
マルチメディア通信と分散処理ワークショップ平成8年10月

Porting of the OZ++ to the API000+ parallel computer

Yoichi Ha.m錨aki Yuriy Kazakovt Miehiharu Tsukamoto

h組 lazaki@etl.gojp yuriy@asi.co.jp t凶amoto@etl.go.jp

Electrotechnieal Laboratory

1・1・4Umezono， Tsukuba Ibaraki 305， Japan
t: During t.he r回 e町 'ch，he was AIST fellow.

Abstract Parallel computers are powerfulもoolsfor execution of eompute intensive

programs. However， programming these machines is 8凶1awkward due to the lack of a

convenient programming environment. This work is devoted to porting of the OZ++ object-

oriented distributed environment to the APIOOO+ distributed memory parallel computer.

The OZ++ is a middle-ware， now implemenもedon the b回 eof SunOS operaもingsystem.

The approa.ch of出eporting泊色obuild a library of SunOS system eal1s to 9UppO叫 quiekand

qualitative porting of OZ++ to API000+. This paper presents出edesign of the SunOS

call1ibrary and investiga脳出eways of i旬 implementation.

オブジェクト指向分散環境 OZ++の並列吉博機 API000+への移植

積崎陽一 Yuriy Ka.zakovt

電子技術総合研究所

305茨城県つくば市梅園 1・1・4

+:前AISTフエロー

塚本事治

概要 訓凋プロセッサを用いた並列計算機は多くのプロセッサと高速のプロセッサ開通信

を持つ事から、分散アプリケーションの移植先としても魅力的である。しかしながら、並列計算

機のシステムソフトウェアは分散アプリケーションの実装には不都合な場合が多いe

ここではオブジェクト指向分散環境OZ++の並列計算機API000+への移植を拭み、その手

段として必要なシステムコールをライブラリとして提供方式を提案する。 API000+で提供さ

れる CellOS+で提供きれていないUNIXのシステムコールはSCLibr町yと呼ぶライプラリに

よって提供し、 SCLibraryはAPI000+のホストコンピュータ上のエージェントと呼ぶデーモ

ンプロセスによって所望の横路を実現する。

また CSLibraryのプロトタイプを実装し、その性施測定を行なった。 API000+の持つセル開

通信を使わず、ホストコンピュータ経由でセル問の通信を実装したために、その時間的なコス

トは大きい。しかし、移植するアプリケーションと API000+がほぼ独立したものとなるため

に、アプリケーションの変更による再移植の手聞は小き〈、開発中のアプリケーションを速やか

に移植する場合に適している。

-365-

1 Introduction

P町 allelcomputers which use general purp回 epro-
cessing elemen佃町eattractive targe旬 toport dis-
tributed software， because they ha.ve a lot of pro-
cessing elements and high-speed communica.tion
medium between processing eleme叫s. Unfortu-
nately i t is noも80e剖 yもoport distributed ap-
plications to parallel computer in general because
system 80ft wa.re of such parallel compu旬ris noも
d回 ignedもobe used for distributed app1ications
but for parallel ones.

Inもh泊町もiclewe prop叩 ea libr町yapproach
for the porting b幽 edon our experi阻 ceof porting
an object-oriented distrib凶edenvironment OZ++
色othe APIOOO+ parallel computer. We釘 enot
considering p町 allelizingproblems， the OZ++ is a
highly distributed softw町 esystem consis旬。Ifvari-
ous componen旬 whichcan work in parallel. 80 the
structure of OZ++ system ena.bles fiexible oppoト
tunities for distribution of software entities among
AP1000+ processors.

Main p世 tof OZ++ system is written in C lan-
guage， a.nd now it泊 implementedfor a network
of Sun work自主ations. API000+ h回 C la.nguage
compiler but does not have advanced 08 such鎚

U DIX. 80 the main problem of porting of OZ++ to
API000+ is that OZ++ source codes contain Unix
(Sun08) system calls which a.re not supported on
API000+ in proper manner.

