CNFAF 4 PBEEIRBIET =22 2w T EEB8EI0A

Porting of the OZ++ to the AP1000+ parallel computer

Yoichi Hamazaki Yuriy Kazakovl Michiharu Tsukamoto
hamazaki@etl.gojp yuriy@asi.co.jp tukamoto@etl.go.jp

Electrotechnical Laboratory
1-1-4 Umezono, Tsukuba Ibaraki 305, Japan
1: Daring the research, he was AIST fellow.

Abstract Parallel computers are powerful tools for execution of compute intensive
programs. However, programming these machines is still awkward due to the lack of a
convenient programming environment. This work is devoted to porting of the OZ++ object-
oriented distributed environment to the AP1000+ distributed memory parallel computer.
The OZ++ is a middle-ware, now implemented on the base of SunOS operating system.
The approach of the porting is to build a library of SunOS system calls to support quick and
qualitative porting of OZ++ to AP1000+. This paper presents the design of the SunOS
call library and investigates the ways of its implementation.

F 7V 7 MEMSERE OZ++ OXFIEHE AP1000+ ~D i

RS B— Yuriy Kazakov! A Bk

WFEHR SR
305 Fo AL 1-1-4
1: WMAIST 7=u—

B®E AR 7oy EAVEFINRRIRS { OT7oLy 4+ EBEO 70Xy 4HER
0L FMT 7V~ avOBHEE LTOEINTH 5, LPLEs, BHIRH
BOVAFLAYVZ bz TPRABT 7)) r—3 a ¥ ORBICEIRBELBEVSV,

I TRF TV s MEMSEEREE OZ++ OEFIBHER AP1000+ ~OBRERA, EDOF
BELTRBERVATFAT—=NETATI) L LTRAHIRAZHRET S, AP1000+ TR S
N3 CellOS+ CRE XN TV R W UNIX OV A F A3— ik SCLibrary LIEES 4 75 Y
X o T#RHEL. SCLibrary X AP10004+ OF X bV ¥a—¥ LOor—Yx v b EREF—E
YTORAIZY o THEOBRIBY HBT 5,

¥7: CSLibrary o 7/0 b ¥ 4 72t L, TOEBARET X257/ AP1000+ Dot
BREELT, SR IV~ BHTEVHOBBLIEE L DS, FOMNLE IR
FigK&wve L L, BHITLZ7 IV, —3 arik API1000+ AIZMZ LA-b L B0
2. 75 —va 0B 2BBROFEMINES L, ARPOT7 7)) r—Y a v iieh
BT ABAICHELTWA,

—365— -

1 Introduction

Parallel computers which use general purpose pro-
cessing elements are attractive targets to port dis-
tributed software, because they have a lot of pro-
cessing elements and high-speed communication
medium between processing elements. Unfortu-
nately it is not so easy to port distributed ap-
plications to parallel computer in general because
gystem software of such parallel computer is not
designed to be used for distributed applications
but for parallel ones.

In this article we propose a library approach
for the porting based on our experience of porting
an object-oriented distributed environment OZ++
to the AP1000+ parallel computer., We are not
considering parallelizing problems, the OZ++ is a
highly distributed software system consists of vari-
ous components which can work in parallel. So the
structure of OZ-++ system enables flexible oppor-
tunities for distribution of software entities among
AP10004 processors.

Main part of OZ++ system is written in C lan-
guage, and now it is implemented for a network
of Sun workstations. AP10004 has C language
compiler but does not have advanced OS such as
Unix. So the main problem of porting of OZ++ to
AP1000+ is that OZ++ source codes contain Unix
{SunOS) system calls which are not supported on
AP1000+ in proper manner.

On the other hand, the OZ++ is a still devel-
oping project, its source codes are changed often.
The AP1000+ software also develops fast. The
porting approach should support the porting of
not only one version of OZ++ software. It should
be much more a technique for quick and qualita-
tive adoption of every new version of the OZ++
to the new version of basic AP1000+ software.

In this article we propose a library approach
for the porting. The library (SCLibrary) supports
the SunOS system calls on AP1600+ and enables
some level of independence of OZ++ codes from
AP1000+.

