[=AF 27, 7ERELHENE) V-7 397 FHE 5438

— R T7 VA 7Ty YBT3
YAV w¥yyFEE
e ® B i
(B RKET25)

HbHEL —KAE7VAR., VLSIGERLBBLEAENLB? —%5 2+
YD—DTH B, ARAXTR,. AWBEE2HF-> T YSLDEY2—N%, Fu
Ty YV HOBERMLBODERBRETHRMIEBRINLERI LS., —XTEFL 470t
VY EABEBTIZIFZLITY XL E28KT 5, YIiab-—yvavEBROBKE &
BP7VIVXARLEDZI TS LODETRMO,. BEOFP VM TY X aicksd 70
T53Lb0RITHMOUER, FRECAWEL20B0F XA FHEOES L LT, 8
T1%TH» k.

A TASK MAPPING ALGORITHEM FOR LINEAR ARRAY PROCESSORS

Tsuyoshi Kawaguchi Yoshinori Tamura
Miyazaki University

ABSTRACT The linear array processor architecture. is an important class of
interconnection structures that are suitable for VLSI. In this paper we present a heuristic
algorithm for mapping a task tree onto a linear array to minimize the total execution time.
The algorithm partitions the node set of a task tree into clusters and maps these clusters
onto processors. Simulation experiments showed that the total execution time of a task tree
obtained by the proposed algorithm was about 71% of that obtained by a conventional
algorithm on the average of 120 test problems.

1. INTRODUCTION

The mapping of task graphs onto target
architectures is an essential subject for the
design of VLSI algorithms such as systolic
array algorithms. Rewini et al.[1] and
Kawaguchi (2] presented heuristic
algorithms for mapping an arbitrary task
graph onto a parallel machine with an
arbitrary interconnection network
topology. Koren et al.[3] considered the
problem of mapping an arbitrary task
graph onto two~dimensional array
processors. Cappello [4] proposed a
systolic array which can realize a
processor-time-minimal mapping for a task
graph with cubical mesh structure.

The linear array processor architecture

is an important class of interconnection
structures that are suitable for VLSI. The
simplicity of - the linear array
interconnection provides several practical
advantages over higher dimensional
multiprocessor arrays. However, since the
diameter of a linear array is proportional to
the number of processors, the
interprocessor communication grows
lineally with the number of processors.
Thus, the balancing between the amount of
computation assigned to each processor and
the amount of interprocessor
communications is especially important for
the design of VLSI algorithms on linear
arrays.

Trees play
computational

important roles as
structures for several

—257—

applications. In this paper we study the
problem of mapping a task tree onto a linear
array so as to minimize the total execution
time.

Ghosal et al.[5] presented a heuristic
algorithm for this problem. The algorithm
partitions the node set of the task tree into
clusters and allocates these clusters onto

processors of a linear array. Ghosal et al.

recommended to use O(vh) processors and
showed that if O(WMi) processors are used,

the computation time and the communication’

time obtained by their mapping algorithm
are both O(h'logn) and so the total
execution time of a task tree Is also
O(h'log n) where h'=max(h,/) and h denotes
the height of the task tree.

We first present an optimization algorithm
for a message scheduling problem which
occurs in the task tree mapping problem
stated above. Solutions of this problem
play an essential role to find an efficient
mapping of a task tree. However, any
algorithm for this problem was not
explicitly given by Ghosal et al.[6] because
they discussed only a rough estimation of
the total execution time of a task tree
obtained by their algorithm. Next, we
present a new algorithm for mapping a task
tree onto a linear array. :

2. PRELIMINARIES

2.1 Problem Discriptions
In this paper we consider the problem of
mapping a task tree onto a linear array so
as to minimize the total execution time. As
in Ref[5], we assume the processors P;,
18iSm, which are numbered according to
the left to right ordering, ' perform
computation subject to the following rules.
(1) Computations on all processors are
-synchronized and communications
between all adjacent processor-pairs
are synchronized. In addition, any
processor cannot communicate with
another processor while executing
tasks.
(2) Each processor P: can execute a task
in one unit of time and it can also

transmit one value to a neighbor Pi-,
in one unit of time. (Communication
between each processor - pair i{s one
directional.)

(3) Each link (P4,Pi-:) can transmit no

more than one value at each time unit.

(4) Each non-leaf task cannot be

executed before the values of all its
children are available to the processor
on which the task is placed.

