MNFATATEELIBLRTI— V3 v FRRI6EIZA

Transactional Agent Model for Distributed Objects

Tomoaki Kaneda, Youhei Tanaka, Tomoya Enokido, and Makoto Takizawa

Dept. of Computers and Systems Engineering
Tokyo Denki University, Japan
{kaneda, youhei, eno, taki}@takilab.k.dendai.ac jp

Abstract

A transactional agent is a mobile agent which manipulates objects in one or more than one computer by autonomously
?nding a way to visit the computers so as to satisfy some commitment condition like atomicity in presence of faults of
computers. A surrogate can recreate a new incamation of the agent if the agent itself is faulty. If a destination computer is
faulty, the transactional agent ? nds another operational computer to visit. Objects in each computer are locally manipulated
by an agent for the computer. After visiting computers, a transactional agent makes a destination on commitment. In addition,
objects obtained from a computer have to be delivered to other computers where the transactional agent is performed. We
discuss a model of transactional agent and logistics on how to deliver classes for manipulating objects and derived objects
to computers where the routing agent to visit. We discuss how to implement a transactional agent on database servers and
evaluate the transactional agents.

DA TOxY FEBETZEHDO RSO aFIILI—C VU METL

A M AP EE GRSt BRE
HREBARERER BLTEWAR H8 AT LATEFRK
FIUHFIvaFre—Tay MM, BEOBBHAB ECH B AT P27 M EHBBEEICHHL L THHEME
TARIBH=—Cr b Ch B, MBS ECRERZRTLERLIE, REBx—Uxr b 24ERL, ROFERICBHT
3, BOIEHEMARELTWELRLIE, ==Yy MIhOHRBEZELBEHT5, £/, =TV MRESEH
BEMNICEE LRSS, REx—Vxy M z—Vz v b AFART 3., ARX TR, ¢S ¥Frvatrz—x
VEDOTZx—N b LT REROREIZHOWTRL S,

1 Introduction

Various types of objects are distributed in computers. A
transaction manipulates multiple objects distributed in com-
puters. A transaction is modeled to be a sequence of meth-
ods which satis? es the ACID (atomicity, consistency, isola-
tion, and durability) properties [2]). Huge number and var-
ious types of peer computers are interconnected in peer-to-
peer (P2P) networks [3]. A mobile agent can autonomously
escape from faulty computers and ? nd another operational
computers. Mobile agents [5, 14,22] are programs which
move to remote computers locally manipulate objects. We
discuss how to realize distributed transactions in mobile
agents. A transaction with the ACID properties [2, 8,9]
initiates a subtransaction on each database server, which is
realized in mobile agents [9,13,17]. In this paper, a transac-
tional agent is a mobile agent which autonomously moves
around computers [6].

In addition, we discuss how to reduce communication
overheads to transmit classes and objects to a transactional
agent in another computer.

After manipulating all or some objects in computers, an
agent makes a decision on commit or abort. In addition,
an agent negotiates with another agent which would like to
manipulate a same object in a con?icting manner. Through
the negotiation, each agent autonomously makes a decision
on whether the agent holds or releases the objects [6, 15].

If an agent leaves a computer, objects locked by the agent
are automatically released by the after manipulating objects.
Hence, an agent creates a surrogate agent on leaving a com-
puter so that an agent can abort even after the agent leaves
the computer. A surrogate agent still holds locks on objects
in a computer on behalf of the agent after the agent leaves
the computer.

In this paper, we assume computers may stop by fault. A
transactional agent autonomously ? nds another destination
computer if a computer where the agent to move is faulty.
In addition, an agent and a surrogate are faulty due to the
fault of a current computer where the agent and surrogate
exist. Some surrogate of the agent which exists on another
computer recreates the agent. The new incamnation starts as
an agent. Similarly, when a surrogate may be faulty, another
surrogate takes a way to recover from the fault.

