
the con? iction though negotiations among agents.

5.2 Implementation

We discuss how to realize agen臼. An agent is imple-
mented in Aglets and composed of a routing， man伊ulation，

-110一

and commitment agents.

A routing agent RC(A) is transfered合oma computer to
another computer. When routing agent RC(A) arrives at a

computer Du a manipulation agent AIC(A， Di)is created
by RC(A).

An object base (0 B) is realized in a relational database
system. An agent manipulates table objects by issuing SQL
commands in a current computer Di. The computation of
each agent A on Di is realized as a local transact;on on a
database system in Di・Iftheagent A leaves Di， the trans-
action for the agent A commits or aborts. Even if the agent
A leaves Di， objects manipulated are required to be still
held by the agent A because the agent A may abort after
leaving Di. Therefore， a sUTTogateαgent is newly intro-
duced as discussed in the preceding sub section. The surro-
gate agent is composed of A1C(A， Di) and an object agent
OBA. Each object agent (OBA) behaves as follows:

1. On arrival at a computer Di， the routing agent RC(A)
initiates a manipulation agent AfC(A，Di) and an ob・
ject agent OBAi on Di. OBAi initiates a transaction
on an object base 0 Bi.

2. If AfC(A，Di) issues a method for manipulating ob-

jects.

3. Ifthe agent A ?nishes， the agent A leaves Di.

4. OBAi commits or aborts ifthe agent A sends commit
and abort reques包 toAi.

D，

Figure 6. Object agent (OBA).

An object agent OBA is independent of types of
database systems like Oracle and Sybase. OBA class can
be loaded to a computer with any type of database system.
Each time an agent arrives at a compute巳如instance0 B Ai
of 0 B A class is loaded合omthe home computer of the
agent A into a computer Di. If an agent comes to Di from
another home computer， OBA class is loaded to Di from
the horite computer. Thus， 0 B A instances are accumulated
in the cache. In order to resolve this problem， OBA class is
loaded as follows:

1. There is one home computer home(OBA).

2. Ifthe 0 B A class is not cached in the cur問 ntcomputer，
出e0 B A class is loaded針。mhome(OBA).

3. If the OBA class could not be loaded from
home(OBA).

The routing agent RC(A) leaves a computer Di if the
manipulation agent !vfC(A， Di) ?nish回 manipulatingob-
jects in Di. AIC(A， Di) recreates a new incamation of
RC(A) if the agent A stops due to出ecomputer fault.

An agent A can commit if all or some of the surrogates
commit depending on the commitment condition. Commu-

nication among an agent and its surrogate agen匂 isr，伺1・
ized by using the XA interface [23] which supports出etwo-
phasecommi加 entprotocol [16] [Figure 6]. Each surrogate
agent issues a prepare request to a computer on receipt of
ap陀paremessage from the agent A. If prepare is success-
fully performed， the surrogate agent sends a prepared m回 -

sage to the agent A. Here， the surrogate agent is commit-
table. The agent A receives responses合omthe surrogate
agents after sending prepare to出esurrogates. On receipt
of the responses from surrogate agents， the agent A makes
a decision on commit or abort based on the commitment
condition.

Next， we discuss how to support robustness against faults
of computers. Suppose a surrogate agent Ai of an agent A
stops after sending prepared. Here， tbe suπogate agent is
committable. On recovery ofthe committable surrogate， the
surrogate agent unilaterly commits if the surrogate agent is
committable in the at-Ieast-one commitment condition. In
the atomic condition， Ai asks the other surrogates if they
had committed. Suppose Ai is abortable， i.e. faulty before
receiving prepared. On recovery， Ai unilaterly aborts.

6 Evaluation

Figure 7. Evaluation model

Figure 8. Evaluation model

We evaluate the agent which is implemented in Aglets.
In the evaluation， There are three server computers D1， D2，
and D3・ Anagent is created in a computer C. There
is another computer H， which is a home computer of the

manipulation agents and object agent. Db D2， and D3
are realized in personal computers (Pentium 3) with Ora-
cle database systems. The computers are interconnected in
血eI Gbps Ethemet.

First， an agent A is initiated in C. The agent A ?nds in
which order D!， D2， and D3 to be visited as discussed in

-111 -

this paper. Here， the agent A visits D1， D2， and D3 in this
order溺 shownin Figure 7. On arrival of由eagent A on
Di， the manipulation agent Afi and object agent OBAi are

loaded ωDi [Figure 7].
In this evaluation， there訂'efollowing types of agen也 A

andB:

A. The manipulation agents Pv[1 on D1 derives intennedi-
ate object 1 from the object base. The object base in
D2 and D3 are updated by using 1.

B. 1¥11 and Af2 derive objects from the object bases in D1

and D2 to intennediate objects lt and 12・明len，出e
object base in D3 is manipulated by using 11 and 12・

There are three ways to de1iver intennediate 0句ectsde・
rived in a computer to another computer where出eobjec臼
are used邸 discussedin section 3 [Fi思lre8].

