[T F2F 4 TEELOBUABY -2 3 o 7]

Negotiation Strategy for Multiple Autonomous Agents *

Chiaki Yahata and Makoto Takizawa *

Dept. of Computers and Systems Engineering
Tokyo Denki University ¥
e-mail {chii,taki}@takilab.k.dendai.ac.jp

A cooperating database system is composed of multiple agents interconnected by communi-
cation networks where some agents provide database systems. It purposes to provide easy
access to various kinds of multiple autonomous database systems under a situation that the
system configuration is changed dynamically. An agent is an autonomous system which as-
sists users with accessing multiple database systems. Each agent takes the request from the
user. The agent may ask other agents to answer the request so as to meet the user's re-
quirement by doing the negotiation with them on whether and how they could answer the
request. In this paper, we present a model of the cooperating database system and discuss a

negotiation protocol among multiple agents.

1 Introduction

Various kinds of autonomous database sys-
tems including existing enterprise database
systems and personal database systems are
interconnected by communication networks.
Distributed database systems (2, 7, 8, 10,
11, 13, 14, 15] are systems including mul-
tiple, possibly heterogeneous database sys-
tems interconnected by communication net-
works, where users can access multiple
database systems without being conscious
of their heterogeneity, autonomy, and distri-
bution. There are two kinds of distributed
database systems. One is an integrated
distributed database system (a tightly cou-
pled system(13], where one global schema on
all the database systems is defined for the
users by a global administrator (8, 14, 15].
Through the global schema, users can access
all the database systems as if they were one
database system which provides the global
schema. The other one is a multi-database

"HEM T — Y= v HOZEHHR
'RPATE ®R R
PRORTEBAY: BT TR

system [9]. Instead of providing one global
schema on all the database systems, users
can define dynamically their views on a sub-
set of the database systems in the distributed
database system. It is named a dynamic
integration of multiple database systems.

The groupware applications [5] include
various kinds of database systems like
enterprise database systems and personal
database systems. In addition to deriving
information from the existing well-organized
enterprise database systems, it is important
to access less-defined information kept by
each individual. Furthermore, new database
systems may be added and some database
systems may stop the service. In the pres-
ence of various kinds of database systems,
it is difficult for users to find what kinds of
database systems are included, where they
exist, and how they are manipulated. In
order to provide easy access to multiple
database systems, our system is composed
of agents. Each database system is a kind
of an agent. The agent assists users with
their accessing multiple database systems.
Each user issues a request to access some

_7_

SR 5 E11A



data without being conscious of where it is
and how it is accessed it. The agent takes
the request to access multiple database sys-
tems, and may ask another agent to obtain
the answer of the user's request if it cannot
answer the request. The agent has to do the
negotiation with other agents on what and
how they can do. Thus, each agent not only
provides a database system but also helps
users with manipulating other database sys-
tems. Through the negotiation with an-
other agent, each agent can obtain informa-
tion on what kind of database the agent has.
A cooperating database system is a system
which is composed of multiple agents inter-
connected by communication networks. In
this paper, we would like to present the ar-
chitecture of the cooperating database sys-
tem and a protocol for doing the negotiation
among multiple agents.

In section 2, a system model of the
cooperating database system is presented. In
section 3, we discuss the acquaintance rela-
tion among the agents. In section 4, a proto-
col for doing the negotiation among multiple
agents is discussed. In section 5, a learn-
ing method for each agents to obtain infor-
mation on the change of the system state is
presented.

2 System Model

A cooperating database system is composed
of multiple agents interconnected by com-
munication networks [Figure 1]. An agent
is a system which provides a database sys-
tem and may access another agent to an-
swer user's requests. The agent considers
the database as a collection of data ob-
jects. Objects are tuples in the relational
database system(4]. Record occurrences are
objects in the network-type database sys-
tem [3]. This means that the agent provides
users with heterogeneity-independent access
to the database systems. Each user U is-
sues an agent A a request R which describes
what data objects U would like to access.