In section 2, we present a system model. In section 3, we
discuss transactional agents. In section 4, we discuss fault-
tolerant mechanism of the transactional agent. In section
5, we discuss implementation of transactional agents. In
section 6, we evaluate the transactional agent through ex-
periments.

2 System Model
2.1 Objects

A system is composed of computers interconnected in
reliable networks. Each computer is equipped with a class

— 107 —

base (CB) where classes are stored and an object base
(OB) which is a collection of persistent objects. A class
is composed of attributes and methods. An object is an in-
stantiation of a class which is an encapsulation of data and
methods for manipulating the data. If result obtained by
performing a pair of methods op; and op2 on an object de-
pends on the computation order of op; and opz, opy and op>
con?ict with one another.

A transaction is modeled to be a sequence of methods,
which satis? es the ACID properties [4]. Especially, a trans-
action can commit only if all the objects are successfully
manipulated. A transactional aborts if at least one object
can be successfully manipulated. The two-phase commit-
ment protocol [4, 15] is used to realize the atomic commit-
ment. If a method op; from a transaction T is performed
before a method ops from another transaction 75 which
con?icts with op;, every method opz from T has to be per-
formed before every method opy from T3 con?icting with
the method ops. This is the serializability property [2,4].
There are locking protocols [2,4,7] and timestamp ordering
protocols [2] to realize the serializability of transactions.

In the locking protocol, a transaction locks an object be-
fore manipulating the object. Each computer supports an
agent with an isolation level [11] which shows when the
agent releases objects. In the strict two-phase locking pro-
tocol [2], neither dirty read nor cascading abort occur since
all the locks are not released before commit or abort.

2.2 Mobile agents

A mobile agent is a program which moves around com-
puters and locally manipulates objects in each computer
[19,22]. Mobile agent systems like Aglets [5], Telescript
[22], and AgentSpace [14] are so far discussed. A mobile
agent is composed of classes. A home computer home(c)
of a class ¢ is a computer where c is stored. A home com-
puter home(A) of a mobile agent A is a home computer of
the class of the agent A.

(Alnteractive (B)Batch

home computer OBome competes

computer computer

Figure 1. Ways to load classes.

An agent invokes a method op in a class. Then, a method
of another class is invoked in op. The class is required to be
loaded to the current computer of the agent. There are two
ways to load classes of an agent A from a home computer
[Figure 1]. In an interactive way, a class c is loaded from a
home computer home(c) each time a method of ¢ is invoked
by the agent A. Another way is a batch one where a col-
lection of multiple classes are loaded. If an agent invokes
more number of methods, the interaction time between the
current computer and the home computer can be more re-
duced than the interactive way.

3 Transactional Agents
3.1 Model of transactional agent

We discuss how to realize a transaction which manipu-
lates more than one object on computers with some com-
mitment condition in a mobile agent. A transactional agent
is a mobile agent which satis? es the following properties:

1. autonomously decides on which computer to visit.
2. manipulates objects on one or more than one computer.

3. commits only if'some commitment condition intrinsic
to the agent is satis? ed, otherwise aborts.

For simplicity, a term agent means a transactional agent
in this paper. An agent A is composed of three sub-
agents: routing agent RC(A), commitment agent CC(A),
and manipulation agent MC(A, D), ..., MC(A, D,),
where D; stands for a target computer of the agent A.
That is, A = (RC(A),CC(A), MC(A)) where MC(A) =
{MC(A,Dy),.... MC(A, D,)} . Here, let Dom(A) be a
set of target computers D, ..., D, of an agent A. First, an
agent A on a current computer has to move to a computer
in the target domain Dom(A). A computer D; to which
an agent A on a current computer D; moves is referred to
as destination computer of A on D;. An agent A has to
autonomously make a decision on which computer in the
target domain Dom(A) to visit. In RC(A), a destination
computer is selected. Then, the agent A moves to the des-
tination computer. Here, an agent ?rst 7nds a candidate set
of possible destination computers which have objects to be
manipulated after manipulating objects in the current com-
puter. Then, the agent selects one target computer in the
candidate computers and moves to the computer.