1.百leagent A ca凶esintennediate objects.

2. After the agent A arrives at Dj， the agent A requests
出ecomputer Di旬 send恥 intennediateobjects.

3.百 eagent A transfers出eintennediate 0対ect1 ob・
tained to D'; before leaving Di・

3114
1:1 ふ~;i"-rl
1: I ノ:/凶
ー|/~メY

二lA~~
l."，，--

同伺帽.cfca由腕・-値目・

Figure 9. Response A

3.曲

国

開

- 認"“xo ・xo ・ .oc淘0

Figure 10. Response B

The total response time of an agent is measured for num-
ber of intennediate objects. Fi伊 res9 and 10 show the re-
sponse time for the types of agents A and B. The second
and third ways to de1iver intennediate objects to destination
compute四 implyshorter responce time than the ? rst way.

7 Concluding Remarks
The authors discussed a transactional agent model to ma-

nipulate objects in mu1tiple computers with types of com-
mi加lentconstraints in presence of computer faults. A trans-
actional agent autonomausly ? nd a distination computer to
visit， moves to a computer， and出enlocally manipulates ob・
jects. We discussed how ωimplement回 nsactionalagen包
in Aglets and Oracle. We evaluated the transactional agent
in tenns of response time.

References

[1) Amcrican National Standards Institutc. The Database Lan-
guage SQL， 1986.

[2) P. A. Bcmstein， V. Hadzitacos， and N. Goodman. Concur-
rency Conlrol and Recovery加DalabaseSystems. Addison-
Wcsley， 1987.

[3] L. Gong. JXTA: A Network Programming Environmenl，
pagcs 88-95. IEEE lntcmct Computing" 2001.

[4] J. Gray and A. Rcutcr. Transaction Processing: Concepls
and Techniqu白.Morgan Kaufmann， 1993.

[5] IBM Co中oration.Aglels SoJtware Development Kit Home.
http://www.trl.ibm.comlaglctsl.

[6] T. Komiya， T. Enokido， and M. Takizawa. Mobile agcnt
modcl for回 nsactionproccssing on distributcd objccts. Jn-
Jormalion Sciences， 154:23-38， 2003.

[7) F. H. Korth. Locking Primitivcs in a Databasc Systcm. Jour-
naloJ ACM， 30(1):55-79，1989.

[8] N. A. Lynch，. M. Mcrritt， A. F. W. Wcihl， and R. R. Yagcr.
Alomic Transactions. Morgan Kaufmann， 1994.

[9) K. Nagi. Transactional Agenls: Towanゐ aRobust MlIlli-
Agent System. Springcr-Vcrlag，2001.

[10] A. Omicini， F. Zambonclli， M. Klusch， and R. Tolksdorf.
Coordination oJ Jnternet Agents. Springer-Vcrlag，2001.

[11) Oracle Corporation. Oracle8i Concepls 陥1.1Release 8.1.5，
1999.

[12] R. S. Pamula and P. K. Srimani. Chcckpointing S釘atcgics
品rDa同baseSystcms. Proc. oJ the 15th Annual Conf. on
Computer SciencE九lEEECompllter Society， pagcs 88-97，
1987.

[13] S. Plcisch. Slate oJ the Arl oJ Mobile Agent Compllling -
Secllrity， Fallll Tolerance， and Transaclion SlIpporl. IBM
Co中oration，1999.

[14] 1. Satoh. A Mobi1c Agcnt-bascd Framcwork for Activc Nct-
works，. Proc. oJJEEE.砂'Slems，Man， and Cybernelics Con-
Je，陀 nceβ'MC'99)，pagcs 71-76， 1999.

[15] M. Shiraishi， T. Enokido， and M. Takizawa. Fault-Tolcrant
Mobile Agcnt in Distributcd Objccts Systems. Proc. oJ the
9th IEEE Internalional Workshop on FUlllre升'endsoJ Dis-
tribuled Computing Systems (FTDCS 2003)， pagcs 145-151，
2003.

[16] D. Skccn. Nonblocking Commi加 cntProtocols. Proc. oJ
ACMSIGMOD，pagcs 133-147，1982.

[17] A. D. Ste白no，L. L. Bcllo， and C. Santoro. A Dis汀ibutcd
Hctcrogcneous Databasc Systcm Bascd on Mobile Agents.
Proc. oJ Ihe 7th Workshop on Enabling Technologi回 (WET-
JCEゅの，IEEE Complller Society， pages 223ー229，1998.

[18] Sun Microsystems Inc. JDBC Data Access API.
http://java.sun.comlproductsljdbc/.

[19] Sun Microsystems Inc. The SourceJor Java (TM) Techno/.・
ogy. http://java.sun.coml.

[20] Sun Microsystems Inc. Trail: JAR ?les.
[21] Sybasc Inc. SYBASE SQL Server. http://www.sybasc.coml.
[22] J. E. White. Te/escr.伊t玲chnolog)

-112-