The agent A takes the request R from U,
and finds what agents have objects required
by U. A accesses its own database if the
database includes the objects, and asks an-
other agent to answer the request. Evenif 4
has the objects, A may ask another agent to
answer R if A thinks of it to be more suit-
able to answer the requests, e.g. from the
performance point of view.

Each agent is autonomous. That is, each
agent can decide what object it has and how
it would behave for the request. For exam-
ple, an agent usually answers the request but
sometimes may not. Even if some strategy
for accessing multiple agents is pre-decided
based on the statistical information like [16},
the agents may not behave as expected in
the strategy, for example, because the states
or policies of the agents may be changed.
Hence, negotiation among agents is required
to make clear what and how each agent can
do. The agents does the negotiation with
other agents to find what agents have the ob-
jects and how they could obtain them. Thus,
the users can manipulate multiple database
systems through agents without being con.
scious of the heterogeneity, distribution, and
autonomy of the database systems.

CN:network A j:agent (i=1...n)

Figure 1: Cooperating database system

3 Agents

An agent is an autonomous system which ac-
cesses multiple database systems through ne-
gotiation with other agents. We present the

— 8-



types, behaviour, and structure of the agents
in this section.

3.1 Passive and active agents

Since the cooperating database system in-
cludes huge number of agents interconnected
by communication networks, it is difficult,
maybe impossible for each user to obtain the
following information :

1. what kinds of agents are included,

2. what kind of database system each
agent has, and

3. how each agent can answer requests,
e.g. on the response time and process-
ing time.

Hence, we need a mechanism named an
agent which assists users with obtaining
information on and manipulating multiple
database systems.

There are two kinds of agents, i.e. passive
and active ones [Figure 2]. The passive agent
A takes a request R from a requester U, i.e.
a user or another agent, and then answers
R if A can answer R. A sends the answer
of R back to U. If A cannot answer R, A
informs U of the failure. For example, sup-
pose that U sends a request R to A to ob-
tain objects on Tokyo. If A has objects on
Tokyo, A sends the objects to U. Otherwise,
A informs U of the failure. Thus, the pas-
sive agent does not issue requests to another
agent. Conventional database systems and
server systems like print servers are exam-
ples of the passive agents.

On the other hand, the active agent A can
issue a request to another agent. For exam-
ple, if A cannot answer a request R, A can
send R to another agent which A4 thinks can
answer R. Even if A can answer R, 4 can
send R to another agent B if A thinks that
B better, e.g. faster than A [Figure 2(b)].
Furthermore, A can decompose R to subre-
quests R;,..., R, (n 2 1) and send each R;

to an agent A; which A thinks can answer
R; (i=1,...,n). Thus, the active agent is a
system which can issue requests to another
agent by itself.

Wn

(a)passive agent A
()
\e g

(b)active agent A

Figure 2: Active and passive agents

There is one kind of the passive agent
named a kind agent. If a kind agent A knows
what agent, say B can answer the request
R from U, A informs U of B when A can-
not answer R. On receipt of the reply from
A, U may send R to B. The conventional
distributed database systems [13] are com-
posed of passive agents, i.e. database sys-
tems. On the other hand, the cooperating
database system includes not only passive
but also active agents.

3.2 Behaviour of agent

On receipt of a request R from a user or
agent U, A behaves as follows.

[Behaviour of agent)

1. A decomposes .R into subrequests R;,

oo Ra(n21).

2. A decides what agent A; can answer
each subrequest R; (i = 1, ..., n).

3. A asks each A; if A; can answer R;, 4;

-9 —



negotiates with A; on how A; can an-
swer R; if A; can answer R;, e.g. how
long it takes to answer R;. Otherwise,
another agent is tried to be found for R;
at step 2.

4, A asks A; to answer R; according to the
way negotiated in step 3. A; answers R;
and sends back the reply RP; to A.

5. A collects the results RPy, ..., RP,
from A, ..., An, respectively, and gen-
erates the result RP of R from RP,, ...,
RP,. Asends RPto U. D

The step 1 is a decomposition of the request.
The step 2 is an allocation of subrequests to
agents. The step 3 is a negotiation among
the agents. The step 4 is an ezecution of
the request. The step 5 is a composition of
replies from the agents.