In section 2 and 3, OZ+4+ and AP1000+ are
overviewed, and in section 4 we presents SCLi-
brary’s architecture and considers varicus strate-
gies its organization. In section 5, investigation of
prototype SCLibrary is presented and conclusion
is in section 6.

2 O0Z++4: an Object Ori-
ented Distributed Envi-
ronment

OZ++ is a programming environment to support
distributed object-oriented applications in hetero-
geneous distributed computer systems [i. In
OZ++, classes are managed all over the system
and objects are transferred among machines. Ob-
ject methods can be executed at any machine by
loading their classes from class management sys-
tem on demand. This execution mechanisms and
dynamic loading of classes over networks make dis-
tribution and execution of applications easy.

On every computer one nucleus and any num-
ber of executors exist. Executor is a basic unit
of OZ++ service environment. Every object is
placed on an executor and its methods are exe-
cuted by the executor. An executor creates, holds
and deletes objects. It loads executable codes of
classes and layout information from class manage-
ment system and cache them. It saves persistent
objects on secondary storage and loads them on
demand. Memory management and garbage col-
lection are functions of executor also.

Executor is a separate unit of OZ++, it can
work along on computer. But for communication
with the other executors the nucleus have to be
used. Nucleus is a daemon process, one nucleus
exists on every computer where the OZ++ sys-
tem goes. Nucleus creates and manages executors
on ita station. It keeps state and communication
address of each executor and resolves communica-
tion addresses from executor ID by asking other
nucleuses using broadcast.

Several kinds of management objects, object for
class management, object for object management
on an executor, etc., are placed appropriately on
executors. Various application objects are imple-
mented also (object launcher which provides user
interface with executor, compiler which produces
executable code and other class information from
programs written by OZ++ object-oriented lan-
guage, etc.). All these support flexible, powerful
and comfortable environment for programming.

The OZ++ is a middle-ware, so nucleus and ex-
ecutors are implemented as Unix processes. The
object methods and other daemon programs are
executed using multithreading mechanism inside
the executor.

—366—

3 AP1000+ massively paral-
lel computer

AP1000+ is a distributed memory parallel com-
puter [2]. SuperSparc processor elements, called
cells, are connected by three independent commu-
nication networks. These are the torus network for
point-to-point communication between cells, the
broadcast network for data distribution and collec-
tion, and the synchronization network for barrier
synchronization.

A host computer is used for the AP1000+ in-
terface with the other world. It sets up cell con-
figurations, generates tasks and supports a user
interface with AP1000+. The broadcast and syn-
chronization networks connect all cells and host.
A Sparc Station computer is used as host, and
one Unix process on host manages the AP1000+
and communicates with it.

CellOS+ is the operating system for the
AP1000+4. It supports start and parallel execu-
tion of cell programs. CellOS+ consists of kernel
on each cells, AP1000+ driver on host and libraries
for cell programs and host programs, called as cell
libraries and host libraries. Host and cell pro-
grams are compiled and linked with host libraries
or cell libraries at the host computer. The cell
libraries implement various kinds of communica-
tion and synchronization but they do not support
Unix-level of service sufficiently.

The cell libraries contains read() and write()
functions but they can be used only input/output
on stdin/stdout of host. HAP (Host Access Pack-
age) enables cells to access files on host computer
but the set of calls is very poor (open(), read(),
write(), lseek(), close()) and implementation is
very restricted [3]. For example, read() and write()
are blocking and synchronous, they always block
a cell program until completing of input/output
operation.

Recently a work is done in the direction of Unix
implementation on AP1000+. Chorus Microkernel
IPC have been implemented for AP1000+ [4], the
next step is going to be Unix implementation on
the base of Chorus/MiX.

4 Porting of OZ++ to

AP1000+

Executor is an elementary unit of service environ-
ment of OZ++, it can work in parallel with the
other parts of OZ++ system. So it is natural to
distribute executors on cells of AP1000+ and to
leave nucleus on host computer to support com-
‘munication with the other computers. This ar-
chitecture corresponds to concepts of nucleus and
executor, and doesn’t restrict user opportunities.

Executor is developed in C language and im-
plemented for Sun workstations. AP1000+ has C
language compiler but does not have advanced OS
such as Unix. So the main problem of porting of
executor to cell is that executor source codes con-
tain Unix system calls which are not supported on
AP1000+4 in proper manner.

