
「マルチメディア通信と分散処理Jワークショップ平成5年3月

一次元アレイプロセッサにおける

タスクマッピング手法

川口剛 田村吉紀

(宮崎大学工学部)

あらまし 一次元アレイは、 VL S 1佑に最も適した並列処理アーキテクチ

ャの一つである. 本論文では、木構造を持つプログラムのモジユ.ールを、 プロ

セツサ聞の通信時間も含めた総実行時聞が最小となるよう、一次元アレイプロセ

ツサ上へ配置するアルゴリズムを提案する. シミュレーシヨン実践の結果、捜

索アルゴリズムによるプログラムの実行時聞の、既存のアルゴリズムによるプロ

グラムの実行時間の比は、実験に用いた 120個のテスト問題の平均として、約

7 1 %であった.

A TASK HAPPING ALGORITHH FOR LINEAR ARRAY PROCESSORS

Tsuyoshi Kawaguch1 Yosh1nori Ta皿ura
Hlyazaki Universlty

ABST~CT The llnear array processor arch1tecture， Is an important class of

1nterconnection structures that are suitable for VLSI. In this paper we present a heuristic
algorith皿 formapping a task tree onto a l1near array to minimize the total execution time.

The algorithm partitions the node set of a task tree lnto clusters and maps these clusters

00旬 processors.Simulation exper1ments showed that the句，tal腿，ecutiontlme of a task tree
obtained by the proposed algorithul' was about 71" of that obtaIned by a conventlonal
剖gorlthmon the average of 120 test problems.

1. INTRODUCTION

The mapping of task graphs onぬ target

architectures 18 an essentlal subject for the

design of VLSI algorithms such as systolic

array algorithms. Rewin1 et al. [1] and
Kawaguchi [2] presented heuristic

algorithms for mapping an arbitrary task

graph onto a par叫lelmachine wlth an

arbitrary 1nterconnectlon network
topology. Koren et叫.[3]consldered the
problem of mapplng an arbltrary task
graph onto two-dlmenslonal array

proc回 sors. Cappello [4] proposed a

systolic array which can realize a
processor-time-mlnimal mapplng for a task

graph w1th cubi儲 1mesh structure.

The l1near array processor architecture

1s an 1mportant cl~泊8 of interconnection

structures that are sultable for VLSI. The
8impliclty of' the linear array

interconnectlon provldes several practica1

ad vantages over h1gher dimensional

multiprocessor arrays. However， since the
diameter of a linear array 1s proportional to

the number of processors， the
interprocessor communication grows
lineally with the number of processors.
Thus， the balancing between the amount of
computatlon assigned to each processor and
the amount of ln'もerprocessor

communications Is espec1ally important for

the design of VLSI algorithms on linear

arrays.
Trees play important roles as

computational structures for several

-257-

appUc迅，tions. ln thls paper we study the

problem ot mapplng a task tree onto a linear
array so as to mlnlmlze the total execution
time.
Ghos叫 etal.[5] presented a heuristic
algorlthm for thls problem. The algorlthm

partitlons the node set 01" the task tr4謁 lnto

clusters and allocates these clusters onto
pro随時ors01" a l1near array. Ghosal et叫

re∞mmended to use 0 (市)pro飽 ssorsand
showed that if 0 (市)proωssors are used，
the ∞mputation t1me and the communlcatlon
time obtained by their mapping algorithm
町 e both 0 (h' log n) and so the total
execution tlme of a task tree Is 叫so
O(h'log n) where h'=max(h，頃)and h denotes
the helght of the task tree.

We first present an optim1zatlon algorithm
for a message scheduling problem which
occurs ln theta此 treemapping problem
stated above. Solutlons of this problem
play an essential role to flnd an efflclent
mapping of a task tree. However， any
algorithm for thls problem was not
explicitly glven by Ghosal et叫.[5]because

they discussed only a rough estlmation of

the total execution tlme 01" a task tree
obtained by the1r algorithm. Next， we
pr，倒enta new algorlthm for mapping a task
tree onto a linear array.