3.3 Structure of agent

The cooperating database system is com-
posed of agents interconnected by a com-
munication network CN as shown in Figure
3. Each agent A4; is composed of two parts,
i.e. head H; and body B;. B; includes a
database system DBS;. DBS; is composed
of a database DB; which is a collection of
objects. B; manipulates objects in DB;. For
each object o, Term, is a collection of terms
{t1, ..., tm}. Each term corresponds to a
keyword in the information-retrieval systems
[12]. The meaning of o is defined as Term,.
For example, suppose that each object in a
database on cities represents a city. An ob-
ject denoting Tokyo can be given to a set of
terms {Capital, Japan, Tokyo, ...}. Here,
let O be a set of objects and T be a set of
terms in the system. Each agent A has a
subset O4 of O and a subset T4 of T. For
two agents A and B, O4 and Op may not
be disjoint, and T4 and T may not either.
That is, each object and term can exist re-
dundantly in multiple agents, For each term
t in T, Obj(t) denotes a set of objects on t
in 0. Objs(t) denotes objects on t in A if

t is in Ty4(t), i.e. A knows about t. Here,
Obja(t) C Obi).

Figure 3: Agents

The head H; is composed
of a metadatabase M DB;, communication
module CM;, learning module LM;, and
negotiation module N M; [Figure 3]. M DB;
is a collection T; of terms structured by is.a
and part.of relations. Figure 4 shows the
metadatabase of two agents A and B. Ty
= {Capital, London, Paris, Tokyo} is struc-
tured, like " London, Paris, and Tokyo are
Capitals”. A has aterm Tokyo and an object
on Tokyo. A may know that B knows T okyo
as shown in Figure 4. Thus, each term in an
agent shows objects in its own database or
terms in another agent,

<=:o0bject

DBg
Figure 4: Metadatabases

Each agent A4; can obtain information on
terms through communicating with another
agent. LM; changes M D B; by adding new
terms and relations among terms obtained
from another agent. Since M DB; is finite,
M DB; is eventually fully engaged by terms.
LM; removes terms which E; thinks are un-

useful.



N M; executes the protocol for the negoti-
ation among the agents.

4 Acquaintances

Let MDB4 and DB, be a metadatabase
and a database of an agent A, respectively.
Each term ¢t in MDB,4 denotes not only
objects on ¢ which A has but also another
agent which A knows has . MDB, is
Ts. If MDB, includes t, A is referred to
as knows about t. A directly know about
t iff DB, includes some object on t, i.e.
DBs N Obj(t) # ¢. A is referred to as
indirectly know about t if A knows about
t but does not directly know about ¢. Here,
although A has no object about t, A has
t in MDB4. Hence, A cannot obtain ob-
jects on t from DB4 but can ask another
agent denoted by t in M DB, which directly
or indirectly knows about t. If A directly
knows about ¢, A can obtain objects on ¢
from DB,.

[Definition] A is an acguaintance of B on
t (A = B) iff A knows that B knows
about t. For some term ¢, A —+ Bif 4
- B.O

If A cannot answer a request R on t, A can
send R to an acquaintance B of 4 on t.

[Definition] For some term t,if A — B, B
24 C, and not B 5 A, A transitively
knows C about t (or C is an indirect
acquaintance of A) (A <+ C). A directly
knows B about ¢ (written 4 .= B) (or
B is a direct acquaintance of A) iff 4 5
Bandnot A < C. O

It is clear that A 5 B if A < B. We assume
that A directly knows B if A can access B,
i.e. A has the access right on B. If A tran-
sitively knows B about ¢, A cannot access
B because A may have no access right on B:
Hence, A can access only the direct acquain-
tances. There are two ways to access B. One

O,

A:NIDB

@:DB

:object

Figure 5: Acquaintances

way is that A finds the direct acquaintance
C such that C — B and asks C to access B.
In the other way, A has to obtain the access
right on B and then A accesses B directly.
In order to obtain the access right on B, A
has to do the negotiation with B. There are
two ways to obtain the access right on B. In
the first way, A asks B directly to grant the
access right to A. In the second way, A first
asks the direct acquaintance C to allow 4 to
access B, C asks B if A could access B.