Secondly, an agent A manipulates objects in a current
computer D. The agent A loads a manipulation agent
MC(A, D) for manipulating objects from the home com-
puter home(MC (A, D)).

Lastly, an agent makes a decision on whether the agent
can commit or abort after visiting target computers.

3.2 Routing agent

The agent A visits a computer D;. Here, objects
in D; are manipulated through the manipulation agent
MC(A, Dj;) by using objects which are obtained in other
computers. Thus, the manipulation classes in an agent are
related with input-output relation. Objects which are inputs
and outputs are referred to as intermediate objects. Here,
D; 3 D; shows that the manipulation agent M C(4, D;)
outputs an intermediate object x and MC(A4, D;) in D;
uses = as an input. If D; & D; for an agent A, the agent
A has to visit D; before D;. The input-output relation is
shown in an input-output graph as shown in Figure 2.

O :computer O:tesporary object

Figure 2. Input-output graph

— 108 —

There are two types of nodes, computer and object. A
directed edge from a computer D; to an object x shows that
the manipulation agent M C(A, D;) outputs . A directed
edge from z to a computer D; indicates that M C(A, D;)
outputs r.

From the input-output graph, an agent A decides in
which order the agent visits. A directed acyclic graph
(DAG) Map(A) named a map is created from the input-
output graph [Figure 3]. In a map, a node D shows a com-
puter D with a manipulation agent M C(A, D;). A directed
edge Dy — D, shows that an object base (OB5) in a com-
puter D; is required to be manipulated by M C(A, D) after
MC(A, Dy) in a computer Dy. D; —* D; if and only if
(iff) Dy = D, or Dy — D3 —* D5 for some computer
Ds3. D; and D5 are independent (D; || D7) if neither D,
—* Dy nor Dy —* D;. Here, an agent A can in paral-
lel visit D; and D,. Each node D; is assigned MC(A,
D;) through which objects in D; are manipulated. Figure 3
shows an example of a map M ap(A).

Intermediate objects in Out(A, D;) obtained by manipu-
lating target objects in the computer D; are used to manip-
ulate objects in another computer D;. There are following
ways to bring an intermediate object + obtained in D; to
Dj:

1. Anagent A carries x to D;.

2. « is transfered from D; to the computer before the
agent A arrives at D;.

3. x is transfered from D; to D; on request of the agent
Aon Dj.

D,—D; — D;
~
D,— D,

Figure 3. Map.

A routing agent RC(A) with a map Map(A) is mov-
ing around computers [Figure 3). A collection I of com-
puters which do not have any in-coming edge are found in
Map(A). One node D; is selected in the set I so as to sat-
isfy some condition. The agent A moves to the computer
D;. Here, a manipulation agent M C(A, D;) is loaded to
D; from the home computer. After manipulating objects
in D;, D; is removed from AMap(A). Another destination
node D); is selected as presented here. Then, the agent A
moves to D; with Map(A).

Then the agent A is started on the computer. The com-
puter is referred to as base computer of the agent A. An
agent A leaves the base computer for a computer D; to ma-
nipulate objects. Here, D; is a current computer of the agent
A, denoted current(A). If the agent A invokes a method ¢
of a class ¢, ¢ is searched in the network as follows:

1. The cache of the current computer is ?rst searched for
c. If ¢ is found, t is invoked.

2. If not, the class base (C B;) of D; is locally searched.
If ¢ is found in C B;, c is taken to invoke t.

3. Otherwise, c is transferred from the home computer
home(c) into D;.

A history H(A) of an agent A shows a sequence of com-
puters which the agent A has visited. On leaving a com-
puter, the computer is recorded in the history H(A).

3.3 Manipulation agent

A manipulation agent is composed of application-
speci?c classes and library classes.

Figure 4. Home computer.