On the other h乱nd，もheOZ++泊 astill devel-
oping project， its source cod回町echanged often.
The API000+ software also develops fl銅色. The
porting a.pproach should support色heporting of
no色onlyone version of OZ++ software. It should
be mueh more aもechniquefor quick and qualita-
tive adoption of every new version of tbe OZ++
to色henew version of basie API000+ω.ftw:町 e.

ln this artiele we propose a library approa.ch
for the porting. The library (SCLibr町 y)8upports
the SunOS system ealls on AP 1000+ and enables
some level of independence of OZ++ cod白骨om
API000+.

In section 2回 d3， OZ++ and API000+ are
overviewed I and in seetIon 4 we pr伺 ent88CLi-
brary's a.rchiむecture剖ldconsiders v町 iousstra.te-
gies i旬 organization.In section 5， investigation of
prototype SCLibrary is presented and eonelusion
is in section 6.

2 OZ++: an Object Ori-
ented Distribu色ed Envi-
ronment

OZ++ is a progra.mming environmen七tosupport
distributed object-oriented a.pplica.tions in hetero-
gen伺 usdistribu旬dcompu加町stems[1]. In
OZ++， cl剖 g舗回emana.ged all over the system
a.nd objec旬 aretransferred among me.ehines. Ob-
jeet methods can be executed at any machine by
loa.ding their class伺告omcl錨 smana.gement sys-
tem 00 demand. This execution meehanisIn8 and
dynamic loading of classes over networks make dis-
tribution and execution of applica.tions e掴 y.

On every computer one nucleu8 and any num-
ber oC executors exist. Ex民 utoris a b倒 icunit
of OZ++ service environment. Every objecもis
pla偲 don an蹴 ecutorand its methods町eexe-
cuted by the executor. An executor creates， holds
and deletes objects. It loads executable codes of
c1掴8回 andlayout information Crom cl朗 自 manage-
ment system and cache them. It saves persistent
objects on secondary storage and' loads them on
dema.nd. Memory mana.gement and garba.ge col-
lection are Cunctions of executor叫80.

Executor is a separate unit of OZ++， it can
work along on computer. But for communication
wiぬもheother execuもOfSthe nucleus have to be
凶 ed.Nuc1eus is a daemon process， one nucleus
e活stson every computer where the OZ++ sys-
tem goes. Nucleus creates and ma.nages executors
00 its station. lt keeps state and communication
addr回目。feach executor and r伺 olvescommunica-
tion a.ddre88es告omexecutor ID by asking other
nucle凶伺凶ingbroadc回 t.

Several kinds ofmanagement objects， object for
cl蹴 maoagement，object for object managemenも
00 an execu旬r，etc.， are placed appropriately 00
executors. Various a.pplicatioD objec旬 areimple-
mented also (object launcher whieh provid伺田町

interface with executor， compiler which produces
executable code aod other cl舗 8informaもionfrom
programs writ刷 byOZ++ objeet-oriented lan-
guage， etcふAllth伺 e8upport fle泊ble，powerful
and∞rmfortable environment for programming.

The OZ++ is a middle-ware， 80 nucleus and ex-
eeutors田 eimplemented幽 Unixproc回 S舗・ The
object methods組 dother d回 monprograms are
exec凶edusing multithreading meeha.nism inside
the executor.

-366-

3 API000+ massively paral-4
lel computer

Porting of
AP1000+

oz++ to

API000+おadistributed memory parallel com-
puter [2]. SuperSparc proω縄 orelemen旬， cal1ed
cells， are connected by three independent commu-
nication networks. These田 eもhetoru8 network for
point・色0・pointcommunication between cells， the
broadc回色networkfor data distribution and collec-
tion， 組dthe synchroniz叫ionnetwork for barrier
synchronization.