Figure 5 shows an acquaintance relation
on a term ¢ among four agents A4, B, C, and
D. Each directed arc A — B shows that
B is a direct acquaintance of A. C and D
are indirect acquaintances of A. A indirectly
knows about ¢ since A has no object on ¢ and
A knows that B knows about ¢. On the other
hand, B, C, and D directly know about ¢
because they have objects on t. Here, A can
directly ask B but can neither directly ask
C nor D. On receipt of a request from A4,
B may obtain objects on ¢ in DBgp and may
ask C or D to get objects on ¢. It depends
on the autonomy of B.

Since each agent is autonomous, B might
not be an acquaintance of A at present even
if A has thought that B is the acquaintance
of A. For example, although A thinks that B
still knows about ¢, t may be removed from
B. B is referred to as close acquaintance of
A if A always knows what B knows. If B
informs A of the change each time M DBpg



is changed, B can be a close acquaintance of
A

[Example] Let us consider a shopping sys-
tem C [Figure 6] as an example of the
cooperating database system. C includes
agents, i.e. department stores Dept and
Store. Dept has acquaintances, i.e. Shoes,
Clothes, Accessory, Daily_necessity, and so
on. Clothes has acquaintances, Sutt, Shirts,
and Sports. A user U can access Dept if
U would like to buy something, without be-
ing conscious of where they could buy it. If
U would like to buy a collection of a suit,
shirt, and ties, U asks Dept to obtain what
U would like to buy. Dept decomposes R
into subrequests R; to Clothes and R; to
Accessory. On receipt of R; from U, Clothes
decomposes R; into Ry, for Suit and R, for
Shirt. Suit selects a suit and sends the in-
formation to Clothes. Then, Clothes asks
Shirt to select a shirt which goes well with
the suit. Clothes sends the reply RP,,i.e. a
suit and a shirt back to U. Accessory also
sends the reply RP;, i.e. a list of ties. Dept
checks whether the ties go well with to the
shirt based on the colour. If it is OK, Dept
sends back the collection of the suit, shirt,
and ties to U. If not, Dept asks Accessory
to show another list of ties. O

Figure 6: Shopping system C

5 Negotiation

In this paper, we would like to think
about only retrieval operations on multi-
ple database systems because it is diffi-
cult to consider update operations on multi-
ple database systems and most users would
rather retrieve data objects.

5.1 Requests

First, an agent A takes a request R from a
requester U. R is composed of a qualifica-
tion @ and a preference P, i.e. R = (Q, P).
Q is written as follows. Let ¢t and qual de-
note a term and qualification, respectively.
qual is defined as qualy | qualy, qual; &
gualy, qualy — qualy, or t. Result(qual) is
the meaning of gual which is defined as fol-
lows. Result(t) is a set of objects on {, i.e.
{o | o € Obj(t)}. Result(qual; | qualy) =
Result(qual,) U Result(qualy). Resuli(qual;
& qual;) = Result(qual,) N Result(qualy).
Result(qualy — gqual;) = Result(qual,) —
Result(qualy).

There may be multiple ways to obtain
Result(Q). The preference P is used to se-
lect one way among them. The preference P
is in a form of (Py,..., Pn), {P1,...,Pn},
or [P,...,Pm] (m 2> 0) where P; is a
preference or a preference predicate. A
preference predicate is given in a form
of pitem 6 wvalue, where # is a compar-
ison operator, pitem is one of communi-
cation_time, response_time, processing.time,
agent,and completeness. (P,,..., P,,) means
that P; is preferred to Py if i < k. Let Wy be
a set of ways which can obtain Result(Q).
First, a subset W, of W, which satisfies
P, is obtained. Thus, W; C W;_; which
satisfies P; is obtained from W;_; until W;
gets a singleton. If W; = ¢, one way in
Wi-1 is selected. In {Py, ...,Pn}, one way
which satisfies all P,,..., P, is selected. For
[P1,-.., Pn], one way with satisfies at least
one of Py,..., Py, is selected.