2. PRELIMINARIES

2.1 Problem Discriptlons
1n this paper we conslder the problem of
mapping a task tree onto a l1near array s。
ωto min1mlze the total磁 ecutiontime. As
ln Ref[5]， we assume泊施 pro関 ssors P1.，
l孟i孟m，wh1ch are numbered ac∞rding to
the le抗 to rlght order1ng， • perform
computatlon subject to the followlng rules.
ωComputatlons on副1processors are
synchronlzed and communicatlons
between all adjacent processor-pa1rs
are synchronized. 1n addltlon， any
proωssor cannot communic迅，tewith
another pro伺 ssorwhlle execut1ng
tasks.
(2) Each proc回 sorP1. can execute a task
ln one unit of time and lt can also

transmit one value to a nelghbor P1-1
ln one unit of tlme. (Communication
between each proωssor -pa1r Is one
dlrect1onal.)
(3) Each link (P1，PJ.-l) can transmlt no
more than one value at each tlme unit.
(4) Each non-l伺ttωkcannot be

executed before the values of all1ts
chlldren are avallable to the processor

on wh1ch the task Is placed.
Thls problem Is called MAP _TREE ln the
rema1nder of tbls paper. For each task v，
let I(V) denote the lndex of the processor
on wh1ch task v Is placed. Then， any
feaslble solutlon of色heproblem MAP _TREE

has to satisfy the tOllowlng∞ndlt1on: lf a
task v Is a parent of a task w， then I(v)~I
(w).

2.2 A Mapping Algorlthm
Ghosal et叫.[6]presented an algorlthm

for the problem MλP_TREE. The algorlthm
consists of the tollowlng thr回 steps.
(1) Partitlon the node set ot the task
tree T Into several clusters G1，・・・，Gr・
Let TC denote the tree obtained from T
by combin1ng the nodes ot each GJc
1孟k=-r，into one node. We call TC the
cl uster tree assocla:加dwfth T and
(G1，' . . ，Gr).
(11) Map clusters Gk， 1~k~r， on旬
processors P且，・・.，P m of a l1near array
where P1，1孟i孟m，are numbered
ac∞rding旬 thele抗旬r1ghtorderlng.
(I1I) Let level (G k) denote the levels of

nodes Gk ln the cluster tree TC， and
lmllx=max1mum ot level (Ok). l~k孟r. ， (It
the distance between a node Ok and the
root of TC Isj， the level of G民Is(j+1).)
For J=lm IiX down to 1 do
(1) In para11el， eva1uate all clusters
GJcwlth level (GJc)=j.
(2) For鈍 chevaluated cluster Gk，
leもPR(Gk) denote the parent ot G k
ln the cluster tr回 TC.Transmlt
the output data of Gk to the
processor on whlch PR(Gk) Is
placed.

Let T ø: (j) ， 1~j孟lmli寓， denote the time
needed to eva1 uate clusters at level j and
let Tc(j)， 1創出回IiX，repreaent the time

-258-

needed to transmlt the output data 01'
cl usters at level j. Then， the execution time
of the task tree Is given by:

T = l;(Te:(j)+Tc(j)) (1)

where the summation Is taken over al1 levels

j， l~j :ilm ~X ・

Below， we show the proced ure used ln
Re1'.[5] for partltloning the node set of the

task tree into clusters. This procedure Is

recursively executed from the root of the
tr回 T. For each node v ln T， let ST(v)
denote the subtree with root v. Any

subtree ST(v) has a node αwhose removal
dis∞nnects ST(v) ln'句 smallertrees such
that the nu皿berof nodes ln each smaller

tree Is smaller than or equ叫 toI ST(v) I /2.
The node a Is referred to as a centrold of
ST(v).

To flnd a centrold of ST(v) ， we処 nuse
the followlng method. start from the r∞t v.
lf v Is a centrold of ST(v)， we are done.
Otherwlse， move to a ch11d of v whose
subtree conta1ns more than I S T(v) 1/2
nodes. If the current node Is a centrold， we
are done. Otherwlse， repeat this search
untll a centrold Is found.

<<The pro飽 durePARTITION (v)>>

If the number of nod錨 lnST(v) Is smaller

than or equ叫 toh'=m腿 (h，r n/m 1) where h
1s the helght of the tree T I make the node

set of ST(v) a cluster. Otherwlse，let αbea
centrold of ST(v). If P represen'旬 thepath

connectlng v and α， make the node set of P
a cluster. Further， let ST(Vi)， 1孟l~r ，
denote the subtrees obta1ned by the

remov凶 ofthe nodes lying on P. For each

node VJ.， 1:il~r ， apply the proωdure
PARTITION(vJ.).