A host computer is UBed for the AP 1000+ in・
旬rfacewith the other world. 1もsetsup cell ∞n-
figurations， generat舗 も剖ksand suppor旬 auser
interface with API000+. The broadc剖 tand syn-
chroniz叫ionne古works connect a11 cells and host.
A 5p町 cStation computer is used回 host，組d
one U nix proc鴎Son host manages the APIOOO+
and communica色eswith it.

Ce110S+ is the operaもing system for the
APIOOO+. It suppor旬 startand parallel exeeu-
tion of cell programs. Cell05+ consists of kernel
on each cells， APIOOO+ driver on host and libr町 ies
for cell programs and h08t programs， called箇 cell
librari回a.ndhost libr訂 i個. Host and ceU pro-
grams町 ecompiled and linked with host libraries
or cell libraries at the h08t computer. The ce11
1ibrari伺 implementvarious kinds of communica-
tion叩 dsynchronization but出eydo not support
Unix-level of service sufliciently.

The cell libraries conta.ins read{) and writeO
functions but they can be田 ed0叫yinput/output
on std泊/stdoutofho叫.HAP (Host Access Pack-
age) enables cellsもoacω88files on host eomputer
but the制 ofcalls is very poor (open()， rωd()，
wriぬ0，lseek()， closeO) and implemen凶 ioni8
very restricted問.For example， readO and writeO
are blocking組 dsynchronous， they alwaY8 block
a cell program until completing of input/output
operation.

Recently a work is done in the direetion of U nix
irnplementationon API000+. Chorus Microkernel
IPC have been implemented for API000+ [4]， the
next 叫epis going to be Unix implement剖ionon
the base of Chorus/MiX.

Executor is an elementary unit of service environ-
ment of OZ++， it can work in parallel with the
o也.erparts of OZ++ sys旬m.So it is natural to
distribuぬ executorsonωI1s of API000+ andもo
leave nucleus on host computer色osupport com-
munication with the other eomputers. This訂-

chitecture corresponds to concep旬。fnucleus and
executor， and doesn't r回 triet凶 eropportuniもies.
Exec凶oris developed in C language and im-

plemented for Sun workstations. API000+ has C
language compiler but does not have advanced OS
8uch掴 Unix.50 the main problem of porting of
executor to cell is that executor 80urce codes con-
tain Unix system calls which are not suppor旬don
AP1000+ in proper manner.

4.1 SCLibraryapproach

We propose appr08ch to use libr町 ywhich pro・
vide functions ofSunOS system carlls on API000+
(SCLibr町 ystands for 5unOS 8y同emcall Library).
The library h嗣 to8upport 9yS色emcalls which are
U民 dby executor， and it should be special-purpose
for efficient work of exec'l凶oron cell. For example，
mmapO包verypowerful and univer8al Sun05 sys・
色emcall but an executor us伺 itonly for private，
system・告eema.pping to the file. 50 it is no色neces-
8ary to implement other types of mapping in SCLi-
brary bl鳩山泊 kindof mapping should be imple-
mented in也ebe叫 way.
The library approach impli伺 somelevel of in.・

dependence of executor codes告omAPI000+. In
C剖 eof library approach， the porting of new ver-
sions of exec叫orto APIOOO can be done more
e舗i1ybec&use of high independepce of executor
source eodes from API000+. A new OZ++ ver-
sion may require adding of new system calls to the
SCLibrary or rewriting of an old implementations
of some system ca.l1s， and this is 811.
In c回 eof Unix irnplementation on API000+，

the independence level would be the high回 t，and
porting could be done more easily. But Unix is
a rather heavy system， consuming much proc回-

Bor time. An exeeutor does noもneedin Unix踊

8uch， it need only in adequate and fl舗 tsupport
for 80me SunOS system calls. Moreover a user
of OZ++ doesn't need in Unix on cell beeause
executor would 8upply him a flexible岨 dpow-

-367ー

erful environment for running his applications on
cells and his app1icaもionsare programmed in OZ
object-oriented language with class librari回.