Suppose that there are two agents A and



B, which are acquaintances of an agent U,
which U thinks know about Tokyo. Sup-
pose that A is faster but farther from U
than B. Suppose that the preference is
(communication_cost, processing_time < 50
). This means that U prefers less communi-
cation time. If there are still multiple ways
whose communication costs are the smallest,
one way whose processing time < 50 is se-
lected. U selects B because B is nearer to
U, and then asks B to execute the request.
If the preference is { communication cost,
processing_time < 50 }, U selects one way
not only which has the mintmum communi-
cation cost but also whose processing time
< 50. The preference (agent = A) means
that A is preferred to be used to obtain the
result. (processing_time < 50) means that
U would like to obtain the result in the to-
tal processing time < 50. Let Answer(R)
be a set of objects obtained by the coop-
erating database system. If (completeness
= Partial), Answer(R) may be a subset
of Result(Q). If (completeness = Full },
Answer(R) has to be Result(Q). O

Y
>

An

A

\/

Yes.

[*)

A

mmit

2

AV,

time

f
e

Figure 7: Negotiation protocol

5.2 Negotiation protocol
A negotiation protocol is shown as follows.

[Negotiation procedure][Figure 7)

1. A takes a request R = (@, P) from a
requester U. If A can answer R, A ex-
ecutes R. Qtherwise, A decomposes R
into Ry, ..., R, (n > 1), where R; =
(@i, ;) (i=1,...,n). R cannot be
decomposed, A sends the Failure back
to U.

2. A finds for each R; an acquaintance
agent A; which A thinks can answer
R; (i =1, ..., n). I no agent can be
found for R;, R; is further decomposed
into smaller subrequests Ri1,..., Rim;
(m; = 2). Then, this step is repeated
until some agent is allocated to each
subrequest. If R; cannot be further de-
composed, all the executions of the sub-
requests are aborted, i.e. A sends Abort
messages to A;,...,A,. Then, R is
tried to be differently decomposed by
the step 1. i

3. A asks each A; whether 4; can answer
R; and how A; can answer R;. If A;
cannot answer R;, A tries to find an-
other acquaintance at step 2. If A can-
not find any agent for R;, R; is tried to
be further decomposed by returning to
the step 2.

4, A asks A; to execute R; by sending a
Do message to A;. On receipt of the
Do, A; executes R;. If A; can not obtain
the answer of R;, A:; sends the Failure
to A. On receipt of the Faslure from
some A;, A returns to step 3 and tries to
find another candidate of R;. If 4; can
obtain the answer RP; of R;, A; sends
the Done message with RP; to A.

5. A integrates all answers RPy,...,RP,

into an answer RP for R. A sends the
RP backto U. D



If R; changes the state of 4;, i.e. R;is an
update operation on DB;, the update data
obtained by R; is saved into the secure stor-
age, i.e. alog L; of A; at step 4. Then, A;
sends the Done to A. On receipt of all the
Done messages, A sends Commit messages
to A1,...,An. On receipt of the Commit, 4;
changes the state by using the update datain
L;. This process is similar to the two-phase
commitment [6].

Suppose that A; takes R; = (Q:, P:) from
A at step 3. If A; knows all the terms in-
cuded in @;, A; can answer R;. Otherwise,
A; sends back the Failure of R; to A. Next,
A; considers how A; can obtain Answer(R;).
A; has to obtain Answer(R;) so as to sat-
isfy the preference P;. If A; cannot satisfy
P;, A; sends A a message describing how
A; cannot satisfy P;. Suppose that P; is
a set {Pi,...,Pim;} of preferences. If A;
can obtain the result of R; so as to satisfy
a subset AP; = {AP;,..., APy} C P, A;
sends AP; to A. On the other hand, suppose
that P;is alist (P;,..., Pim;). Suppose that
A; can satisfy AP, = (AP;,..., AP;,) where
{APt'la (X )A},ik.'} c {-Pd: ey Pi'm,'} and the
order of preferences in P; may not be pre-
served in AP;. If A can accept AP;, A asks
A; to execute (R;, AP;). Otherwise, A can-
not ask A;. .

