RINVFAT 1 TBELHBOET—- >3y T FRRI04ELLH

Flexible Distributed Objects for Multimedia Applications

Tetsuo Kanezuka

Hiroaki Higaki = Makoto Takizawa

Dept. of Computers and Systems Engineering, Tokyo Denki University
{kane, hig, taki}@takilab.k.dendai.ac.jp

Abstract

This paper discusses how to make a distributed mul-
timedia object system flexible so as to satisfy applica-
tions’ requirements in change of the system environ-
ment. The system change is modeled to be the change
of not only types of service but also quality of service
(QoS) supported by the objects. There are two types
of methods changing the objects, one for manipulating
the states of the objects and another for changing QoS
of the objects. We discuss new equivalent and com-
patible relations among methods with respect to QoS.
By using the relations, we newly discuss a QoS-based
compensating way to recover the object from the less
qualified state.

1 Introduction

Units of resources in distributed systems are re-
ferred to as objects [10]. An object is an encapsu-
lation of data and methods for manipulating the data.
CORBA [10] is getting a general framework to realize
the interoperable distributed applications. The sys-
tem is required to be flezible in the change of the
system environment and applications’ requirements
in addition to supporting the interoperability of au-
tonomous objects.

The service supported by the object is character-
ized by the parameters showing the quality of service
(QoS) like frame rate and number of colors. Yoshida
and Takizawa [13] model movement of a mobile object
to be the change of QoS supported by the object. It is
critical to discuss how to support QoS which satisfies
the application’s requirement in change of QoS sup-
ported by multimedia objects. In MPEG-4 [8,9] and
MPEG-7, multimedia data is composed of multimedia
objects each of which may support a different level of

QoS.

An object supports applications with service
through the methods. The method may change not
only the state of the object but also QoS supported
by the object. Relations among the methods are dis-
cussed so far with respect to the states of the ob-
jects. For example, a pair of methods are equivalent if
the states obtained by applying the methods are the
same [1]. In this paper, we discuss kinds of relations
among the methods with respect to QoS. Two states
of an object are considered to be equivalent if they
support the same QoS even if they are not the same.
In addition, there are two aspects of QoS, i.e. state
QoS and view QoS. The state QoS means QoS which
the state of the object intrinsically supports. The ap-
plications can view QoS of the object only through the

methods. For example, suppose that a multimedia ob-
ject supports higher quality image data and a display
method. Here, the application can only view lower
quality image if display can output only lower quality
image. QoS viewed through display is view QoS of the
object.

Effects done by methods computed have to be re-
moved if applications’ requirements are not satisfied,
e.g. the system is faulty. The effects can be removed
by the compensation [7,12] of the methods computed.
In multimedia applications, it takes time to restore a
large volume of high-resolution video data. We can re-
duce time for recovering the system if data with lower
resolution but satisfying the application requirement is
restored instead of restoring the high-resolution data.
In this paper, we discuss a compensation way where
an object o may not be rolled back to the previous
state which o has taken but can be surely rolled back
to a state supporting QoS which satisfies the appli-
cation’s requirement. We can reduce time for rolling
back the objects by this way.

In section 2, we present a model of the system. In
sections 3 and 4, we discuss relations among the meth-
ods and the compensation on the basis of QoS, respec-
tively.

2 System Model

2.1 Objects

A system is composed of multiple objects dis-
tributed on multiple computers which are intercon-
nected by reliable communication networks. Each ob-
ject is an encapsulation of data and a collection of
abstract methods opy, ..., op; only by which o; can
be manipulated. There are two kinds of objects, class
and instance. A class gives a framework, i.e. set of
attributes and collection of methods. An instance is
created from the class, which is a tuple of values each
of which is given to each attribute of the class. From
here, let a term “object” mean an instance.