4.2 Design of the CSLibrary

The curren色versionsof execuもorsoftware contain8
moreもhan70 SunOS system ea11s. Mωむofもhem
a陀 input/ou句u色calls，dealing with d回 crip色or8
and socke旬(町ound50 system calls)， the other
work with memory， signals， and Unix sy前emin-
forma.tion (such ca.lls舗 sysconfO，getpidO， etc.).
Some parts of SunOS environmen色cannot be

crea.ted on cell directly. For example， APIOOO+
do回 notha.ve diBplay and connection to network，
so the display and network input/outp凶 have
to be performed via. the host eomputer. If an
API000+ does not have a. disk memory，もhenh聞も
files or NFS files ha.ve to be used. We will caIl 8uch
system calls exもernalsystem calls.
Some daemon software has to e泊ston hosももo

support external system calls. We will call a pro-
cess whieh runs on hωt and supports external
ca.lls， a.n agent. In叫cordancewith the API000+
architecture a11 agents must communica色ewi山由e
API000+ by way of one host communication pro-
cess.
It iB the external ca.lls th叫 isof primary∞n-

cern to SCLibrary design. The other system c剖ls
can be executed by SCLibrary fl掴 terthan by U凶x
becauseもheydo not need in interrupts (they町 e
not rea.l system calls but funetion cal1s)，岨d血.ey
are specialized for executor. As for external calls，
their remo七eexecution ma.y require much time.
Executer . is a multithreading program 80 it is

importa.nt not to block the executor after system
call invoc叫iona.nd allow other threa.ds to低 :ec叫e
while the system call is executed. But色hiscontra-
dicts with the Unix systemω11 concept.
Parallelism in U nix is supported by protess伺.

Unix proc鴎 sswiもchingand in凶rprocesscommu-
nication co抗 much.80 asynchronous systemcalls
and 8ignals are used inside a.proc倒 sfor paraUel
input/ontput a.nd child ma.nagement. This泊旬r-
nal proc回 sparallelism is very restricted and iもis

ca.l sections， a.nd wh叫 ismore bad they block not
only thread invoked system ca.lI， but allもhreadsof
the proc回 S.

As a result， mosもofmultithrea.ding packages
h回もheirown libraries which substitute 1/0，もime，
and child management system calls. For example，
LWP (1勾htWeight Processes) package has non-
blocking 1/0 libr町 y，the OZ++ executor has non-
blocking 1/0伽 ctionsin OzLibrary. The calls of
these libra.riωblock thread but the other threads
can continue their development. Soもhesecalls a.re
blocking a.nd synchronous for thread which invokes
もhem，and they町 enonblocking組 d剖 ynchronous
for multithreading process (the 0出er出readsare
not blocked a.nd can develop further). Threads
don't need in a町nchronou8sysもemcalls a.ndもhe
8ignals because pa.rallelism a.nd asynchrony can be
supported n叫ur811yby mul出hreading.
50ぜsystemca11s support threads， then system

call semantics becoII悶 muchmore si岬 le(signa.ls
and asynchronous modes町 enot used)， concep-
tU81 and high-level th叩 theUnix one. We pro-
pose to凶 ethread supporting. external cal1s for
the 5CLibrary. The SCLibr町 yhave色obe inte-
grated with executor multithreading mechanism
to switch threads after external ca11 invoc抗ion.
This may provide more fast execution because:

• executors will not wait until ex胞rnalsystem
call completing， the other ready threa.ds con-
tinue their developmentj

• communication expe回 esbetweenω:ll a.nd
host decrea.se because only one requesもおr
operation a.nd one a.nswer are transferred
(no multiple attempts and signal information
transferring) .