4.1 SCLibrary approach

We propose approach to use library which pro-
vide functions of SunOS system calls on AP1000+
(SCLibrary stands for SunOS system call Library).
The library has to support system calls which are
used by executor, and it should be special-purpose
for efficient work of executor on cell. For example,
mmap() is very powerful and universal SunOS sys-
tem call but an executor uses it only for private,
system-free mapping to the file. So it is not neces-
sary to implement other types of mapping in SCLi-
brary but this kind of mapping should be imple-
mented in the best way.

The library approach implies some level of in-
dependence of executor codes from AP1000+. In
cage of library approach, the porting of new ver-
sions of executor to AP1000 can be done more
easily because of high independence of executor
source codes from AP1600+4. A new OZ++ ver-
sion may require adding of new system calls to the
SCLibrary or rewriting of an old implementations
of some system calls, and this is all.

In case of Unix implementation on AP1000+,
the independence level would be the highest, and
porting could be done more easily. But Unix is
a rather heavy system, consuming much proces-
sor time, An executor does not need in Unix as
such, it need only in adequate and fast support
for some SunOS system calls. Moreover a user
of OZ++ doesn’t need in Unix on cell because
executor would supply him a flexible and pow-

—367—

erful environment for running his applications on
cells and his applications are programmed in OZ
object-oriented language with class libraries.

4.2 Design of the CSLibrary

The current versions of execiitor software contains
more than 70 SunOS system calls, Most of them
are input/output calls, dealing with descriptors
and sockets (around 50 system calls), the other
work with memory, signals, and Unix system in-
formation (such calls as sysconf(), getpid(), etc.).

Some parts of SunOS environment can not be
created on cell directly. For example, AP1000+
does not have display and connection to network,
so the display and network input/output have
to be performed via the host computer. If an
AP1000+ does not have a disk memory, then host
files or NFS files have to be used. We will call such
system calls external system calls.

Some daemon software has to exist on host o
support external system calls. We will call a pro-
cess which runs on host and supports external
calls, an agent. In accordance with the AP1000+
architecture all agents must communicate with the
AP1000+ by way of one host communication pro-
cess.

It is the external calls that is of primary con-
cern to SCLibrary design. The other system calls
can be executed by SCLibrary faster than by Unix
because they do not need in interrupts (they are
not real system calls but function calls), and they
are specialized for executor. As for external calls,
their remote execution may require much time.

Executer -is a multithreading program so it is
important not to block the executor after aystem
call invocation and allow other threads to execute
while the system call is executed. But this contra-
dicts with the Unix system call concept.

Parallelism in Unix is supported by processes.
Unix process switching and interprocess commu-
nication cost much. So asynchronous system calls
and signals are used inside a process for parallel
input/output and child management. This inter-
nal process parallelism is very restricted and it is
hard to understand programs that deal with sig-
nals because of their random nature.

Multithreading packages support much more
powerful and conceptual model of parallelism in-
side of process. But Unix kernel doesn't support
threads, they are invisible for Unix. So system
calls serialize threads, they are compulsory criti-

cal sections, and what is more bad they block not
only thread invoked system call, but all threads of
the process.

As a result, most of multithreading packages
has their own libraries which substitute I/O, time,
and child management system calls. For example,
LWP (Light Weight Processes) package has non-
blocking 1/0 library, the OZ++ executor has non-
blocking I/O functions in OzLibrary. The calla of
these libraries block thread but the other threads
can continue their development. So these calls are
blocking and synchronous for thread which invokes
them, and they are nonblocking and asynchronous
for multithreading process (the other threads are
not blocked and can develop further). Threads
don’t need in asynchronous system calls and the
signals because parallelism and asynchrony can be
supported naturally by multithreading.

So if system calls support threads, then system
call semantics becomes much more simple (signals
and asynchronous modes are not used), concep-
tual and high-level than the Unix one. We pro-
pose to use thread supporting external calls for
the SCLibrary. The SCLibrary have to be inte-
grated with executor multithreading mechanism
to switch threads after external call invocation.

This may provide more fast execution because:

e executors will not wait until external system
call completing, the other ready threads con-
tinue their development;

¢ communication expenses between cell and
host decrease because only one request for
operation and one answer are transferred
(no multiple attempts and signal information
transferring).