This problem is called MAP_TREE in the
remainder of this paper. For each task v,
let I(v) denote the index of the processor
on which task v is placed. Then, any
feasible solution of the problem MAP_TREE
has to satisfy the following condition: if a
task v is a parent of a task w, then I(v)SI
(w).

2.2 A Mapping Algorithm
Ghosal et al.[5] presented an algorithm

for the problem MAP_TREE. The algorithm

consists of the following three steps.

" (1) Partition the node set of the task
tree T into several clusters G,,* * *,Gr.
Let TC denote the tree obtained from T
by combining the ncdes of each Gx
1SkSr, into one node. We call TC the
cluster tree assoclated with T and

(Gl.' .. ,Gr)o
(II) Map clusters Gx, 1SkSr, onto
processors P,,: * P Of a linear array

where Pi, 181Sm, are numbered
according to the left to right ordering.

(llI) Let level(Gx) denote the levels of
nodes Gx in the cluster tree TC, and
lmax=maximum of level (Gx), 1SkSr.. (If
the distance between a node Gx and the
root of TC is J, the level of Gx is (j+1).)

For j=lmax down to 1 do

(1) In parallel, evaluate all clusters
Gx with leval (Gx)=j.

(2) For each evaluated cluster Gx,
let PR(Gx) denote the parent of Gx
in the cluster tree TC. Transmit
the output data of Gx to the
processor on which PR(Gx) is
placed.

Let T=x(j}), 1SjSlmax, denote the time
needed to evaluate clusters at level j and
let Tc()), 18jSlmax, represent the time

—258—

needed to transmit the output data of
clusters at level j. Then, the execution time
of the task tree is given by:

T = Z(T=(§)+Tc({)) (L
where the summation is taken over all levels
J118)Slmax.

Below, we show the procedure used in
Ref.[5] for partitioning the node set of the
task tree into clusters. This procedure is
recursively executed from the root of the
tree T. For each node v in T, let ST(v)
denote the subtree with root v. Any
subtree ST(v) has a node awhose removal
disconnects ST(v) into smaller trees such
that the number of nodes in each smaller
tree is smaller than or equal to | ST(v) | /2.
The node a is referred to as a centroid of
ST(v).

To find a centroid of ST(v) , we can use
the following method. Start from the root v.
If v is a centroid of ST(v), we are done.
Otherwise, move to a child of v whose
subtree contains more than |[ST(v)|/2
nodes. If the current node is a centroid, we
are done. Otherwise, repeat this search
until a centroid is found.

<< The procedure PARTITION (v)>>

If the number of nodes in ST(v) is smaller
than or equal to h'=max(h, n/m7) where h
is the height of the tree T, make the node
set of ST(v) a cluster. Otherwise, let a be a
centroid of ST(v). If P represents the path
connecting v and a, make the node set of P
a cluster. Further, let ST(v.), 15iSr ,
denote the subtrees obtalned by the
removal of the nodes lying on P. For each
node v, 1S5iSr, apply the procedure
PARTITION(v:).

<< The procedure CLUSTER_MAPPING >>

The procedure used in Ref.[5] for
mapping clusters onto processors
Py,»++*,Pm of a linear array repeats the
following operation while there exist
unscheduled clusters: after selecting a
cluster Gx according to a preorder
traversal, assign Gx to the left most
processor with a smaller number of tasks
than h’=max(h,[n/m7).

As an example, we consider the problem of

Fig.1 A task tree

mapping the task tree of Fig.1 into three
processors.” We have h'=4 because n=10, h=4
and m=3. The algorithm of Ref.[5] proceeds
as follows.

(1) Since | ST(1) | >h’, the procedure
PARTITION divides ST(1) into smaller
trees. A centroid of ST(1) is node 3 and
80 the procedure makes the node set
{1,3} a cluster. The removal of (1,3}
divides ST(1) into three subtrees ST(2),
ST(8) and ST(7) whose sizes are smaller
than or equal to h’. Thus, the tree of
Fig.l1 is finally divided into four
clusters : G.={1,3}, G==(2,4,5}, Ga={6},
G.={17,8,9,10}. _

(II) The procedure CLUSTER_MAPPING
assigns G, and Gz to processor P, and
the remaining clusters to processor Pa.

(i) In the cluster tree, level(G.)=1 and
level(G:)=2 for 25i84. Thus, when j=2,
G- is executed on P: and Ga and G, are
processed on Pa. The execution time is 5
time units. Next, the output data of Ga
and that of G. are sent from P» to P,.
This communication requires 2 time
units. Finally, when j=1, G. is executed
by P, in 2 time units. Thus, the total
execution time of the task tree is 9 time
units.