On山e0出erhand， an a.gent have to bufl'er
external ca.lls and implement them凶泊gtradi-
tional Unix回 ynchronoussystem calls a.nd signals.
This mean8 that really出ethread-oupporting non-
blocking functions (of OzLibrary) move合'omex-
ecutor on cell to an agent on hosも.

hard to understand programs tha.t dea.l wiぬ sig- 区

nals because of their random nature. A Prototype of SCLibrary
and its investigation Multithreading packages 8upport much InQre

powerful and∞nceptual model of paralleliBm in-
side of proc伺 s.But .Unix kernel doesn't support
もhreads，they are invisible for U nix. 50 system
calls seria.lize threads， they are compu1sory criti-

To realizeもhreadsupporting ex旬rnalcalls， the
SCLibra.ry must have a daemon 80ftwa.re on host
to support SunOS environment on cell adequately.

-368-

This point of the SCLibrary architecture may be-
come mos色criticalfor executor performance. The
remote execution of external calls costs much 80
this parもofSCLibrary must be implemented ca.re-
fully and punctually.
For inv白色igationof this question and perfor-

mance measuring， a prototype version of SCLi-
braryw回 implemen旬d.Agents play組 important
role inぬisversion. All system calls dealing with
disk memory， network姐 dU nix data.， are consid-
ered錨 externaland executed remotely by agents
on host. This version presen旬 aSCLibrary for
diskless configuration of APIOOO+. Host compu・
tational power is田edin出emost intensive man-
ner. The loading of executable codes and layout
information， communication with the 0もherparts
of OZ++ system， tha色isto say， a11 executor in-
put/outp凶 isdone by way of host.
For execution of externa.l system calls ，it is pro-

posed that each execu tor on cell has its agent on
the host. As long剖 anexecutor's input/output
is done via its agent，出eexecu tor se回出isworld
by agent's "eyes". So it is "of the opinion" that
it runs in host SunOS environment. Alternatively，
the other proc回 sesworking on host can see only
the agen丸 山eexecutor on cell is invisible from
them. But the agent looks like its executor and
behaves as the executor， and the 0もherproc回 ses
on host consider the agent舗 theexecutor. So
APIOOO+ is transparent for the API000+ execu-
もorsand出eh回 tproc館 S回.

Figure 1 shows a general structure of the OZ++
8ystem on AP 1000+ according the prototype ver-
sion of SCLibrary.

Fi思ue1: An Overview ofもheOZ++ on APIOOO+

When 3D external sy抗emcall is irivoked， 旬

code and parameters are p郎 kedtoam伺sageand
sent to agent. The agent receivesもhemessage， ex-
ecutes the eall in SunOS environment掴 itit is出e
executor I and sends r朗 ul旬 backto cell.
Agents allow to 8ep町 atepo叫edcod伺告om出e

泊施。the四， only exeeutor 80urce cod回 haveto

be changed. N ucleus and the other OZ++ soft-
ware， i.e. c1ass田 forsys色emmanagement and for
user applications， are the same却 beforebecause
they do not know tbat some executor8 run on the
API000+.
In the following subsections we are discussing

the influence of the remote execution of external
system call on the executor performance. In sub-
section 5.1 we examines the time of external eall
exec叫 ion.Subsection 5.2 considers the insuence
of external call execution on the time of executor
8tart - one of the most input/output intensive
procedure of executor. Subsection 5.3 considers
出einsuence of external call execution on the time
of object me出odinvocation. In subsection 5.4 we
are discUBsing a role of thread-supporting sy叫em
calls for ex色ernalsystem call exeeution.
A Sparc Station 10 w回 usedas a ho前 com-

puter for AP1000+. The executor performance
on API000+ was compared wiもhperformance of
ordinary (00レported)executors on Sparc Station
10. An API000+偲 U'8SuperSparc proce問。rdiι
fers slightly告omthe SuperSparc of Sparc St叫ion
10 (it do回 n'thave secondary cash and memory
aec回目 algori也msare a li抗lebit di責erent).There-
fore， io average the Sparc Station 10包 slightly
faster than a cell of API000+.
Me剖 ureddata used in the discUBsion below are

average of several trial. But measuremeot envi-
ronment w踊 notisola.ted buもconnectedto other
computers by etbernet， me槌 ureddata may be af-
fected external condition.