On the other hand, an agent have to buffer
external calls and implement them using tradi-
tional Unix asynchronous system calls and signals.
This means that really the thread-supporting non-
blocking functions (of OzLibrary) move from ex-
ecutor on cell to an agent on host.

5 A Prototype of SCLibrary
and its investigation -
To realize thread supporting external calls, the

SCLibrary must have a daemon software on host
to support SunOS environment on cell adequately.

—368—

This point of the SCLibrary architecture may be-
come most critical for executor performance. The
remote execution of external calls costs much so
this part of SCLibrary must be implemented care-
fully and punctually.

For investigation of this question and perfor-
mance measuring, a prototype version of SCLi-
brary was implemented. Agents play an important
role in this version. All system calls dealing with
disk memory, network and Unix data, are consid-
ered as external and executed remotely by agents
on host. This version presents a SCLibrary for
diskless configuration of AP1000+4. Host compu-
tational power is used in the most intensive man-
ner. The loading of executable codes and layout
information, communication with the other parts
of OZ++ system, that is to say, all executor in-
put/output is done by way of host.

For execution of external system calls ,it is pro-
posed that each executor on cell has its agent on
the host. As long as an executor’s input/output
is done via its agent, the executor sees this world
by agent’s "eyes”. So it is "of the opinion” that
it runs in host SunOS environment. Alternatively,
the other processes working on host can see only
the agent, the executor on cell is invisible from
thern. But the agent looks like its executor and
behaves as the executor, and the other processes
on host consider the agent as the executor. So
AP1000+ is transparent for the AP1000+ execu-
tors and the host processes.

Figure 1 shows a general structure of the OZ++
system on AP1000+ according the prototype ver-
sion of SCLibrary.

Buclous Executor Aqunt ent. Zxacutor
* ~ PN
J wix VT scLab
I Host coll

Figure 1: An Overview of the OZ++ on AP1000+

When an external system call is invoked, its
code and parameters are packed to a message and
sent to agent. The agent receives the message, ex-
ecutes the call in SunOS environment as if it is the
executor, and sends results back to cell.

Agents allow to separate ported codes from the
the others, only executor source codes have to

be changed. Nucleus and the other OZ++ soft-
ware, i.e. classes for system management and for
user applications, are the same as before because
they do not know that some executors run on the
AP1000+.

In the following subsections we are discussing
the influence of the remote execution of external
system call on the executor performance. In sub-
section 5.1 we examines the time of external call
execution. Subsection 5.2 considers the influence
of external call execution on the time of executor
start — one of the most input/output intensive
procedure of executor. Subsection 5.3 considers
the influence of external call execution on the time
of object method invocation. In subsection 5.4 we
are discussing a role of thread-supporting system
calls for external system call execution.

A Sparc Station 10 was used as a host com-
puter for AP1000+. The executor performance
on AP1000+ was compared with performance of
ordinary (not-ported) executors on Sparc Station
10. An AP1000+ cell’s SuperSparc processor dif-
fers slightly from the SuperSparc of Sparc Station
10 (it doesn’t have secondary cash and memory
access algorithms are a little bit different). There-
fore, in average the Sparc Station 10 is slightly
faster than a cell of AP10004-.

Measured data used in the discussion below are
average of several trial. But measurement envi-
ronment was not isolated but connected to other
computers by ethernet, measured data may be af-
fected external condition.

5.1 Time of remote execution of ex-
ternal calls

Most of external system calls invoked by executor,
are input/output system calls. Usually more than
99% of all system call invocations correspond to
the following system calls: read(), write(), lseek(),
send(), recv(), open(), close().

The time of a system call remote execution
(transfer and execution as such) varies from
2000us to 3500us if the call does not require a
transfer of much data (more than 2 K Byte). The
time of execution, as such, on Sparc Station 10
varies from 20 to 100 us depends on the kind of
system call.

Some input/output system call invocations
(vead(),write(),send(),recv()) may require transfer
of much data. This causes increasing of remote
execution time. Table 1 gives the dependence of

—369—

Unix | SCLibrary
read (..., ..., 10) 39 2439
read (..., ..., 100) 40 9711
read (..., ..., 1000) 74 3242
read (..., ..., 10000) 900 11950
read (..., ..., 100000) || 8736 94266
read (..., ..., 1000000) || 89249 945946

Table 1: Execution time (usec) of read() system
call

execution time values of read() system call from
the size of read data.