Methods change the state of an object o and out-
put data obtained from the state as the responses. Let
opi(s) denote a state of the object o obtained by ap-
plying a method op; to a state s of 0. A state means
a tuple of values in an instance of o. [op:(s)] denotes
the response obtained by applying op; to a state s of
o. For example, [display(s)] shows image displayed on
a monitor or printer from s by display(s). op: o opy
means that a method op, is computed after another
method op; is terminated. Here, a conflicting rela-
tion [7] among a pair of methods op; and op, is defined

—189—

as follows: op; conflicts with op, if op; o op,(s) # op.
o opy(s), [opi(s)] # [opu © opi(s)], or [op: o opu(s)] #
opy(s)] for some state s of o;. For example, record
conflicts with delete in the object movie. A method
op, is compatible with op, unless op; conflicts with op,.
The conflicting relation is not transitive. We assume
the conflicting relation is symmetric. Let (s) denote a
tuple ([opl(sﬁ, ..o lopi(8)]), i.e. view of a state s of
an object o.

An object can be composed of other objects. For
example, suppose one video scene shows a person driv-
ing a car on a road in a movie. An object for the
scene is composed of four objects showing a person,
car, road, and background. In MPEG-4, a multimedia
data is composed of multiple objects like audio/video
objects (AVOs) and sound object.

2.2 Quality of service (QoS)

Each object o supports applications with some ser-
vice. The service can be obtained by issuing methods
supported by the object 0. Each service is character-
ized by parameters like level of resolution, number of
frames, and number of colors. Quality of service (QoS)
supported by the object o is given by the parameters.
Even if a pair of objects support the same types of
service, they may provide different levels of QoS.

The scheme of QoS is given in a tuple of attributes
(ai, ..., a,) where each attribute a; shows a parame-
ter. Let dom(a;) be a domain of an attribute a;, i.e. a
set of possible values to be taken by a; (i =1, ..., m).
For example, dom(resolution) is a set of numbers each
of which shows the number of pixels for each frame.
A QoS instance q of the scheme (a;, ... a;) is given
in a tuple of values, (vq, ..., v,,) € dom(a;) X ... X
dom(a,,). Let a;(q) show a value v; of an attribute a;
in g. The values in dom(a;) are partially ordered by
a precedent relation X C dom(a;) X dom(a;), i.e. a
QoS value v, precedes another value vy (v; > v3) in
dom(a;) if v; shows better QoS than v,. For exam-
ple, 120 x 100 < 160 x 120 [pixels] for an attribute
resolution. Let ¢ and g show QoS instances of the
scheme (ay, ..., an). q totally dominates gz (q1 >
q2) iff a;(q1) > ai(g2) for every attribute a;. Let A be

a subset (by, ..., br) of the QoS scheme (a, ..., an)
where each b, € {a, ..., an} and k < m. A projec-
tion [g]a4 of the QoS instance g on A is (wy, ..., wk)

where w; = b;(q) fori =1, ..., k. A QoS instance ¢
of a scheme A; partially dominates g; of A, iff a(q;)
> a(gz) for every attribute @ in A; N A;. ¢ subsumes
g2 (@1 2 q2) iff q; partially dominates g and A; D
A,. Let S be a set of QoS instances whose schemes
are not necessarily the same. ¢; is minimal in the set
S iff there is no instance ¢, in S such that ¢; < ¢1. 1
is minimum in S iff ¢ < ¢; for every ¢z in S. q; is
mazimal iff there is no g in S such that ¢ < ¢2. ¢
is mazimum in S iff ¢ <X ¢, for every ¢ in S. ¢ U
q2 and ¢; N ¢, show a least upper bound and a great-
est lower bound of QoS instances ¢; and g2 in S on
<, respectively. ¢ U gy is some QoS instance g3 in S
such that 1) ¢; < g3 and ¢z <X g3, and 2) there is no
instance g4 in S where ¢; < ¢4 < ¢3 and ¢2 < ¢4 < ¢3.
q1 N g2 is defined similarly to U.