<< The procedure CLUSTER_MAPPING >>
The procedure used ln Ref.[5] for

mapplng cluBters on句 pro飽 ssors

P1，'・・，Pm of a linear array repea:国 the
follow1ng operatlon while there exist

unscheduled clusters: atter selectlng a
cluster Gk according to a preorder
traversal， assign Ok to the lett most
processor wlth a smaller number of tasks
than h'=m邸 (h，rn/ml).
As an example， we consider the problem of

Flg.1 A task tree

mapping the task tree of Flg.1 into three
processors.、Wehave h'=4 because n=10， h=4
and m=3. The叫gorithmof Ref.[5] proωeds

as fol1ows.

(1) Slnce I ST(l) I >h' J the procedure
PARTITION dlvldes ST(l) lnto smaller
tr飽 s.A centrold of ST(l) Is node 3 and

so the procedure makes the node set

{1，3} a cluster. The removal of {1，3}
divldes STωlnto three subtrees ST(2)，
ST(6) and ST(7) whose slzes are smaller

than or equal to h'. Thus， the tree of
Flg.11s tln叫lydlvlded lntotour

clusぬrs:0戸 {1，3}，Gz={2，4，5}， G3={6}，
G4={7，8，9，10}.
(II) The proωdure CLUSTER_MAPPING
asslgns 01 and 02 to processor Pl. and

the remaining clusters to processor P2.

{凹)ln the cluster tree， level(Ol)=l and
level(Gι)=2 for 2~1~4. Thus， when j=2，
02 Is executed on Pl. and 03 a:nd 04 are
processed on P2. The execution tlme 1s 5
tlme units. Next， the output data ot 03
a:nd that of O. are sent from PZ to Pl..
Th1s comm unlc地:tlonreq ulres 2 tlme
unlts. Flnally， when j=l， 仏 Isexecuted
byP主 ln2 tlme units. Thus， the total
executlon time ot the task tree Is 9 tlme
unlts.

3. AN OPTIMIZATION ALGORITHM FOR
SCHEDULINO MESSAGES

ln this sectlon we consider a message
scheduling problem which occurs ln the

problem MAP _TREE. The message

-259-

scheduling problem，' which we call MSCH， Is
stated as follows. 6

己一目
1
1

1
1
1

一一一一一一ロル

5 4 3 2

----Etiti--iil
・t
・-
i
・持
z-TE---

-----i--tili---iiiEzl
・t-UR
・E-dz

An lnstance ot the problem MSCH

一→tl田e
1 2
..... ・ーー--'-圃圃・・園町圃圃『

llnk

↓?
(6.5)
(5，4)
(4，3)
(3.2)

(2.1)

Flg.3

Given a linear array N wlth nodωPi，
1孟i孟m，and links (Pi，Pi-ふ l<i~m ， and a
set of messages MJc， l~k :ip ， wlth senders

S(Mk) and rece1vers R(Mk) such that

I(S(Mk))>I(R(Mk)) where I(v)， V=S(Mk) and
R(Mk)， denotes the lndex ot v， schedu1e Mk，
l~k :i p ， on the path∞nnect1ng S(Mk) and
R(Mk) to min1mlze the maximum ∞mpletlon
tlme 01" M k， l~k~p. (The∞mpletlon time 01"
M k means the t1me when M Jc reaches lts
reωiver.)
The problem MSCH occurs ln the sぬp(lII)

ot the task trωmapplng algorlthm shown ln
subsection 2.2. Therefore， algorlthms for
the problem MSCH are ne凶 edto be on-11ne
and parallel. Flg.2 shows a parallel

a1gorlthm for the proble皿 MSCHwh1ch Is

<<The problem MSCH>>

Fig.4 The schedule obta1ned by applylng

the proced ure M 80 to the message set
ot Flg.3

山 oon-Une. The polnt ot this algorithm Is
to select a message M k of C (Pl) wlth the

sma11est 1 (R(M k)) tor the tr~misslon on
11出 (P.L.P.L-J.)when 0 (Pl) h凶 morethan one

messages.
1f we apply the procedure MSO for the

message set ot Flg.3， we have the schedu1e
shoWn ln Flg.4.
We have the following theorem.

[Theorem 1] The proωd ure M SO flnds an

optlmal sched u1e for any lnstance of the

problem MSCH.