5.2 Influence of external calls on ex-
ecutor start up

Start up of an executor is a time consuming proce-
dure, especially for executor on AP1000+. During
the start up of an executor, it mainly reads much
amounts of data from files to memory. Figure 2
shows the numbers of system call invocations dur-
ing start up of a slave type executor. Each other
system call which is not presented in fig. 2, is
invoked less than 10 times during a start up.

92% of invoked calls did not transfer much data.
The others required transferring of large amounts
of data (more than 2Kbyte).

A start up time of an executor is divided into 2
periods:

¢ classes and codes preloading;
Classes and their codes which are essential
to execute management objects are preloaded
first. After start up of OZ++ system, classes
and codes can be loaded over network, but it
is necessary a special class loading procedure
to start up OZ++ system itself.

» objects loading.

Afterward, management objects which are a
part of OZ++ system are loaded from the
images on disks to memory and initialized.
Object-manager is a such objects which man-
ages objects on an executor. Other objects
are loaded when they are accessed with the
help of the object-manager.

Figure 3 shows start up times (min) of various
types of executors.

{Times)
6000"¢ 5458

5000 |
4000 |
3000 |
2000 |
1000 |}

150 149

0 arneren
open () close() read() write()lseek() send() recv()

Figure 2: Number of system call invocations dur-
ing an executor(slave type) start up

8 {min)

5 [[ebjects toating AP1000+
6 -m?d{‘n‘g'“de’mwocy

o

: t ARL000+ o o §510
s b2 e VA A VA,

Slave Station-Master Site-Master
Figure 3: Start up times of various types of execu-
tors

Slave executor has two management objects,
an object-manager and an application launcher.
Station-master executor has a class management
object in addition to slave executor. Class man-
agement object is large object whose image is more
than 2 mega-bytes and it requires many classes.
Loading class management object and its classes
takes large share of the start up time. Site-master
executor has a name directory and a catalog in
addition to station-master executor. These two
objects are small, but it takes a time to initialize.

Preloading of classes and codes using CSLibrary
is 4.5 to 10 times slower than non-porting execu-
tor, it is directly influenced by the difference of ex-
ecution time of read() system call. Object loading
using CSLibrary is 1.2 to 4 times slower than non-
porting executor, the difference is smaller than
that of classes and codes preloading because ini-

=310-

tialization of objects takes time and initialization
is done without external system calls. In total,
start up time of an executor using CSLibrary is
2.7 to 5.4 times longer than that of non-porting
executor.

5.3 Influence of external calls on
method invocation

When an object invokes method of another object
which is located on another executor, this method
invocation contains external system calls implic-
itly.

Figure 4 shows method invocation times (us) for
various locations of invoking and invoked objects.
The method to be invoked has no argument and
no return value. Ellipses in the figure denote ob-
jects which work on the base of executors. Arrows
denote invocations, and a number above an arrow
is a value of invocation time.

Invocation between two objects on an executor
on cell is slower than that on host because of their
hardware difference.

Method invocation between objects on other ex-
ecutors, two send() external calls are invoked from
invoking object to send invocation request and one
send() external calls are invoked from invoked ob-
ject to send execution result.

Method invocation between executors on other
cells takes as two times long as method invocation
between executor on cell and executor on host. In
the former case, data transfer between executors
travels Executor(invoking) —[send()]— Agent =
Agent —[send()]—Executor(invoked) and in the
latter case, data travels Executor(invoking) —
[send())— Agent => Executor(invoked). Two ex-
ternal calls are necessary for one data transmission
in former case, and this makes time double.

Method invocation from an object on a cell to an
object on workstation over networks is little faster
than that from an object on a cell to an object on
host, because the former does not make process
switch from agent to executor on host.

In the prototype version of SCLibrary a commu-
nication between AP10004 executors is made via
their agents, through host. Therefore it cost much,
for example, more than communication with an
executor in network.