5.1 Time of remote execution of ex-
ternal calls

M聞も ofexternal system calls invoked by executor，
are input/output system品目s.Usually more than
99% of all sys加 ncall invoeations correspond to
the following system cal1s: readO， writeO， lseekO，
sendO， recvO， openO， closeO.
The time of a system call remote execution

(transfer姐 dexecutioo as such) varies告om
2000μs旬 3500JJ8if the call does not require a
もransferof much data (more than 2 K Byte). The
t泊四 ofexec凶ion，回 such，on Sparc Station 10
vari句 from20 to 100 IJS depends 00 the kind of
system call.
Some inp凶 /0叫 pu色 8y8旬m ca.ll mvocationa

(readO，削除()，sendO，reev())may require tr副島r
of much data.τもiscauses incre剖 ingof remote
execution time. Table 1 gives the dependence of

-369-

Unix SCLibrary

reM((....，...， 10。)。 39 2439
read (...， ... ， 100) 40 2711
田副(...，."， 10印) 74 3242
read (...， ...， 10000) 900 11950
read ...，...， 100000) 0) 8736
read (...， ・・・， 100000 89249 945946

Table 1: Execution time (psec) of readO oyotem
call

6000 (T .. imes)

5000

4000

3000

2000

1000

o
0政調。 close0 read C) write () 1s僧 k{) send c) recv 0

ほ ecutiontime values of r叫 osyotem call from ~igure 2: Num~e~ of øyst~m call invocations d町 -

the size of read data. ing an低 .ecuもo巾lavetype) start up

5.2 Inftuence of ex色ernalcalls on ex・
ecutor start up o (min)

Start up of組…もoris a time consuming proce・ 7~ロ曲j蜘loading
dω田ure刊，川e倒目附d拘ωいyμ凶向for。町…E

色仙heo抗ta町rもup 。ぽfane偲xe白cu凶4。町r，i抗色 mainIy reads much 5 I
amounto of data告omfil伺色omemory. Figure 2 4
shows the numbers of system call invocations dur- 3
ing starもupof a slave type executor. Each 0ぬer 2
sy抗emcall which is not pr錨 en民din fig. 2， is 1
invoked less than 10 times during a sta.rも up. 0
92% of invoked cal1s did no色白ansfermuch data. Slave Station-Master Site-Master

Theo色hersrequired色ransferringof large amounts
of data (more than 2Kby旬). Figure 3: Star色up仙n伺 ofv町 iOU8types of execu-
As色町も uptime of an executor is divided inも02 tors

periods:

. c1ass四回dcodes preloadingj
Classes and their codes which are essential
to execute management obj民旬町epreloaded
fir叫.After otart up of OZ++ &yotem， cluses
and cod田 ca.nbe loaded over network， but it
is ne回 S8町 ya speeial elass loading proeedure
to start up OZ++ system itself.

• objects loading.
Afterward， m個 agl田nentobjec旬 whichare a
p町古 ofOZ++ system are loaded企omthe
images on d泊ksto memory and initia1ized.
Object-manager is a such objec旬 whichman-
ag伺 obj民旬 onan executor. Other objec旬
are loaded when they are accessed with the
help of the object-ma.nager.

Figure 3 shows伽 rtup times (min) of variou9
types of位 .ecutors.

Slave executor has two ma.nagemenもobjects，
叩 object・managerand aD applic叫iODlauncber.
Station-mas色町 executor h掴 acl幽 sm姐 agement
object in addition to slave execu旬r.Class man-
agement object is large object whose image is InOre
than 2 mega-bytes and it requires many class回.

Loading class management object and i旬 el剖 a伺
も北側 largeoh町eofthe 8色町tup time. Si色e-m朗 ter
executor h舗 aname direc句，ryand a catalog in
addition to station-m舗色erexecutor. These two
objects町 esmall， b叫 ittak伺 a色ime旬 i凶ti叫詰e.