3. AN OPTIMIZATION ALGORITHM FOR
SCHEDULING MESSAGES

In this section we consider a message
scheduling problem which occurs in the
problem MAP_TREE. The message

—259—

scheduling problem, which we call MSCH, Is
stated as follows. -

<< The problem MSCH >>

Given a linear array N with nodes Py,
15iSm, and links (Py,Pi-1), 1<iSm, and a
set of messages Mx, 1SkSp, with senders
S(Mx) and receivers R(Mx) such that
I(S(Mx))>I(R(Mx)) where I(v), v=S(Mx) and
R(Mx), denotes the index of v, schedule Mx,
18kSp, on the path connecting S(Mx) and
R(Mx) to minimize the maximum completion
time of M«, LSkSp. (The completion time of
Mx means the time when Mx reaches its
receiver.)

The problem MSCH cccurs in the step(lil)
of the task tree mapping algorithm shown in
subsection 2.2, Therefore, algorithms for
the probiem MSCH are needed to be on-line

and parallel. Fig.2 shows a parallel
algorithm for the problem MSCH which is
procedure MSO
begin
for all nodes Py, 1SiSm, do parallel
begin

make Q(P;) empty;
if P: has messages Mx whose
senders are P; then
insert these messages Mx into
‘ Q(P:) according to a
nondecreasing order of I(R(Mx));
end;
t:=0;
while there exist node P; such that
Q(P:) are nonempty do begin
for all nodes Ps, 1SiSm, do paralle]
begin
select a message Mx of Q(Ps)
with the smallest I(R(M«x));
place My on link (P;,P;—,) during
the time interval [t,t+1];
delete Mx from Q(Ps);
if R(Mx)#Ps-1 then
insert M« into Q(P:-1)
end;
ti=t+1;

Fig.2 The procedure MSO

1 2 3 4 5 6
M7
Ms
Mos
Ms
Me
M4
Ma
Ma
€ Ma

Fig.3 An instance of the problem MSCH

link —> tine

0 1 2
(6,5) M7 Ms Mo
(5.4) | Ms | Ms M7
(4,3) | _Ms M4 Ms
(3,2) | M1 | M2 | Ms
(2,1) M1 M2

L W

Fig.4 The schedule obtained by applying
the procedure MSO to the message set
of Fig.3

also on-line. The point of this algorithm is
to select a message M« of Q(P.) with the
smallest I(R(Mx)) for the transmission on
link (Ps,Pi-.) when Q(P:) has more than one
messages. .

If we apply the procedure MSO for the
message set of Fig.3, we have the schedule
shown in Fig.4.

We have the following theorem.

[Theorem 1] The procedure MSO finds an
optimal schedule for any instance of the
problem MSCH.

Let T denote the maximum completion time
of messages obtained by the procedure
MSO. Since T corresponds to the
communication time in step(lll) of the task
tree mapping algorithm, we want an
algorithm with time complexity O(T) for the
problem MSCH. However, the time
complexity of the procedure MSO is O(T - log
p) where p is the number of messages. In
addition, to achieve the time complexity of

—260—

O(T:log p), each Q(Ps) needs to be
implemented by a balanced tree which is a
fairly complex data structure.

To tell the truth, any instance M={M,,
-+,M»} of the problem MSCH which cccurs in
the execution step of the task tree mapping
algorithm proposed in Ref.[5] and that
proposed in this paper has the following
helpful property :

(#) for any message-pair M; and My, if
I(R(M4))<I(R(M;s) then I(S(Mi)) SI(S(Ms)).

For any instance of the problem MSCH
satisfying the above condition, we have the
following simple optimization algorithm.

<< The procedure MS1 >>
This procedure is the same as the
procedure MSO except the followings :

(1) each Q(P,) {s implemented by a
first-in first-out queue instead of a
priority queue such as a balanced tree ;

(2) each node P selects the first message
of Q(P,) for the transmission on
link (Ps,P:i-.) instead of selecting a
message Mx with the smallest I(R(Mx)).

The key point of the procedure MS1 is to
transmit messages of Q(Pi) according to a
first-come first-served rule.

Thus, it is clear that the procedure MS1
can be executed in time O(T).

We have the following corollary.

[Corollary 1] The procedure MS1 finds
an optimal schedule for any instance M={Ma,
««,M»} of the problem MSCH satisfying the
condition (#).