If an agent A invokes a method ¢ of a class ¢ in a com-
puter, the class ¢ is loaded from the home computer home(c)
to the cache in the computer [Figure 4]. Then, the method
t of ¢ is performed in the computer. If another agent B
invokes ¢ of c in the computer, c in the cache is used to in-
voke ¢t without loading c. Thus, if classes are cashed in a
computer, methods in the classes are locally invoked in the
computer without any communication.

3.4 Commitment agent

A scope Scp(A) of an agent A means a set of computers
where the agent A possibly manipulates objects. If an agent
A 7nishes manipulating objects in each computer, the fol-
lowing commitment condition of the agent A is checked by
the commitment agent CC(A):

1. Atomic commitment: an agent is successfully .per-
formed on all the computers in Scp(A).

2. Majority commitment:. an agent is successfully per-
formed on more than half of the computers in Scp(A).

3. At-least-one commitment: an agent is successfully per-
formed on at least one computer in Scp(A).

4. ('r') commitment: an agent is successfully performed
on more than out of n computers (r < n) in Scp(A).

5. Application speci?c commitment: condition speci?ed
by application is satis? ed.

A commitment condition is speci?ed for each agent A
by an application. The commitment condition is checked
by a commitment agent CC(A) of the agent A. There are
still discussions on when the commitment condition of an
agent A can be checked while the agent A is moving around
computers. Let H(A) be a history of an agent A.

3.5 Resolution of con?iction

Suppose an agent A moves to a computer D; from an-
other computer D;. The agnet A cannot be performed on
Dj if there is an agent or surrogate B con?icting with A.
Here, the agent A can take one of the following ways:

1. Wait: The agent A in D; waits until the agent A can
land at D;.

2. Escape: The agent A finds another computer Dy
which has objects to be possibly manipulated before
D;.

— 109 —

3. Negotiate: The agent A negotiates with the agent B
in D;. After the negotiation, the agent A takes over B.
4. Abort: The agent A aborts.

If the agent B waits for release of an object held by the
agent A, a pair of the agent A and B are deadlocked. If the
timer expires, the agent A takes a following way:

1. The agent A retreats to a computer D; in the history
H(A). All the surrogates of A which have been per-
formed after performed on D; are aborted.

2. Then, the surrogate agent A; on D; recreates a new
incamation of the agent A. The agent A ?nds another
‘destination computer Dy, [Figure 5].

The surrogate A; to which the agent A retreats plays a
role of checkpoint [12] of A. Differently from traditional
checkpoints [12], the agent A retreating to some surrogate
Aj; autonomously ?nds an operational computer which may
be different from one which the agent A has visited.

=i @8&

o ="@lN0o
S0

Figure 5. Retreatment.

D

Suppose a surrogate agent B holds an object in a com-
puter D;. An agent A would like to manipulate the object
but con?icts with the surrogate agent B in D;. The surro-
gate agent B makes a following decision depending on the
commitment conditions of B:

1. Atomic commitment: The agent A waits until the sur-
rogate B ?nishes.

2. At-least-one commitment: 1f the surrogate B knows at
least one sibling surrogate of B is committable, B re-
leases the object and aborts. B informs the other sib-
ling surrogates of this abort. :

3. Majority commitment: If the surrogate B knows more
than half of the sibling surrogates are committable, B
releases the object and aborts. B informs the other
surrogates of this abort.

4. (1) commitment: If the surrogate B knows more than
or equal to 7 sibling surrogate agents are committable,
B releases the object and aborts.

4 Fault-Tolerance
4.1 Forwarding and backwarding

Computers may be faulty in networks. We assume com-
puters may stop by fault. An agent is faulty only if a cur-
rent computer of the agent is faulty. Suppose a transac-
tional agent A ?nishes manipulating objects on a computer
D;. The agent A selects one computer D; from the map
Map(A). The agent A detects by timeout mechanism that
the computer D; is faulty if the agent A does not receive
any response from D;. If the computer D; is operational,
the agent A leaves D; for D;. Here, suppose D; is faulty.

The agent A tries to ?nd another destination computer Dy,
in the map Map(A). If found, the agent A moves to the
computer Dy, if Dy is operational, as presented here.