Preloading of classes and codes using CSLibr町 y
is 4.5 to 10 times slower than non-porting execu-
もorlit io directly influenced byぬedift'erence of ex-
ecution time of read() sys旬mcall. Object loading
us泊gCSLibrary is 1.2旬 4t:凶回olowerth叩 non-
porting ex，伺utor，the difference is sma.ller than
that of cl幽 S伺叩dcodes preloading because ini-

-370-

もializationof objeets takes time and initialization
is done without external system calls. Inもot叫，
抗artup山neof an exeeutor using CSLibrary is
2.7 to 5.4 times longer th叩もhatof non-porting
execuもor.

5.3 Insuence of ex色ernalcalls on
method invocation

When an object invokes method of another object
which is located on叩 otherexeeutor，もh泊method
invocation conta.ins exもernalsystem calls implic-
iもly.

Figure 4 shows meぬodinvocation times (μ8) for
various locations of invoking and invoked objects.
The me出odto be invoked h回 noargument and
no return value. Ellips回 inthe figure deno旬。b-
jects which work onもhebase of executors. ArroW8
denote invocatioDS， and a number above組町row
is a value of invoぬもiontime.
Invocation between two objec旬 onan executor

on cel1 is slowerもhanthat on h。凶 becauseof their
hardware dift'erence.
Method invoeation between objec旬 onother ex-

ecutors， two sendO external cal1s are invoked from
invoking object to send invocation requωt and one
sendO external calls a.re invoked合ominvoked ob-
ject to send execution result.

Method invocation be色weenexecutors on other
cells takes踊 twotimes longωmethod invocation
be何回nexecutor on cell and executor on host. In
the former c踊 e，"dataもransferbe色weenexecutors
travels Executor(invoking) 一[send()]~ Agent 時
Agent -[sendOl→Ex邸凶or(invoked)姐 din出e
latter c箇 e，data色ravelsExecutor(invoking) -
[sendO]→Agent時 Executor(invoked).Two ex-
ternal calls a.re necessary for one data transmission
in former c回 e，組dthis makes time double.
Method invocation企oman object on a cell to an

object on worksも叫ionover networks is little r.舗ter
than出抗告oman object on a cell to an objeet on
h伺 t，because也eformer does noもmakeproc回 8
switch告omagent to executor on h価 i

In the prototype version of SCLibrary a commu-
nic叫ionbetween API000+ executors is made via
their agents，もhroughh伺色.Therefore it co叫 much，
for example， more tha.n communication with an
executor in network.
The large cost of a hosトAPI000+communica.-

tion derives from the facももhatAPI000+ archi-
tecture is designed in paradigm白紙 hωtis田 ed

liP問。，

Figure 4: Method invocation times (μsec)

mainly for cell configuration， t槌 kgeneration， in-
put parame旬rsdistribution and r伺 ultsgathering.
It does not動 we11for intensive inter臨もionof cell
t回 kswith・processeson host.

5.4 Thread-supporting system call
semantics

The discu飽 edabove version of SCLibrary也based
on thread-supporting system c.alls. The previously
implemented version of 8CLibr町 yw剖 b舗 edon
proce騎-supporting色raditionalblocking semantics.
Iもimpliesthe following. After an exもernalcall in-
vocation an exec凶orwai旬forresu1ts from eell. In
case of a町nchrono凶 nonblockingsy前emcall， the
r田 ultcoming from agent may indicate that op-
eration泊"inprogr田 s".Inp凶/ouもput姐 dchild
signals町 eもransfersby agent to executor on cell
via sp舵 ialm回sag回色。 indicateもhatthe opera-
tion can be attempt once more. 80 this version
of 8CLibrary implements more compIica.ted algo・
rithms for externa1 call execution but its agents
首 emuch more "light weight".
The comp町 isonof executor錦町tup times for

two versions of 8CLibrary are listed in figure 5.れ
shows that in average the thread-supporting SCLi-
br町 yprovides a better executor performance色，han
the process-supporting one.