4. MAPPING A TASK TREE ONTO
A LINEAR ARRAY

4.1 Partitioning a Task Tree into Clusters
For each level j, 15jS1lmax, in the cluster
tree, let Q(j) denote the set of clusters at
level § and let B85, 15jSlmax, denote the
maximum of |Gx| over all clusters Gx of
Q(j). Then, since T=z(j)28s in Eq.(1), the
minimization of 2 8s is needed to minimize

—261-

the execution time of the task tree.

Our algorithm starts from the partition
obtained by the algorithm of Ref.[5] and,
for j from (lmax-1) down to 1, divides some
leaf cluster of level j into two parts, one of

procedure PARTITION
begin
partition the node set of the task tree T
into clusters by using the procedure
shown in Ref.[5];
let Q(j), 1SjSlmax, denote the set of
clusters at level j in the resultant cluster
tree;
for j:=lmax-1 down to 1 do
while | Q(j+1) | <m do begin
B=max{ | Gx | | GxeQ(F+1)};
select a leaf cluster Gx of Q(j) with the
greatest |Gk |;
if] Gx | S 8 then begin
move Gx from Q(J) to Q(j+1);
make a dummy: cluster Gx’ with no
tasks;
insert G«* into Q(j);
end
else begin
let ST(Gx)} dencte the subtree of the
task tree T whose node set is Gx;

" for each arc e in ST(Gx) do begin
let ST.(e) and ST2(e), where ST.(e)
includes the source of e, denote
the subtrees of ST(Gx) obtained
by the removal of e;

A(e):=the number of tasks in ST.(e);
end;
find an arc e of ST(Gx) with the
greatest A(e) such that A(e)S 8;
let ST.(e) and STz(e), where ST, (e)
includes the source of e, denote the
subtrees of ST(Gx) obtained by the
removal of e;
let Gx. and Gx= denote the clusters
corresponding to the node sets of
ST.(e) and ST=z(e), respectively;
after deleting Gx from Q(j), insert
Gx: and Gxz into Q(j+1) and Q(j),
respectively;
end;
end;

Fig.5 The procedure PARTITION

which is moved to level (j+1). The division
is performed so that the size of the
subcluster moved to level (j+1) does not
exceed Bs... The purpose of such division
is to reduce As; without increasing Bi+:.
The formal description of our partition
algorithm is shown in Fig.5 .

The task tree of Fig.8 is the one used
by Gohsal et al.[6] for the {llustration of
their algorithm. Fig.8 also shows the
partition of the node set of this tree
obtained by our algorithm. On the other
hand, the algorithm of Ref.[6] generates the
partition obtained by combining each pair
of (Gz,Gis), (G3,G19), (Ge,Ga») and (Ge,Ga6e)
into one cluster. In addition, while the
algorithm of Ref.[6] treats Ga and G.4 as the
clusters at the third level, our algorithm
executes these clusters together with the
fourth level clusters.

Fig.7 shows the cluster tree obtained
trom the task tree of Fig.6 by combining the
nodes of each cluster into one node. In this
tree, nodes §" and 14™ denote dummy nodes

with zero processing times. They do not
require any computation. But, when the
output data of nodes 5 and 14 are sent to
nocdes 4 and 7, respectively, the data need
to pass through 5™ and 14", respectively,
because communications are possible only
between nodes at adjacent levels.

4.2 Mapping Clusters onto Processors

In the mapping obtained by the algorithm
of Ref.[5], more than one nodes at the same
level are often assigned to the same
processor and it degrades the efticlency of
the algorithm.

Our algorithm uses a level by level
mapping strategy to avoid such situations.
Let I(Gx) denote the index of the processor
on which a cluster Gx is placed. Any
feasible mapping has to satisfy the
following condition :

(*) 1(Q:)SI(G;s) for a pair of clusters G
and Gs such that G: is a parent of G; in
the cluster tree.

Fig.6 A task tree and a partition of its node set

—262—

Fig.7 The cluster tree asscciated with the task tree
and the partition shown in Fig.6

i
i
i
i
i
!
i

1

-

9
0

l
s
l
|
i
!

12

Fig.8 A mapping of the clusters of Fig.7

onto a linear array

The algorithm of Ref.[5] selects clusters
according to a preorder traversal on the
cluster tree for the assignment of
processors. In addition, after some cluster
was placed on a processor Pi, none of the
remaining clusters are assigned to
processors Py ,18j<i. Thus, the above
condition always holds in the mapping
obtained by the algorithm of Ref.[5]
although the algorithm does not explicitly
check the condition.