Suppose that there are multiple candi-
dates Aj, ..., Aim; (my = 2) for a request
R;. One way is to select one agent, say
A;;, and ask A;; to execute R; as presented
above. Another way is to send R; to all 4;,

«vy Aim; and then ask all of them to exe-
cute R; in parallel. If at least one 4;; of
Ai1y ...y Aim; could return the answer RP;;
of R;, A can consider RP;; as the answer RP;

of R;.’

Suppose that R is decomposed into
‘Rq,...,R,. There may be some precedence
relation — among them. R; — R; means
that R; has to be executed after R; com-
pletes. If there is no precedence relation
among R; and R;, R; and R; can be executed
in parallel. At step 1, a partially ordered set

{Ry, ...,R,} on — is obtained from R.

[Example] Let us consider the shopping
system C as shown in Figure 8. Suppose that
U would like to buy a collection of a suit, tie,
and shirt. Here, U prefers that the wool suit
colours grey, the cotton shirt colours white.
The shirt costs about 10,000 yen. U would
like to have a tie going well with the suit
in colour. U would like to buy the suit and
shirt at a store A or B. U prefers A to B.

Shirt A

U
R
R G5
R
Ne==.

Figure 8: Decomposition

1. U sends Dept a request R = { { {
suit.colour = “Grey’ & suit.material =
“Wool” } & { shirt.colour = “White” &
shirt.material = “Cotton” & shirt.cost
like 10,000 yen } & { matches (tie, suit)
} 3o { ((suit, shirt : A, B),(tie: C, D))
1.

2. Dept takes R from U. Dept decom-
poses R into two subrequests Ry = (
{{ sust.colour = “Grey” & suit.material
=“Wool” } & { shirt.colour = “White"
& shirt.material = “Cotton” & cost like
10,000yen }}, (suit,shirt : A, B)) and
R; = (matches (tie, Suit), (C, D)). Ry
is sent to Clothes and R; to Accessory.

3. Clothes takes R;, and decomposes R;
into Ry
= ({colour = “Grey” & material =
“Wool”}, (A, B)) and Ry
= ({colour = “White” & material =
“Cotton”},(A,B)). Ry and R;3 are
sent to Suit and Shirt, respectively,

4. Suit sends Ry; to A according to the
preference. If A could obtain the suit



satisfying the qualification of R;, A
gends the reply back to Sust. Otherwise,
Suit sends Ryy to B. Shirt negotiates
with A and B with respect to R;3 simi-
lar to Suit. Suit and Shirt send back the
replies to Clothes.

5. After receiving the replies, Clothes
sends Ry = ({clour = “Grey”},(C, D))
-to Accessory.

6. Accessory sends R; to C according to
the preference. If C could not answer
Ry, Accessory sends Ry to D. If Acces-
sory gets the tie going well with Suit,
Accessory returns the reply to Dept.
Dept receives the replies from Clothes
and Accessory.

7. Finally, Dept sends a list of the suit,
shirt, and tieto U. O

6 Learning

An agent A can obtain newly terms and
relations among terms from another agent
through the negotiation. The terms and
relations among the terms are stored in
MDB,. The process is named a learning.

An example of the learning in an agent A
is shown in Figure 8. A knows that London
and Paris are capitals, but does not know of
Tokyo. On the other hand, agents B and C
know that Tokyo is a capital. B and C are
acquaintances of A. Suppose that A takes a
request to obtain a set of capitals. A asks B
and C to obtain the capitals. B and C re-
turn the sets of capitals derived from DBpg
and DBg,i.e. RPg = {Tokyo, London} and
RP¢ = {Tokyo, Paris}, respectively. On re-
ceipt of the replies RPg and RP¢ from B
and C, A newly knows that Tokyo is a cap-
ital. A adds a new term Tokyo and a new
1s_a relation “Tokyo is a Capital’ in MDB,4.

The metadatabases are finite. If M DB,
is too full to store new terms and relations,
some terms and relations are removed from
MDB,. It is named an oblivion process.