Applications require an object o to support some
QoS which is referred to as requirement QoS (RoS).
Let 7 be an RoS instance. Here, suppose an object o
supports a QoS instance ¢ = (vy, ..., vp,) Where each
v; is a value of the attribute a;, i.e. v; € dom(a;).
Here, let A, be the scheme of r and A, be the scheme
of g. The instance g subsumes r (¢ 2 r) iff ¢ partially
dominates r and A, O A,. If ¢ O r, the applications
can get enough service from ¢q. Otherwise, q is less
qualified for 7.

2.3 QoS of object

QoS of an object o has two aspects: state QoS
which is obtained from the state of o and view QoS
which is supported through the methods of 0. For ex-
ample, let us consider an object video with a display
method as shown in Figure 1. A state s of the object
video supports video data with a rate 30 [fps|, which is
a state QoS. Q(s) = 30 [fps]. However, display can dis-
play the view [display(s)l on the monitor of the video
data from the state s only at a rate 20 fps. This is a
view QoS. Q([display(s)]) = 20 [fps]. Here, there is a
constraint “Q([op(s)]) < Q(s)” for every method op;
and every state s of an object 0. The object o cannot
support the applications with higher QoS than sup-
ported by the methods. If Q([op¢(s)]) < Q(s) for some
state s of o, op; is less qualified for 0. The method op;
is fully qualified if Q([opi(s)]) = Q(s) for every state
s of o. In Figure 1, the method display is less quali-
fied for the object video. Let maxQoS(op;) show the
maximum QoS which op; can support, i.e. Q([op(s)])
=< maxQoS(op;) for every state s of the object 0. Let
s; and s, be states of an object o. The applications
cannot differentiate states s; and s, if data viewed by
applying a method op; to s; and s, are the same, i.e.
[opt(sl)f= [opt(s2)] in the object o. A state s; of o is
equivalent with s, with respect to op; (op;-equivalent)

iff [OPt(Sl)l - [OPt(Sz)]-

displa
user

response (20 fps)

Figure 1: QoS of video object.

Q((s)) is defined to be a tuple (Q([opi(s)]); ---»
Q([opi(s)])), i.e. view QoS of a state s of an o
ject o which can be obtained through the methods.
Q((s)) shows QoS of o which the applications can view
through the methods.

[Definition] A state s; is method-equivalent with a
state sp of an object o iff (s1) = (s2), i.e. [opi(s1)] =
[ope(s2)] for every method op; of 0. O

Even if s; # s,, the applications view a pair of states
s; and s; of the object o to be the same because
the applications get the same response through every
method. Let mazQ, denote maximum QoS to be sup-
ported by o, i.e. maximum of Q((s)) for every state

—140—

s of o. Let minQ, denote minimum QoS of o. Here,
minQ, < Q((s))= mazQ, for every state s of o.

A multimedia object movie supports the movie
video including low-resolution image data (120 x 100
pixels) with a display method. A hypermovie object
supports hyper video images of high-resolution (160
x 120 pixels) with more kinds of methods including
display, stop-motion, merge, and divide than the ob-
ject mouvie. A state s,,,yi. includes the low-resolution
video image of a movie m. Spypermovie Shows the
high-resolution video image of multiple movies includ-
ing m. Here, Q(sh permome) = Q(smovtc)- displﬂy
of hypermovie can display the high-resolution video
image with multi-window while display of movie can
just display the low-resolution video image. Here,
Q([display(shypcrmowe)]) ..>_ Q([display(smauie)])- hy‘
permoute supports higher quality of video image and
more fruitful methods than mouwze.

