
マルチメディア通信と分散処理ワークショ ップ 平成10年11月

Group Protocol for Multiple Objects

Tomoya Enokido， Hiroaki Higaki， and Makoto Takizawa
Dept. of Computers and Systems Engineering

Tokyo Denki University

Email {eno.hig.taki}@takilah.k.dendai.ac.jp

Abstract
Distributed applic品tions品開 7・ealizedby cooperatioπ

0111凶 ltipleobjects. A state 01 the object depends on in
what order the object ezchanges request and respoπse
messages. In this paper， we newly define a signifi・

cantly precedent order 01 messages based 0π a con-
flicting relatioπamong requests. The objects can be
mutually consistentザtheobjects take messages in the
significantl:百 precedentorder. We disc包ssa protocol
which s叩 portsthe significantly ordered delivery 01 re-
quest and response messages. Here， an object vector
is newly proposed to signポcantl百 ordermessages.

1 Introduction
Distributed applications are realized by a group of

rnultiple application objects. Many papers [3，10] dis-
cussed how to support the causally ordered delivery
of rnessages at the network level in presence of rnes-
sage loss and stop faults of the objects. Cheriton et
al. [4] point out that it is rneaningless at the appli-
cation level to causally order all rnessages transrnit-
ted in the network. Ravindran et al. [llJ discuss how
to support the ordered delivery of rnessages based on
the rnessage precedency explicitly specified by the ap-
plication. Agrawal et al. [8] define significant rnes-
sages which change the state of the objec七.Raynal et
al. [1] discuss a group protocol for replicas of五lewhere
write-write sernantics of rnessages are considered. The
authors [5] discuss a group protocol for replicas where
a group is cornposed of transactions issuing read and
write reques七sto the replicas.

An object 0 is encapsulation of data and rnethods.
On receipもofa request rnessage with a rnethod op， the
object 0 cornputes叩 andsends back a response rnes-
sage with the result of op. Here， the rnethod op rnay
further invoke another rnethod， i.e. nested invocation.
States of the objects depend on in what order rnethods
are cornputed. A coπβicting relation arnong rnethods
is defined for each object based on the sernantics of
the object. If a pair of rnethods sending and receiv-
ing， rnessa~es .c~mfl~ct in an obj~ct ， th~ rne~s~ges haye
to be received in the cornputation order of the rneth-
ods. Thus，もhesignificantl百precedentrelatioπarnong
request and response rnessages can be defined based
on the conflicting relation. In this paper， we present
an Object-based Gro叩 (OG)protocol which supports
the signi五cantlyordered delivery of rnessages where
only rnessages to be ordered at the application level
are deliveredもothe application objects in the order.

Takizawa et al. [12] show a protocol for a group of
objects， which uses the real tirne clock. However， it is
not easy to synchronize real tirne clocks in distributed
objects. We newly propose an object vector to signifi-
cantly order rnessages.

In section 2， we discuss the significant precedency
arnong rnessages. In section 3， the OG protocol is
discussed. In section 4， we present the irnplernentation
and evaluation of the OG protocol.

2 Significantly Ordered Delivery in

Object-based Systems

2.1 Object-based systems
A group G is a collection of objects 01， ...， On

(n主1)which are cooperating by exchanging requests
and response rnessages in the network. We assurne
that rnessages sent by each object are delivered to the
destinations with rnessage loss not in the sending order
and the delay tirne arnong objects is not bounded.

An object 0.. can be rnanipulated only through
rnethods supported by 0... Let op (s) denote a sta-te
obtained by applying a rnethod op to a state s of the
object 0... A pair of rnethods OPl and OP2 of 0， are com-
patible iff OP1(OP2(S)) = OP2(oPl(s)) f01-every state s
of 0，・ OPland OP2 coπ.flict iπ 仕leyare not cornpati-
ble. The conβicting relation C.. arnong the rnethods is
specified when 0.. is defined. We assurne that is syrn-
rnetric but not transitive. A pair of request rnessages
ml of a rnethod OPl and m2 of OP2 conllict iff叩 1

and_?P2 c~n!lict. SuPP?se， ~P l. is issued to，~ ' If oPl
conflicts with sorne rnethod being cornputed in 0..， oPl
h剖 towait until oP2 cornpletes.

Each tirne an object 0.. receives a request rnessage
of a rnethod op， a thread is created for op. The thread
IS出 aninstance of op in 0..， which is denoted by o.戸.
Only if all the actions cornputed in op cornplete suc-
cessfully， i.e. commit， the instance of op cornrnits.
Otherwise， op aborts. op rnay further invoke rnethods
of other objects. Thus， the invocaもionis nested.

2.2 Significant precedence

A rnethod instance opi precedes another one op~
(opi :::}.. opi) iff oP2 is started to be cornputed after

opi cornpletes in 0..・opiprecedes 叩~ (opi =争 op~) iπ

opi =争i op~ for j = i， opi invokes op~ ， or opi :::} op~
=争 op~ for sorne op~. opi and 叩~ are concurrent (opi

11 ~) iff neither例功例 nor。品=争 opi.