If the transactional agent A cannot ? nd another destina-
tion computer in the map Map(A), the agent A backs to
the preceding Dy, i.e. the agent A has come to the current
computer D; from Dy. The map M ap(A) is restored to one
when the agent A had left the computer D. The node D; is
removed from the map M ap(A). Then, the agent in Dy, tries
to 7 nd another destination computer in the map Map(A).

4.2 Fault of agent and surrogate

A transactional agent A leaves its surrogate agent A; on
a computer D;. The surrogate agent A; holds objects after
the agent A leaves the computer D;. The surrogate agent A;
releases objects on before the agent A terminates depending
on the solution condition of the agent A.

A transactional agent A and surrogate agent A; are faulty
if a current computer when A and A; exist is faulty. First,
let us consider case an agent A is faulty, on a computer D;.
Suppose that the agent A comes from another computer D;
named predecessor of D; to the computer D;. The surrogate
Aj; on the computer D; detects that the agent A is faulty on
the computer D;. Here, the surrogate agent A; recreates a
new incarnation of the agent A. The agent A takes another
destination computer Dy, in the map M ap(A). If found, the
agent A one of the following strategies:

1. waits until the computer D; is recovered.
2. backs to the precedent computer from D;.

A surrogate A; on a computer D; may be faulty as well.
The precedent surrogate A; on computer D; detects the
fault of the surrogate agent A;.

5 Implementation of Transactional Agent
5.1 Surrogate agents

When an agent A leaves a computer D;, a surrogate A;
still holds objects in D; which are manipulated by the agent
A. Surrogate agents commit or abort according to the deci-
sion of the agent. Surrogates of an agent A are referred to as
sibling surrogates of A. The agent A creates A; and moves
to another computer Dy. Here, A; and A; are most pre-
ceding and most succeeding agents of A;. Thus, when the
agent A ?nishes visiting all the computers, some surrogate
agent may not exist due to the fault and abortion in negoti-
ation with other agents. The agent A starts the negotiation
procedure with its surrogates A, .. ., A,,. If a commitment
condition on Aj, ..., A,, is satis?ed by the commitment
agent CC(A), the agent A commits. On the other hand, the
commitment condition is not satis? ed, the agent A aborts.

Suppose an agent A moves to a computer D; from an-
other computer D;. The agent A cannot be performed on
D; if there is another agent or surrogate agent B con? icting
with the agent A. The authors [6, 15] discuss how to resolve
the con? iction though negotiations among agents.

5.2 Implementation
We discuss how to realize agents. An agent is imple-
mented in Aglets and composed of a routing, manipulation,

- 110 —

and commitment agents.

A routing agent RC(A) is transfered from a computer to
another computer. When routing agent RC(A) arrives at a
computer D;, a manipulation agent M C(A, D;)is created
by RC(A).

An object base (O B) is realized in a relational database
system. An agent manipulates table objects by issuing SQL
commands in a current computer D;. The computation of
each agent A on D; is realized as a local transaction on a
database system in D;. If the agent A leaves D;, the trans-
action for the agent A commits or aborts. Even if the agent
A leaves D;, objects manipulated are required to be still
held by the agent A because the agent A may abort after
leaving D;. Therefore, a surrogate agent is newly intro-
duced as discussed in the preceding sub section. The surro-
gate agent is composed of M/ C(A4, D;) and an object agent
OBA. Each object agent (O BA) behaves as follows:

1. On arrival at a computer D;, the routing agent RC(A)
initiates a manipulation agent M C(A,D;) and an ob-
ject agent OBA; on D;. OBA,; initiates a transaction
on an object base O B;.

2. If MC(A,D;) issues a method for manipulating ob-

jects.

. Ifthe agent A ?nishes, the agent A leaves D;.

4. OBA; commits or aborts if the agent A sends commit
and abort requests to A;.

w

o

Figure 6. Object agent (OBA).