Real objects in the real world have infinite level of
QoS. In order to realize the real objects in computers,
we have to reduce QoS of the objects. Thus, we model
that each object state is realized by mapping the infi-
nite level of QoS to the limited level of QoS depending
on the computers. The state of the real object is re-
ferred to as a super state. Let super(s) denote a super
state of a state s of an object o which is realized in
the computer. Here, Q(super(s)) > Q(s). We assume
that there exists exactly one super state for each state
s. QoS of every super state is maximum.
[Definition] A state s, of an object o is equivalent
with another state s, of o with respect to state (state-
equivalent) iff super(s;) = super(sz). O
For example, suppose that a state s; of the object
video supports video data of frame rate 30 [fps]. Sup-
pose a new state s, is obtained by dropping some
frames in the state s;. If the states s; and s, are
state-equivalent, s; and s, are derived from a same
super state by reducing the QoS but they support dif-
ferent levels of QoS.

There are two aspects of objects to be considered,
i.e. states and QoS of the objects. Hence, each object
supports two types of primitive methods, one for ma-
nipulating the state of the object and the other one for
manipulating QoS of the object. The former is a state
method and the latter is a QoS method. The method
drop is a QoS method because it only changes QoS of
the object video. For a QoS method op, a state op(s) is
state-equivalent with every state s of an object o, 1.e.
super(op(s)) = super(s). For a pair of QoS methods
op; and op,, op;(s) and [op.(s)] are state-equivalent
with op,(s) and [op,(s)], respectively, for every state
s of an object o because they only change the QoS of
the object 0. On the other hand, for a state method
op, Q(op(s)) = Q(s) while s # op(s). Here, we intro-
duce a transition diagram to show the change of states
and QoS as shown in Figure 2, where a node shows a
state and a directed edge indicates a state transition.
A horizontally directed edge s — s; indicates that
a state s is changed to another state s; by a state
method which manipulates the state of the object o.
Here, QoS of s; is the same as the state s. On the
other hand, a vertically directed edge s — s, shows

that a state s, is obtained from s by changing QoS of
s through a QoS method. For example, s, is obtained
by decreasing number of colors of s. Applications can
consider s and s; to be the same except for the num-
ber of colors. That is, s; is state-equivalent with s. A
public method is implemented by using these primi-
tive methods. In Figure 2, an oblique directed edge s
— s3 denotes that a method op obtains a state s3 by
changing both state and QoS of the state s.

F! orldg) > semai(ag)

Q@

—> state

Figure 2: Transition diagram.

3 QoS Relation Among Methods

We discuss how methods opy, ..., op; supported by
an object o are related with respect to QoS.

3.1 Equivalency

A method op; is equivalent with another method
op, in an object o iff op(s) = op.(s) and [opi(s)] =
[opw(8)] for every state s of 0. That is, op; and op, not
only output the same response data but also change
the state of o to the same state.

Suppose an object movie is composed of two sub-
objects, an advertisement object and a content object.
The advertisement object is removed from the object
movie by a method delete. An application does not
care the difference between the original version and
the updated version of movie since the application is
interested only in the content part of movie. The up-
dated version is semantically equivalent with the orig-
inal version because the two versions are considered to
be the same from the application point of view. The
two versions support the same QoS.

[Definition] A state s, is semantically equivalent with
s in an object o iff super(s;) and super(s;) are con-
sidered to be the same by the application. O

Suppose that a pair of super states s; and s) of
an object o are considered to be the same in some
applications. Suppose s; = op;(s) and s, = opy(s) for
a state s of the object o. If s} and s/, are super states
of 5; and s, respectively, i.e. s} = super(s;) and s}, =
super(s,), s; and s, are obtained by reducing QoS of
s; and s,. Here, s; and s, are semantically equivalent
[Figure 3]. It is noted that Q(s¢) = Q(s4).
(Definition] A method op; is semantically equiv-
alent with another method op, in an object o
iff super(op:(s)) is semantically equivalent with
super(op,(s)) and Q(opi(s)) = Q(opa(s)) for every
state s of 0. O

={d] =

@ : super state =~ — : semantically equivalent

Figure 3: Semantically state equivalent methods.