LeもTdenote the m凶 mum completion time
of messages obtalned by the proωdure

MSO. Slnce T ∞rresponds to the
communic泡.tlontime ln sぬp(皿)of the task
tree mapplng algorlthm， we want an
algorlthm wlth time complexity O(T) for the

problem MSCH. However， the time
complexity of the procedure MSO Is O(T・log
p) where p 18 the number 01" messages. 1n

addltion， to achleve the tlme ∞mplex1ty of

procedureMSO

包堕担

包!:all nod回 Pi，l孟i孟m，昼QB包昌国

担盟ln
make 0 (Pi) emp七.Yi
立Pih回 messagesM k whose

senders are P i也盟
lnsert these messages M民 ln句

g (Pi) accordlng to a

nondecre腿 lngorder of I(R(MJc));

皇旦盛;

t:=o;

E単l皇thereexist node Pi such that

Q(Pl) are nonempty島国&in

tm: all nodes Pl， 1~1孟m，昼QB皇自込l皇l

単盛旦

select a message M Jc. of 0 (Pi)

wlth the smallest I(R(Mk))i

place M k on 11nk (P1.，Pl-d during

the time lnterval [t，t+l];
delete M誕 fromD(Pl)j

江 R(Mk)~Pi- l.主且皇且

lnsert M k lnto Q (民自主)

皇旦g;
t:=t+l;

皇旦盛;

室旦昌;

-260-

Fig.2 The procedure MSO

O(T.l og p)，伺ch C (Pj，) needs to be

implemented by a balanced tree which is a

fairly complex data structure.

To tell the truth， any lnstance M={Ml.，

…，Mp } of the problem MSCH which occurs in
the execut10n step of the task tree mapping

algorithm proposed ln Ref.[5] and that

proposed in this paper has the following

helpful property :

(#) for any message-pair M1町ldMJ， if
I(R(Mi))<I(R(MJ) then I(S(Mi));孟I(S(Mj)).

For any instance of the problem MSCH

satlsfying the above condition， we have the
following simple optimization algorithm.

<< The procedure MS1 >>
Thls procedure Is the same as the

procedure MSO except the followings :

(1)伺 chC (Pi) Is impl悶 entedby a

flrst圃lnflrst-out queue lnstead of a

priority queue such as a balanced tree i

(2) each node Pi selectsthe flrst message

of Q(Pi) for the transmlssion on

link (Pi，P1ー且)instead ot select1ng a
message Mlc wlth the smallest I(R(Mk))'

The key polnt of the procedure MS1 Is to

transmit messages of Q (Pi) ac∞rding to a
first-∞me first-served rule.
Thus， it Is clear that the procedure MS1
can be executed in time 0 (T).
We have the following corollary.

[Corollary 1] The procedure MS1 flnds
an optimal sched ule for any instance M={M 1，
"'，Mp} ot the problem MSCH satisfying the

condition (的.

4. MAPPING A TASK TREE ONTO

A LINEAR ARRAY

4.1 Partitioning a Task Tree into Clusters
For each level j， 1孟j孟1ma.x， ln the cluster
tree， let Q (j) denote the set of clusters at
level j and 1叫ん， 1孟j='1 m o.x， deno也 the

maximum of I Gk I over &11 clusters Gk of
Q (j). Then， since Tz(j);ミβjin Eq.(l)， the
minimlzation of I βJ Is needed to mlnimize

-261-

the execution time of the task tree.

Our algorithm starts from the partitlon

obtained by the algorith皿 otRef.[5] and，
for j from (l m且E・1)down to 1， dlvides some
leaf cl uster of level j in凶 twoparts， one of

Procedurs PARTITION

亙盟i旦
partition the node set of the task tree T
into clusters by using the procedure

shown In Ref.[5];

let Q (j)， l~j~lm a.x， denote the set of
cl usters at level j 1n the resu1tant cl uster

tree;

包rj:=lm a.x-1且盟叫Q1虫
笠魁l皇 IQ(j+1) J <皿昼QQ皇盛旦
β:=max{ I Gk I I Gk e Q (j+l)};
select a leaf cluster G:k of Q (j) wlth the

greatest I G k I ;
立 IGk I孟β謹呈旦単gID
move Gk from Q (j) to Q (j+1)i

make a dummy cluster Gk' wlth no
t回 ks;

inse此 Gk'into C(j);

end

盛鐙盈皇民旦

let ST(Gk) denote the subtree of the

task tree T whose node set 1s G k;

色reach arc e in ST(Gk)血恒星包
let STl.(e) and STz(e)， where STde)
includes the source of e， denote
the subtrees of ST(Gk) obtained

by the removal of ej

s(e):=the number .of tasks in STl.(e)i

end;

find an arc e of ST(Glc) with the
greatest s (e) such that A(e)孟β;

let ST1(e) and STz(e)， where STバe)
lncl udes the source of e， denote the
subtrees of ST(Gk) obtained by the
remov叫 ofe;

let Glcl and Gk2 denote the clusters

corresponding to the node sets of
ST1(e) and STz(e)， respectivelYi
after deleting G k from Q (j)， insert
Glcl and Gk2 lnto Q(j+1) and Q(j)，
respectively;