。ぺ
u

a
A守

A message ml c仰 Sιllyprecedes another one m~ if
the sending event of ml precedes m~ [3，7]. Suppose
an object 0， sends a message ml to objects Oj and
O/;， and Oj sends m2 to O/; after receiving ml・Here，
ml causally precedes m2. Hence， O/; h副 toreceive
ml before m2・ Wedefine a significantly precedent
relation “→" among messages ml and m2， which is
significant for applications in the object-b剖 edsystem.
There are the following cases :

5. An object 0， sends r凡2after ml [Figure 1].

51. ml and m2 are sent by op~.

S2. ml is sent by op~ and m2 is sent by叩3:
S2.1. opi precedes叩'1(oPi =争叩h).

S2.2. OPi and op1 are concurrent (叩i110品)•
R. 0， sends m~ after receiving m1 [Figure 2].

R1. m1 and m2 are received and sent by opi.

R2. m1 is received by opi and m~ is sent by oP1:

R2.1. opi =争 op1. R2.2.叩'Ii同'p1.

We discuss how messages are significantly preceded
for each of the cases. First， let us consider the case
S [Figure 1] where an object 0， sends a message m1
before m2' In Sl， m1 si仰がcantlyprecedes m2 (m1→
m2) since ml and m2 are sent by the same instance
Opi. In S2， ml and m2 are sent by diπ'erent instances
OPi. and叩 hin九 InS2.1， opi precedes OPl (opiキ

OP2) . U nless opi and叩 2confiict， there is no rela-
tion between opi and oP2' Hence， neither ml → m~
nor m2→ ml. Here， m1 and m2 are significantly
concurrent (m1 11 m2). Suppose oPI and opl con-
fiict. The output data carried by the messages ml
and m2 in“叩'2=> opi" may be different from “opi =今
opi" because the state obtained by applying opi and
OP2 depends on the computation order of opi and叩}
Thus， if opi and opi confiict， the messages sent by opi
have to be received before the messages sent by叩L
l.e. m1→ m2. In S2.2， opi 11 opl. Since叩'iand op2
are not related， ml 11 m2

In the case R [Figure 2]， 0， sends m2 afもerreceiving
m1・ InR1， m1→ m2 since m1 is received and m~
is sent by opi. Here， ml is the request of opi or a
response of a method in voked by opi. m2 is the re・

sponse of op色ora request of a method invoked by叩 1.
The output of oP2 may be the input of ml・InR2， m1
is received by 0吋 andm2 is sent by oP2 (;#: opi). In
R2.1，opiキ opl.If opi and opl confiict， ml→ m2・

Unless opl and op~ confiict， ml 11 m2・InR2.2， m1 11
m2.
[Definition] A message ml significantly precedes an-
other message m2 (m1→ m2) iff one of the following
conditions holds:
1. ml is sent before m2 by an object 0; and

a. ml and m2 are sent by a same method in-
stance，or

b. a method sending m1 confiicts with a
method sending m2 in 0，.

2. ml is received before sending m2 by 0， and

a. m1 and m2 are received and sent by a same
method instance， or

b. a method receiving m1 confiicts with a
method sending m~ ・

3. ml→ m3→ m2 for some message m3・ロ
0，

time
(SI)

0，

tlme
(S2.1)

。‘

tlme
(S2.2)

Figure 1: Send-send precedence

。‘

ml

time
(Rl)

0，

t&me
(R2.1)

0，

time
(R2.2)

Figure 2: Receive-send precedence

[Proposition] A message ml causally precedes a mes-
sage m2 if ml significantly precedes m:2 (ml→ m2)
A message m is significant1y preceded by only mes-
sages related with m.

2.3 Ordered delivery
Suppose an object 0" sends a message m1 to two

objec七s0， and 句， and o/; sends m~ to 0"， 0" and 0;
[Figure 3]. There are 仕lefollowing cases :

C1. ml and m2 are requests.
C2. One of ml and m2 is a requesもandthe other is a

response.
C3. ml and m2 are re日ponses.

0" 0， 0; o/;

op~

time

Figure 3: Receive-receive precedence

In the case C1， suppose ml and m~ are requests of
methods opl and op2， respectively， and oPl confiicts
with叩:2in the objecもs0; and Oj. If m1 11 m2， m1 and
m2 may be delivered in 0， and 0; in different orders.
However， the state of 0， obtainea by computing opl

-44-

and OP2 may be inconsistent with Oj because OPl and
OP2 confiict in 0， and Oj・ lnorder to keep Oi and Oj
mutually consistent， ml and m2 have to be delivered
to 0， and Oj in the same order. Thus， a pair of requests
ml and m. have to be delivered in every pair oi and
Oj of common destinations in the same order if the
requests ml and m. confiict in 0， and Oj・lnC2 and
C3， ml and m. can be delivered in any order.