Here, suppose the object movie supports two ver-
sions old-display and new-display of a method display.
new-display can display the same video image as old-
display while new-display can display at a faster rate
than old-display. new-display is considered to be the
same as old-display because they output the same im-
age data and do not change the state of movie. How-
ever, they support different levels of QoS, i.e. new-
display is more qualified than old-display with respect
to the display speed. That is, Q([ald-display(s)ﬁ =<
Q([new-display(s)]) for every state s of movie.
[Definition] A method op; is more qualified than an-
other method op, in an object o iff Q([op:(s)]) >
Q([opu(s)]) and op:(s) is state-equivalent with op,(s)
for every state s of the object 0. O

Let R be QoS which an object is required to sup-
port for an application, i.e. RoS. The application
does not mind which method old-display or new-
display is used to display the movie if the application
does not care the display speed in the object mouvie.
Two methods are considered to be equivalent with re-
spect to R if they support QoS subsuming R even
if Q([old-display(smwie)ﬁ)) = Q([new-display%smom-e)])
for a state $,;,0.:e Of the object mouie.
g)eﬁnition] A state s; is RoS-equivalent with s, on

oS R in an object o (s; —g su) iff Q(opi(s)) N
Q(opu(s)) 2 R and op:(s) is state-equivalent with
opy(s) for every state s of 0. O
[Definition] A method op; is RoS-equivalent with an-
other method op, of an object o on RoS R iff op,(s) is
RoS-equivalent with op,(s) for every state s of 0. O

In Figure 4, s = opi(s) and s, = opyu(s). st is
state-equivalent with s,. If Q(s¢) and Q(s,) satisfy
RoS R, op; and op, are RoS-equivalent. In addition,
op; is more qualified than op, since Q(s:) 2 Q(su).

In the first example presented here, suppose that
the updated version supports higher level of QoS than
the original one. They are semantically and RoS-
equivalent.

[Definition] A state s; is semantically RoS-equivalent
with s, on RoS R in an object o (s; =g Su.)
iff super(ops(s)) is semantically equivalent with

super(opy(s)) and Q(op:(s)) N Q(opu(s)) 2 R for ev-
ery state s of 0. O

op¢ Q

R

(=

Figure 4: RoS-equivalent methods.

[Definition] A method op; is semantically RoS-
equivalent with op, of an object o on RoS R iff op;(s)
=R op.(s) for every state s of 0. O

In Figure 5, s; = op:(s) and s, = opu(s), and s}
= super(s;) and s, = super(s,). s, and s/, are se-
mantically equivalent. Q(s;) and Q(s,) sa.tis#y RoS R
while Q(s;) may not be the same as Q(s,). Here, s;
is semantically RoS-equivalent with s, (s; =g s4.).

©-©

1 '

:
¢ {89,

Figure 5: Semantically RoS-equivalent methods.

3.2 Compatibility

We discuss in which order a pair of methods op;
and op, supported by an object o can be computed
in order to keep the object o consistent. According
to the traditional theory [1,7], a method op; conflicts
with another method op, in an object o iff the result
obtained by computing op,, after op; depends on the
computation order. op; is compatible with op, unless
op; conflicts with op,.

[Definition] A method op, is semantically compatible
with a method op, in an object o iff op; o op,(s) is se-
mantically equivalent with op, o op;(s) for every state
sofo. O

In Figure 6, s; = op; © opy(s) and s = op,, © op:(s).
Here, if s; is semantically equivalent with s;, op; is se-
mantically compatible with op,. Q(s1) = Q(s2). op:
semantically conflicts with op, unless op; is semanti-
cally compatible with op,,.

Suppose a multimedia object M displays MPEG-
4 data. The MPEG-4 data has QoS of a frame rate
30 fps and 256 colors. A method mediascaling of M
changes a frame rate to a half of the original one. On
the other hand, a method reduce decreases a number
of colors to 16 colors. The application can get the
same QoS of a state obtained by applying mediascaling
after reduce as in the reverse order. In any case, the

opy @

Opy,

Figure 6: Semantically compatible methods.

application can get the MPEG-4 data with 15 fps and
16 colors.