呈旦昼;

皇旦E1;

Fig.5 The procedure PARTITION

wh1ch Is moved句 level(j+1). The divislon
Is performed so that the slze of the
subcluster moved to level (j+1) does not

exc民 dん叫・ Thepurpose of such dl vls10n
Is to reduceん wlthoutlncreaslng ん+1・

The formal descript10n of our part1t1on

algorithm Is shown ln Fig.5 .
The task tree of Flg.6 is the one used
by Gohsal et叫.[5]for the Ulustrat10n ot
thelr algorltbm. Flg.6 also shows the
part1tion of the node set of th1s tr鶴
obta1ned by our algorlthm. On the other
hand， the algorlthm of Ref.[6] generates the
partition obtained by comblning each pair
of (G2，G16)， (G3，G1.仏 (G6，GU) and (G田ん8)
into one clus也r. In addit1on， whUe the
a1gorlthm of Ref.[5] trea:回 GDand G.l.4腿the
clusters at the th1rd level， our algorithm
executes these clusters together ~th the
fourth level clus七ers.
Fig.7 ShOW8 the cluster tree obta1ned

from the task tr，鴎ofFlg.6 by ∞mbln1ng the
nodes ot each cluster lnto one node. In th1s
tree， nodes 5酬 and14帽 denotedummy nodes

with zero proce8s1ng times. They do not

require any computat1on. But， when the
output data of nodes 5 and 14 are sent to

nodes 4 and 7， respect1vely， the data need
top回 sthrough 6. and 14.， respect1vely，
because commun1c泡.t1onsare posslble only
between nodes at adja，伺ntlevels.

4.2 Mapplng Clusters onto Processors

In the mapplng obtained by the algorithm
of Ref.[6]， more than one nodes at the same
level are ofぬnωsigned to the same
pro伺 ssorand lt degrades the etflclency of
the algor1thm.
Our algorithm uses a level by level
mapplng strategy to avold such sltuat1ons.
Let 1 (G k) denote the lndex of the proωssor
on wh1ch a cluster Gk 18 placed. Any
fe舗 lble mapping h錨 to 凪t1sfy the
followlng conditlon :

(吋 I{G1)~I(GJ)for a pair ot clusters G1
and G.$ 8uch that GL 18 a parent ot Gj ln
the cluster tree.

、 11

Flg.6 A task tree and a partltion of its node set

-262-

Fig.7 The cluster tree associated with the task tree
and the partition shown in Flg.6

Pl pz Pa P4 Ps Pa P7 Ps P9

l

5 12

Fig.8 A mapping ot the clusters ot Fig.7
onto a linear array

The algorlthm ot Ret.[5] selects clusters
ac∞rdlng to a prωrder traversal on the
cluster tree tor the 槌 slgnment of

processors. ln addltlon， after some cl uster
was placed on a processor Pi， none ot the
rema1n1ng clusters are 錨 slgned to
proc回 sorsPJ ，1:ij<1. Thus， the above
∞ndlt10n always holds ln the mapplng
obtained by the algorlthm of Ref.[5]
although the algor1thm does not explicltly
check the condlt1on.

On the other hand， our algorithm repeats
the followlng proωdure tor each j from

lmll寓 downto 1， sched Ule cl usters of level j
on pro飽田町sPi.1話i孟m，ln such a way that
any non-leat cluster 01 satlstles 1((h)~I(Gj)

for all its children GJ.
To mlnlmize the execution t1me of the task
tree， the algorlthm tirst sorts clusters
according to a preorder traversal
restricted by the following rule.

作)For each node G k ln the cl uster tree，
let SUC(Gk) denote the set ot
successors of Gk wlth the highest level

and let L(G，.) represent that level.

Given a nOde-pa1r G，ιand GJ otthe
cl uster tree wlth the same parent， G1
preωd伺 GJlt L(Ch)>L(Gu or (Ch)=L{GJ)

and I SUC(G1) I孟ISUC(GJ) 1.

ln Flg. 7， nodes are labeled accord1ng凶
the above orderlng. Fig.8 shows a mapping

ot the cl uster tree onto a linear array wlth
n1ne pro関 ssors，which Is obta1ned by the
剖gorlthm ot th1s paper. The formal
descr1pt1on of the proposed mapplng

algorlthm Is， glven ln flgures 9 and 10.