An object agent OBA is independent of types of
database systems like Oracle and Sybase. OBA class can
be loaded to a computer with any type of database system.
Each time an agent arrives at a computer, an instance OB A;
of OBA class is loaded from the home computer of the
agent A into a computer D;. If an agent comes to D; from
another home computer, OBA class is loaded to D; from
the home computer. Thus, O BA instances are accumulated
in the cache. In order to resolve this problem, OB A class is
loaded as follows:

1. There is one home computer home(O B A).

2. Ifthe OBA class is not cached in the current computer,
the OBA class is loaded from home(OB A).

3. If the OBA class could not be loaded from
home(OBA).

The routing agent RC(A) leaves a computer D; if the
manipulation agent M C(A, D;) ?nishes manipulating ob-
jects in D;. MC(A, D;) recreates a new incarnation of
RC(A) if the agent A stops due to the computer fault.

An agent A can commit if all or some of the surrogates
commit depending on the commitment condition. Commu-

nication among an agent and its surrogate agents is real-
ized by using the XA interface [23] which supports the two-
phase commitment protocol [16] [Figure 6]. Each surrogate
agent issues a prepare request to a computer on receipt of
a prepare message from the agent A, If prepare is success-
fully performed, the surrogate agent sends a prepared mes-
sage to the agent A. Here, the surrogate agent is commit-
table. The agent A receives responses from the surrogate
agents after sending prepare to the surrogates. On receipt
of the responses from surrogate agents, the agent A makes
a decision on commit or abort based on the commitment
condition.

Next, we discuss how to support robustness against faults
of computers. Suppose a surrogate agent A; of an agent A
stops after sending prepared. Here, the surrogate agent is
committable. On recovery of the committable surrogate, the
surrogate agent unilaterly commits if the surrogate agent is
committable in the at-least-one commitment condition. In
the atomic condition, A; asks the other surrogates if they
had committed. Suppose A; is abortable, i.e. faulty before
receiving prepared. On recovery, A; unilaterly aborts.

6 Evaluation

O Routing Agent

Datsbase

Figure 8. Evaluation model

We evaluate the agent which is implemented in Aglets.
In the evaluation, There are three server computers D;, Do,
and D3. An agent is created in a computer C. There
is another computer H, which is a home computer of the
manipulation agents and object agent. D;, D,, and Ds
are realized in personal computers (Pentium 3) with Ora-
cle database systems. The computers are interconnected in
the 1Gbps Ethemet.

First, an agent A is initiated in C. The agent A ?7nds in
which order D;, D5, and D3 to be visited as discussed in

- 111 —

this paper. Here, the agent A visits Dy, D3, and Dy in this
order as shown in Figure 7. On arrival of the agent A on
D;, the manipulation agent M; and object agent OB A; are
loaded to D; [Figure 7).

In this evaluation, there are following types of agents A
and B:

A. The manipulation agents M, on D, derives intermedi-
ate object I from the object base. The object base in
D, and D3 are updated by using I.

B. M and M, derive objects from the object bases in Dy
and D, to intermediate objects I; and I. Then, the
object base in D3 is manipulated by using I and I>.

There are three ways to deliver intermediate objects de-
rived in a computer to another computer where the objects
are used as discussed in section 3 [Figure 8].

1. The agent A carries intermediate objects.

2. After the agent A arrives at Dj, the agent A requests
the computer D; to send the intermediate objects.

3. The agent A transfers the intermediate object I ob-
tained to D; before leaving D;.

o 2000 00 0000 8000 10000
T Cf cats 1 & Swstame

- <
Al / i
i ——
s: / —
- / a et
.,,-;,4’-1‘—"“'
o s
°0 2200 o0 [-] 20 1030
Figure 10. Response B

The total response time of an agent is measured for num-
ber of intermediate objects. Figures 9 and 10 show the re-
sponse time for the types of agents A and B. The second
and third ways to deliver intermediate objects to destination
computers imply shorter responce time than the ?rst way.