)
Londo
ottawa

Figure 9: Learning

LondogOkyo )

Problem is what terms and relations to be
removed from M DB,4. The following rules
to remove terms in M DB, are adopted.

1. The terms which A directly knows are
not removed.

2. If the terms are frequently .used, they
are not removed.

3. The terms of the higher levels are not
removed.

Suppose that terms t; and t3 are tried to
be stored in MDB, but MDB, is full. If
A directly knows about ¢; but not about t;,
t3 can be removed because some agent dif-
ferent from A directly knows about t2. If
t1 and t3 could be removed and ¢; has been
used more frequently than t3, t3 can be re-
moved. If ¢, is not at a higher level than ¢,
in MDB,, tz can be removed. The terms of
a higher level mean that they represent more
abstract information than the terms of lower
levels. Even if more-detailéd information is
forgotten, we can restore the information if
we still remember the abstract information,
e.g who knows about it. Thus, the terms of
lower levels can be removed.

7 Concluding Remarks

In this paper, we have discussed the ar-
chitecture of the cooperating database sys-



tem which is composed of multiple agents
interconnected by the communication net-
work. The cooperating database system
includes not only passive but also ac-
tive agents although the conventional dis-
tributed database systems include only pas-
sive agents, i.e. database systems. We have
shown a negotiation protocol among agents.
By this procedure, agents can obtain the re-
ply by taking advantage of another agent.
We have also shown how to maintain the
metadatabases, i.e. learning module.

References

(1] Bernstein, P. A., Hadzilacos, V., and
Goodman, N., “Concurrency Control
and Recovery in Database Systems,”
Addison Wesley, 1987.

[2] Ceri, S., and Pelagatti, G., “Distributed
Databases - Principles and Systems,”
McGraw-Hill, 1984.

[3] CODASYL, “Data Description Lan-
guage Journal of Development,” Cana-
dian Government Publishing Center,
1973.

[4] Codd, E. F., “A Relational Model for
Large Data Banks,” CACM, Vol.13,
No.6, 1970, pp. 377-387.

[5] Ellis, C. A., Gibbs, S. J., and Rein,
G. L., “Groupware,” Comm. of ACM,
No.1, 1691, pp.38-58.

(6] Eswaren, K. P., Gray, J., Lorie, R. A.,
and Traiger, I. L., “The Notion of
Consistency and Predicate Locks in
Database Systems,” CACM, Vol.19,
No.11, 1976, pp.624-637.

[7] “Proc. of the IEEE, Special Issue on
Distributed Database System,” 1987.

(8] Landers, T., and Rosenberg, R., “An
Overview of Multibase,” Distributed
Databases, Schneider, H.J., Ed., North-
Holland, 1982, pp.153-184.

[9] Litwin, W. and Abdellatif, A.,, “An
Overview of Multidatabase Manipula-
tion Language MDSL,” IEEE Proc.
Vol.75, No.5, 1987, pp.621-632.

(10] "Data Processing - Open Systems In-
terconnection - Basic Reference Model,”
DP7498, 1980.

[11} Ozsu, M. T. and Valduriez, P., “Princi-
ple of Distributed Database Systems,”
Prentice-Hall, 1990.

(12] Salton, G., Mcgill, M. J., "Introduc-
tion to Modern Information Retrieval,”
McGraw-Hill International Book Com-
pany, 1983.

(13] Sheth, A. P. and Larson, J."A., “Fed-
erated Database Systems for Managing
Distributed, Heterogeneous, and Au-
tonomous Databases,” ACM Comput-
ing Surveys, Vol.22, No.3, 1990, pp.183-
236.

(14] Smith, J., et al. “Multibase: Integrat-
ing heterogeneous distributed database
systems,” Proceedings of the National
Computer Conference, 1981,

(16] Takizawa, M., “Distributed Database
System JDDBS,” JARECT, Vol.7,
Computer Science and Technologies

(Kitagawa, T., ed.), Ohmsha and
North-Holland, 1983.
(16] Yu, C., and Chang, C, “Dis-

tributed query processing,” ACM Com-
put. Surv,, Vol. 16, No. 4, 1984, pp.399-
433.