The total execution time of the task tree
of Flg.6 obtained by our algorithm Is 32 tlme

unlts. On the other hand， the ωltal
execution tlme of世1etree obta1ned by the
algor!thm ot Ref.[5] Is 44 t1me un1ts.

5. PERFORMANCE EVALUATION

We made simulation experiments to
evaluate the pertormance of the mapplng
algorlthm proposed ln this paper. For each

-263-

functlon PACKING(C)

註鑑担

1:=1;

主単~ Q (j) 18 nonempty昼旦盈皇単旦

let G Ic denote the node of Q (j) with the

smallest label;

delete G k from Q (j);

立 IP1.j I + I GIc I > k or Pi. has a node G‘
of level j 8uch that the parent of G Q 18

not the 8副ne腿 thatof G k and a11

siblings of Gq are pla関 don P1血盟

亙盟組

1:=1+1;

立 i~m 控室旦
asslgn Gk to P1
else

return (false)

皇旦盛

盛盤

assign Gk to P1

隻旦盛

return(true)

金且盛;

Fig.9 The function PACKING

test problem， the蹴 ecutiontime of the task
tree， T 1.， obtained by the proposed
algorithm wωcompared with the executlon

time of the task tr，鵠， To， obtained by the
叫gor比hmof Ref.[5].

The task graphs used ln the experlments

were constructed by the followlng method.

Let o 0 denota the task graph of Flg.6.
Starting from o a ，∞nstructa new task
graph 仇+且(l~0) by applying the followlng

operatlon to仇 atterselectlng a pa1r of

t回 ksv and w such that v 18 ne1ther a

predece8sor nor a successor of w， exchange
their p町 ents(in other words， lf x and y are
parents of v and w， replaωarcs (V，X) and
(w，y) by new arC8 (v，y) and (w，x)). In
addltion， the number of processors， m， was
varled ln the range {5，9，12，15}.
On the average of 30 task graphs， the
ratios T o/T 1. were 1.40 for m=5， 1.39 for m=9，
1.42 for m=12 and 1.42 for m=15.

6. CONCLUSIONS

We presented an algorlthm for mapping a

procedure CLUSTER MAPPING

忌呈単旦

色rj:=lm ax盛盟旦主旦1昼旦昆皇民旦
c:=m低 (max{IGkIIGIcEQ(j))，
r 1: a k回 ωIGk 11m 1);
立PACKING(c)=falset単旦邑旦g!旦
1:=1;

笠単~ PACKING(21句)=f凶se亘g
i:=1+1;

LB:=21-1.*C+1j
UB:=2句Cj

c:=(LB+UB) div 2;

~LB<UB~ 註皇g1旦

U: PACKING(c)=false主.Ilg旦
LB:=c+1

else

UB:=c;
c:=(LB+UB) dlv 2;

皇旦亘

阜旦盛

endj

Fig.10 The procedure CLUSTER_MAPPING

task tree onto a linear array. The

slmulatlon experlments showed that the

algorlthm of this paper Is much more

efficlent than the algorithm of Ref.[5].

REFERENCES
[1] H.E.Iぬwlni田ldT.G.Lewls: "Scheduling

par叫lel p~gram tasks on句 arbltrarY
target machlnes"， Journal of Parallel ~d
Distributed Computing， Vo1.9， No.2，
pp.138-153(1990).

[2] T.Kawaguchi: "Scheduling a task graph

on句 amessage passlng multlprocessor

system"， IEICE Trans.， Vol.E75・A，No.6，
pp.670・677(1992).

[3] I.Koren， B.Mendelson， I.Pe1ed and
G.M.Sllberman: "A data-drlven VLSI
array for arbltrary algorithms" ， IEEE
Computer， Vol.21， No.10， pp.30・43(1988).
[4] p.Cappello: "A processor-tlme-mln1m叫
systoUc array for cublcal mesh

叫gorlthms"， IEEE Trans. on Parallel and
Dlstrlbuted Systems， Vol.3， No.1，
pp・4・13(1992)
[5] D.Ghos凶， A.Mukherj伺， R.Thurlmella and

Y.Yesha: "Mapping a task tree on句 a
l1near array". Proc. 1991 Int. Conf. on

Parallel Processing， Vol.l， pp.629・633.

-264-