7 Concluding Remarks

The authors discussed a transactional agent model to ma-
nipulate objects in multiple computers with types of com-
mitment constraints in presence of computer faults. A trans-
actional agent autonomausly ?nd a distination computer to
visit, moves to a computer, and then locally manipulates ob-
jects. We discussed how to implement transactional agents
in Aglets and Oracle. We evaluated the transactional agent
in terms of response time.

References

(1] American National Standards Institute. The Database Lan-
guage SQL, 1986.

[2] P. A. Bemstein, V. Hadzilacos, and N. Goodman. Concur-
rency Control and Recovery in Database Systems. Addison-
Wesley, 1987.

[3] L. Gong. JXTA: A Network Programming Environment,
pages 88-95. IEEE Internct Computing,, 2001.

[4] J. Gray and A. Reuter. Transaction Processing : Concepls
and Techniques. Morgan Kaufmann, 1993.

[5] 1BM Corporation. Aglets Softiware Development Kit Home.
http://www.trl.ibm.com/aglets/.

[6] T. Komiya, T. Enokido, and M. Takizawa. Mobilc agent
model for transaction proccssing on distributed objects. /n-
Jformation Sciences, 154:23-38, 2003.

{7] F. H.Korth. Locking Primitives in a Database System. Jour-
nal of ACM, 30(1):55-79, 1989.

(8] N. A. Lynch, M. Mecrmitt, A. F. W. Weihl, and R. R. Yager.
Atomic Transactions. Morgan Kaufmann, 1994.

[9] K. Nagi. Transactional Agents : Towards a Robust Multi-
Agent System. Springer-Verlag, 2001.

[10] A. Omicini, F. Zambonelli, M. Klusch, and R. Tolksdorf.
Coordination of Internet Agents. Springer-Verlag, 2001.

[11] Oracle Corporation. Oracle8i Concepts Vol. 1 Release 8.1.5,
1999.

[12] R. S. Pamula and P. K. Srimani. Checkpointing Stratcgics
for Database Systems. Proc. of the 15th Annual Conf. on
Computer Science, IEEE Computer Society, pages 88-97,
1987.

(13} S. Pleisch. State of the Art of Mobile Agent Computing -
Security, Fault Tolerance, and Transaction Support. 1BM
Corporation, 1999.

[14] 1. Satoh. A Mobile Agent-based Framework for Active Nct-
works,. Proc. of IEEE Systems, Man, and Cybernetics Con-
ference (SMC’99), pages 71-76, 1999.

[15] M. Shiraishi, T. Enokido, and M. Takizawa. Fault-Tolcrant
Mobilc Agent in Distributed Objccts Systems. Proc. of the
9th IEEE International Workshop on Future Trends of Dis-
tributed Computing Systems (FTDCS 2003), pages 145-151,
2003.

[16] D. Skeen. Nonblocking Commitment Protocols. Proc. of
ACM SIGMOD, pages 133-147, 1982.

{17] A. D. Stefano, L. L. Bello, and C. Santoro. A Distributed
Heterogencous Databasc System Based on Mobile Agents.
Proc. of the 7th Workshop on Enabling Technologies (WET-
ICE’98), IEEE Computer Society, pages 223229, 1998.

[18] Sun Microsystems Inc. JDBC Data Access API.
http://java.sun.com/products/jdbc/.

[19] Sun Microsystems Inc. The Source for Java (TM) Technol-
ogy. http:/fjava.sun.conv.

[20] Sun Microsystems Inc. Trail: JAR ?les.

[21] Sybase Inc. SYBASE SQL Server. http://www.sybasc.con.

[22] J. E. White. Telescript Technology : The Foundation for the
Electronic Markeiplace. General Magic Inc., 1994.

[23] X/Open Company Ltd. X/Open CAE Speci?cation Dis-
tributed Transaction Processing: The XA Speci?cation,
1991.

[24] S. Young and D. Aitel. The Hacker's Handbook: The Strat-
egy Behind Breaking into and Defending Networks. Aucr-
bach Publications, 2003.

- 112 -