The large cost of a host—-AP1000+4 communica-~
tion derives from the fact that AP1000+ archi-
tecture is designed in paradigm that host is used

Figure 4: Method invocation times {usec)

mainly for cell configuration, task generation, in-
put parameters distribution and results gathering.
It does not fit well for intensive interaction of cell
tasks with'processes on host.

5.4 Thread-supporting system call
semantics

The discussed above version of SCLibrary is based
on thread-supporting system calls. The previously
implemented version of SCLibrary was based on
process-supporting traditional blocking semantics.
It implies the following. After an external call in-
vocation an executor waits for results from cell. In
case of asynchronous nonblocking system call, the
result coming from agent may indicate that op-
eration is "in progress”. Input/output and child
signals are transfers by agent to executor on cell
via special messages to indicate that the opera-
tion can be attempt once more. So this version
of SCLibrary implements more complicated algo-
rithms for external call execution but its agents
are much more "light weight”.

The comparison of executor start up times for
two versions of SCLibrary are listed in figure 5. It
shows that in average the thread-supporting SCLi-
brary provides a better executor performance than
the process-supporting one.

Generally speaking, we can consider as external
calls not only SunOS system calls. Actually, the
thread-supporting calls are functions on the base
of asynchronous system calls and' signals but we
decided to consider them as the external calls.

Many other functions of C library or Oz Library
can be considered as external calls and executed
by agent. However, the strategic line is to leave
as much as possible on cell because the purpose
of AP1000+ usage is to push computational work

-371-

(min)
[7 objects loading

8 ¢ classa df:; codes

10

6}

d|

2 L

\PAPA VA VAV,

proc. Thread proc. Thread proc. Thread
Slave Station-Master Site-Master

Figure 5: Dependence of start time from
threads/proc-supporting system call semantics

from workstation to powerful parallel computer.
Only functions that does not do computations but
supports communication, are located in agents.

6 Conclusion

The SCLibrary was presented as the basic environ-
ment for porting of OZ++ executors to AP1000+.
External calls and agent daemon concepts were
proposed for SCLibrary support from the host
side. The investigation reported above showed
that the agent cost is rather expensive. Thread-
supporting system call semantics is used to de-
crease cost of the agent support.

The results of the reported experiments with a
prototype version of SCLibrary demonstrated that
most of system calls invocations correspond to in-
put/output operations. So the use of AP1000+4
disk memory and cell connection networks of
AP1000+ suggests reduction of agent expenses
radically (for example, in case of starting proce-
dure - more than a hundred times).

What the agents are really necessary for, is
communication with nucleus (in particular, for
nucleus-executors shared memory emulation) and
communication with the executors in network.
But executor is a fairly independent entity, it-does
not need in such communication often. So the cost
should not be so high.

OZ++ system have made large version up whl]e
developing the prototype of SCLibrary, and it took
few days for porting of new version of OZ++ sys-

tem to AP1000+ only by miner change of execu-
tor’s source code and recompilation. The size of
executors source code is about 20 thousands line
in C language.

These show that our library approach is suit-
able for quick and qualitative porting of systems
which still under development, but it is difficult
to provide high performance without using special
hardware functions which are provided by parallel
computer.

During the research, Y. Kazakov worked at
Electrotechnical Laboratory and he was sup-
ported by Invitation Program for Overseas Vis-
iting Researchers of Agency of Industrial Science
and Technology (AIST), Ministry of International
Trade and Industry (MITI) of Japan

This research is a part of the R & D program
“Open Fundamental Software Technology” of the
Information Technology Promotion Agency, Japan
(IPA).

References

[1) Tsukamoto M. et al, “The design and imple-
mentation of an object-oriented distributed
system based on sharing and transferring of
classes.”, Trans. of Information Processing
Society of Japan, vol. 37, No. 5, pp 853-
864,(1996).

[2) Shiraki O. et al, “Architecture of Highly Par-
allel Computer AP1000+”, Proc. of the 3rd
Parallel Computing Workshop, Fw:tsu Labo-
ratory Ltd.,(1994).

[3] Fujitsu Laboratory Ltd.,
Guide”,(1993).

“HAP User’s

[4] Imamura N. et al, “An Implementation of
Chorus Microkernel IPC on AP1000+ and
its evaluation”, Proc. of the 5th Parallel
Computing Workshop, Fujitsu Laboratory
Ltd.,(1996).

-312-