Generally speaking， we c回 considerωexternal
cal1s not only SunOS system ca1l8. Actually，出e
thread-supporting calls are functions on the b制 e
of掴 ynchronoussystem臼 118and' signals b凶 we
decided to considerもhem闘もheexternal cal1s.
Many other functions of C libr町 yor Oz Library

can be considered箇 externalcalls and executed
by agent. However， the strategie line is to leave
個 much回 P朗 sibleon cell because色hepurp叩 e
of AP 1000+ usage包topush compu凶tiona1work

-371-

ト
判
例

刷
叫
し
略

的
向
向

山
口
問

4

2

o
proc. Thread proc. 1官lreadproc. Thread

Slave Station-Master Site-Master

Figure 5: Dependence of starも time from
threadsjproc-supporting sysもemcall semantics

tem to API000+ only by miner change of execu-
tor's source code and recompilation. The size of
executors 80urce code is about 20 thousands line
in C language.
Th回eshow that our library approach is suit-

able for quick and qualitative porting of systems
which s凶1under development， but it泊 difficult
to provide high performance withol凶usingBpecial
hardware functions whieh are provided by parallel
computer.

During the research， Y. K回 akovworked 叫
Electrotechnical Laboratory a.nd he w舗 sup-
ported by Invita.tion Progra.m for Overseas Vis-
iting Researchers of Agency of Industrial Science
and TI叫 nology(AIST)， M凶stryofln色ernational
Trade and Industry (MITI) of Japa.n

from worksta.tion to powerful parallel computer.
Only functions that does no七do-computatio~s but This research is a pa.rt of the R & D program
suppor旬 communication，are located in agents. “Open Fundamental 80ftware Tecbnology" of the

Information Technology Promotion Agency， Ja.pan
(IPA).

6 Conclusion

The SCLibr町 yw錨 presented剖 theb嗣 icenviron-
ment for porting ofOZ++ executors to APIOOO+.
External ca.ll目a.nda.gent daemon ∞ncepts were
proposed for SCLibrary 8uppor色合omthe h関 S
side. The investigation reported above showed
tha.t the agent c.ost is rather expensive. Th回 ad・
supporting sy凶emcall semantics泊 usedto de-
cre踊 ec明色 ofthe a.gent support.
The resul旬 ofthe repor旬dexperimen旬 witha.

protoもypeversion of SCLibrary demonstra旬dthat
m舗も ofsystem calls invocations correspond to in-
p凶/outputoperations. 80 the use of AP1000+
disk memory and cell conneetion networks of
APIOOO+ sugg回旬 reductionof agent expenses
radically (for exa.mple， in c卸 eofst町 tingproce-
dure -moreもha.na. hundred times).
What the a.gents are really nec朗自aryfor， is

communication with nuc1eus (in p制 icular，for
nucleus-executors shared memory emulation) a.nd
communication with the executors in network.
But execuもoris a fairly independent entity， itdoes
not need in Buch communica.tion often. So出eco叫
should not be so high.
OZ++ system have made large version up whi1e

developing the prototype of SCLibr町 y，組dit took
色wdays for porting of new version of OZ++ sys・

References

[1] Tsukamo色oM.叫 al，“Thedesign and imple-
mentation of an objeルorienteddistributed
system based on sharing and tra.nsferring of
cl8B8関へ τ'rans.of Information Proc回 sing
Soeiety of Ja.pan， vol. 37， No. 5， pp 853-
864，(1996).

[2] Shiraki O. et叫“Architectureof Highly P町・

allel Compu旬rAPIOOO+"， ~roc. of the 3rd
Paral1el Computing Workshop， Fujitsu La.bo-
rat町 yLtd.，(1994).

[3] Fujitsu Laboratory Ltd.，“HAP User's
Guideぺ(1993).

附 Imamura.N. et al，“An bnplementation of
Chorus Microkernel IPC on API000+ and
its evaluation"， Proc. of the 5th Pa.rallel
Computing Workshop， Fuji旬uLa.boratory
Ltd.，(1996).

-372-