On the other hand, our algorithm repeats
the following procedure for each j from
Imax down to 1, schedule clusters of level j
on processors Py 15iSm, in such a way that
any non-leaf cluster G: satisfies I(G:)S1(Qs)
for all its children G..

To minimize the execution time of the task
tree, the algorithm first sorts clusters
according to a preorder traversal
restricted by the following rule.

(*) For each node Gx in the cluster tree,
let SUC(Gx) denote the set of
successors of Gx with the highest level

and let L(Gx) represent that level.
Given a node-pair G: and G, of the
cluster tree with the same parent, Gu
precedes G if L(G:)>L{Gs) or (G1)=L(Gs)
and | SUC(G) | S | sUC(@s) |-

In Fig.7, nodes are labeled according to
the above ordering. Fig.8 shows a mapping
of the cluster tree onto a linear array with
nine processors, which is obtained by the
algorithm of this paper. The formal
description of the proposed mapping
algorithm is given in figures 8 and 10.

The total execution time of the task tree
of Fig.6 obtained by our algorithm is 32 time
units. On the other hand, the total
execution time of the tree obtained by the
algorithm of Ref.[65] is 44 time units.

5. PERFORMANCE EVALUATION

We made simulation experiments to
evaluate the performance of the mapping
algorithm proposed in this paper. For each

—263—

function PACKING(c)
begin
i:=1;
while Q(j) is nonempty do begin
let Gx denote the nocde of Q(j) with the
smallest label;
delete Gk from Q(J);
if | Pusl+1Q3x | >k or P; has a ncde G.
of level j such that the parent of Gq is
not the same as that of Gx and all
siblings of Gq are placed on Ps then
begin
f:=i+1;
if {Sm then
assign Gx to P:
else
return (false)

end
else
assign Gx to Ps
end
return(true)
end;

Fig.9 The function PACKING

test problem, the execution time of the task
tree, T., obtained by the proposed
algorithm was compared with the execution
time of the task tree, To, obtained by the
algorithm of Ref.[5).

The task graphs used in the experiments
were constructed by the following method.
Let ¢o denote the task graph of Fig.6.
Starting from ¢o, construct a new task
graph ¢:+: (I20) by applying the following
operation to ¢i: after selecting a pair of
tasks v and w such that v is neither a
predecessor nor a successor of w, exchange
their parents (in other words, if x and y are
parents of v and w, replace arcs (v,x) and
(w,¥) by new arcs (v,y) and (w,x)). In
addition, the number of processors, m, was
varied in the range {5,9,12,15}.

On the average of 30 task graphs, the
ratios To/T. were 1.40 for m=5, 1.39 for m=8,
1.42 for m=12 and 1.42 for m=15.

6. CONCLUSIONS

We presented an algorithm for mapping a

procedure CLUSTER_MAPPING
begin
for j:=lmax down to 1 do begin
c:=max(max{ | Gx | | Gx€Q(J)},
[Zoxeaws |1Gx|/m7);
if PACKING(c)=false then begin
ii=1;
while PACKING(2!*c)=false do
is=i+1;
LB:=2'"1%c+1;
UB:=2*c;
c:={LB+UB) div 2;
while LB<UB do begin
if PACKING(c)=false then
LB:=c+l
else
UB:=c;
c:=(LB+UB) div 2;
end
end
end;

Fig.10 The procedure CLUSTER_MAPPING

task tree onto a linear array. The
simulation experiments showed that the
algorithm of this paper is much more
efficient than the algorithm of Ref.[5].

REFERENCES :

[1] H.E.Rewini and T.G.Lewis: "Scheduling
parallel program tasks onto arbitrary
target machines", Journal of Parallel and
Distributed Computing, Vol.9, No.2,
pp.138-153(1980).

[2] T.Kawaguchi: “Scheduling a task graph
onto a message passing multiprocessor
system”, IEICE Trans., Vol.E75-A, No.S,
PP.670-677(19902).

[3] I1.Koren, B.Mendelson, I.Peled and
G.M.Silberman: "A data-driven VLSI
array for arbitrary algorithms", IEEE
Computer, Vol.21, No.10, pp.30-43(1988).

[4] P.Cappello: "A processor-time-minimal
systolic array for cubical mesh
algorithms"”, IEEE Trans. on Parallel and
Distributed Systems, Vol.3, No.1,
PP.4-13(1882)

[5] D.Ghosal, A.Mukherjee, R.Thurimella and
Y.Yesha: "Mapping a task tree onto a
linear array", Proc. 1891 Int. Conf. on
Parallel Processing, Vol.1, pp.629-833.

—264—