A multimedia data is composed of multiple objects

in MPEG-4. Each object can be manipulated inde-
pendently of the other component objects. Suppose a
multimedia object M displays MPEG-4 data which is
composed of two objects showing colored background
and car. A method add of M takes an object car
into the MPEG-4 data. On the other hand, a method
grayscale changes a colored video object to a white-
black gradation video. Suppose an application com-
putes grayscale after add. The MPEG-4 data obtained
by add and grayscale is a white-black gradation video
with background and car. However, the MPEG-4 data
obtained by applying add after grayscale is different
from one obtained by applying grayscale after add.
This MPEG-4 data includes white-black background
and colored car. That is, QoS of a state of an object
obtained by applying QoS methods depends on the
application order of the methods.
[Definition] A method op; is RoS-compatible with op,
on some RoS R (op; o op.(s) —r opu © opi(s)) iff op;
o opu(s) is RoS-equivalent with op, o op;(s) on R for
every state s of an object 0. O

In Figure 7, s4 is state-equivalent with sp. Q(s2) #
Q(s4) but Q(s2) and Q(s4) satisfy RoS R.

&

Figure 7: RoS-compatible methods.

The RoS-compatibility relation is symmetric. Un-
less a method op; is RoS-compatible with another
method op,, op; RoS-conflicts with op,. In the
multimedia object M, reduce and mediascaling are
RoS-compatible. However, add RoS-conflicts with
grayscale.

Suppose an application is not interested in how
colorful movies are. An update method changes an
object movie from a colored version to a monochro-
matic one. The colored movie m is seen by dis-

play, i.e. [display(m)]. If update is applied to the
movie m, the monochromatic version of m is seen.
Since the application is not interested in the color
of m, both versions are considered to satisfy the re-
quirement QoS (RoS) required by the application.
Hence, Q([display(m)|) N Q([update o display(m)])
O R and Q(display o update(m)) = Q(update o dis-
play(m)). display and update are RoS-compatible.
However, they are not semantically compatible be-
cause Q([update o display(m)]) # Q([display(m)]).
[Definition] A method op; is semantically RoS-
compatible with op, in an object o with respect to
RoS R iff op; o op,(s) is semantically RoS-equivalent
with (=g) op. © opi(s) on R for every state s of 0. O

In Figure 8, s; = op: o opy(s) and s2 = op, ©
op:(s) where s; and s, are semantically equivalent.
In addition, Q(s;) and Q(s;) satisfy the RoS R.

P F
RS
()

opt

Figure 8: Semantically RoS-compatible methods.

0Py

4 Compensation

A method op, is a compensating method of a
method op; if op; o opy(s) = s for every state s of an
object o [5,7]. Let op; denote a compensating method
of op;. Let s’ be a state obtained by computing the
method op; on a state s of the object o, i.e. s’ =
op:(s). Here, the object o can be rolled back to the
state s if op; is computed on s’. For example, append
is a compensating method of delete.

Let us consider the multimedia object ME with two
movies A and B at state s;, where it takes two hours
to play each of A and B [Figure 9]. Suppose that A
and B are merged into a movie C at state sy. Then,
C is divided into two movies A’ and B’ of state s3.
It takes one hour and half to play each of A’ and B’
at state s3. Each of A and B is composed of adver-
tisement and content parts of the movie. A’ and B’
include only the contents of A and B, respectively.
The advertisements of A and B are merged into AB.
Here, s3 is semantically equivalent with s;. divide is
a semantically compensating method of merge.

P
2 hours

.......................................

Figure 9: Semantically compensating method.

[Definition] A method op, is a semantically compen-
sating method of op; iff op; o op,(s) is semantically
eqixivalent with every state s of an object o [Figure
10]. O ;

@)

Figure 10: Semantically compensating method.

[Definition] A method op, is an RoS-compensating
method of a method op; in an object o on RoS R iff
op; o op,(s) =g s for every state s of o [Figure 11]. O

@ 0Py
R (s1)
() "om

Figure 11: RoS-compensating method.

[Definition] A method op, is a semantically RoS-
compensating method of op; in an object o on RoS
R]iff opy © opy(s) =g s for every state s of o [Figure
k2.

Figure 12: Semantically RoS-compensating method.

Suppose the multimedia object ME supports a
method divide2 which divides C into three parts A",
B"”, and AB in addition to merge and delete shown
in Figure 9. A” and B" are the content parts of
A and B, respectively, which are monochromatic at
state s3. AB includes the advertisement Parts of A
and B. s3 denotes a state where A", B"”, and AB
are obtained from A and B. s, and s3 are not the
same. Furthermore, A and B are colored but A" and
B" are monochromatic. That is, Q(A4) O Q(A”) and
Q(B) 2O Q(B"). Here, suppose an application just
would like to see the monochromatic one as RoS R.
Here, Q((s3)) 2 R. divide?2 is a semantically RoS-
compensating method of merge.

5 Concluding Remarks

This paper has discussed how to make the dis-
tributed system flexible with respect to QoS supported
by the objects. We have discussed the novel equivalent
and conflicting relations among the methods on the
basis of QoS. We have also discussed the compensat-
ing method to undo the work done. A state equivalent

Figure 13: Semantically RoS-compensating method.

with the previous qualified state with respect to QoS
is obtained by computing the compensating methods
of methods computed.

References

[1] Bernstein, P. A., Hadzilacos, V., and Good-
man, N., “Concurrency Control and Recovery in
Database Systems,” Addison-Wesley Publishing
Company, 1987.

[2] Cambell, A., Coulson, G., Garcfa, F., Hutchison,
D., and Leopold, H., “Integrated Quality of Ser-
vice for Multimedia Communication,” IEEE In-
foCom, 1993, pp.732-793.

[3] Campbell, A., Coulson, G., and Hutchison, D.,
“A Quality of Service Architecture,” ACM SIG-
COMM Comp. Comm. Review, Vol. 24, 1994,
pp.6-27.

[4] Gall, D., “MPEG: A Video Compression Stan-
dard for Multimedia Applications,” Comm.
ACM, Vol.34, No.4, 1991, pp.46-58.

[5] Garcia-Molina, H. and Salem, K., “Sagas,” Proc.
of the ACM SIGMOD, 1987, pp.249-259.

(6] Kanezuka, T. and Takizawa, M., “QoS Oriented
Flexibility in Distributed Objects,” Proc. of the
Int’l Symp. on Communications (ISCOM’97),
1997, pp.144-148.

[7] Korth, H. F., Levy, E., and Silberschalz, A., “A
Formal Approach to Recovery by Compensating
Transactions,” Proc. of VLDB, 1990, pp.95-106.

(8] MPEG Requirements Group, “MPEG-4 Require-
ments,” ISO/IEC JTC1/SC29/WG11 N2321,
1998.

[9) MPEG Requirements Group, “MPEG-4 Appli-
cations,” ISO/IEC JTC1/SC29/WG11 N2322,
1998.

[10] Object Management Group Inc., “The Common
Object Request Broker: Architecture and Speci-
fication, Rev2.0,” 1995.

[11] Sabata, B., Chatterjee, S., Davis, M., and Syidir,
J. J., “Taxonomy for QoS Specifications,” Proc of
the IEEE 3rd WORDS ’97, 1997, pp.100-107.

[12] Takizawa, M. and Yasuzawa, S., “Uncompensa-
table Deadlock in Distributed Object-Oriented
Systems,” Proc. of IEEE ICPADS-92, 1992,
pp-150-157.

[13] Yoshida, T. and Takizawa, M., “Model of Mobile
Objects,” Proc. of DEXA’96, 1996, pp. 623-632.

—144—