5uppose 0， receives messages ml and m2・ First，
suppose ml 11 m2・Ifml and m. are requests sent
to one object 0" 0， can receive ml and m2 in any or-
der. Otherwise， the cases Cl， C2， and C3 are adopted.
Next， suppose ml significantly P何 cedesm2 (ml→
m2). There are the following cases :

T. 0. receives m2 before ml [Figure 4]
Tl. ml and m2 are received by an instance op~.

T2. op~ receives ml and OP2 receives m2・

T2.1・0吟 precedesoPI (OP2 =争 Opi).

T2.2.叩iand oP2 are concurrent.

。‘ 。‘ 0，
ml ‘ OPl

Op;
op:

m2

Op;

time

(T1)
time
(T2.2) (T2.1)

Figure 4: Receive-receive precedence

ln T1， ml h舗もobe delivered to the object 0， before
m. since ml significantly precedes 問.(ml→ m2)' ln
T2， ml and T町 arereceived by different instances叩:
and叩2'If opi and op2 are concurrent (op~ 11叩'2)in
T2.2， ml and m2 can be independently delivered to

~.p~ a~9 oP2' ln -r:2.1， first suppos~ op~ ~nd ?~~ con-
fiiCt. If ml or m2 is a request， ml has to be delivered
before m. since ml →m.・ Next，suppose ml and m2
are responses. Unless ml is delivered before m2， opi
waits for ml and OP2 is not computed since oPi does
not complete. That is， deadlock among oPI and op2
occurs. 5uppose m3 is sent to opi and m4 to oP2 and
m4→ m3・ Evenif opi =争 0吟 andml is delivered
before m.， deadlock occurs because m4→ m3・Thus，
messages destined to diπ'erent instances cannot be de-
livered to 0， in the order “→" unless at least one of
the messages is a request. Unless opi and oP2 confiict，
ml and m2 can be delivered in any order.
[Significantly ordered delivery (50)] A message
ml is delivered before another message m2 in a com-
mon destination 0， of ml and m2 if the following con-
dition holds :

• if ml→m.，
• a same instance receives ml and m2， or
• a method instance opi receiving ml confiicts
with oP2 receiving m2 in oi and one of ml
and m. is a request，

• if ml and m2 are con.fiicting requests and ml 11
m2， ml is delivered before m2 in another common
destination of ml and m2・ロ

[Theorem] No communication deadlock occurs if ev-
ery message is delivered by the 50 rule.ロ

The system is consistent if every message is deliv-
ered by the 50 rule.

3 Object-Based Group Protocol

3.1 Object vector

The 凹 ctorclocJc [9] V = (Vl' .. .， Vn) is widely used
to causally order messages in most group protocols.
Each object 0. manipulates a vector clock V = (Vし
•• "' 凡)(i = 1，・・.， n). Each element vi is initially O.
0， increments vi by one each time 0. sends a message
m. m carries the vector clock m. V (= V). On receipt
of a message m'， 0， changes V回巧:=max(ltj， m'.巧)
for j 1，...， n and j i= i. A message ml causally
precedes another message m2 iff ml . V < m2. V.

The significant precedency of messages is defined in
context of instances invoked and in nested invocations
while the causality is defined for messages sent and
received by “objects". Hence， a group is considered to
be composed of method instances， not objects. ln the
vector clock， the group has to be frequently resynchro-
nized [3，4，7-9，12] each time instances are initiated and
terminated. ln this paper， we newly propose an object
vector to causally order only the significant messages.

Each instance op~ is given a unique identifier id(opD
satisfying the following properties :

11. If op~ starts after op~ starts in an object 0" id(叩I~)

> id(叩L).
12. If 0. initiates op~ after receiving a request OPt from

O]Y，.， id(op~) > id(0]Y，.) .
The object 0， manipulates a variable oid， initially 0，
showing the linear clock [7] as follows :

・oid:= oid + 1 if an instance 叩，~ is initiated in 。‘.
・Onreceipt of a message from 0]Y，.， oid := max(0叫
oid(叫))•

When an instance 叩，~ is initiated in the object 0"
the instance identifier id(opn is given a concaもenation
of oid and the object number ono(0，) of 0.. Here，
let oid(op~) show oid of id(opD. id(0吋)> id(o~)
if 1)仇d(叫)> oid(orY，.) or 2) oid叩'D= oid(叫)
and ono(Oi) > ono(Oj) . -It is clear出atthe in山 nce
identifiers satisfy I1 and 12.

Each action e in叩'ti~ .given a~ even~ num?er noヤ).0. manipulates a variable no， for each action e， i.e.
no(e) := no， in 0，函 follows:

・Initially，no， := O.
• no，π0， + 1 if e is a sending action.

Each action e in op~ is given a global event nu.mber
tno(e)回 theconcatenation of id(σpD and no(e).

An object 0， manipulates a vector V‘= (V~， ...，
V~) . Each element ~' is initially O. Each time an

ms同nceop~ is initiated on 0.， op~ is given ~' = (咋1，

F4
h
d

anT

-・，V;~) where 円;:=ηforj 1，. ..， n. Each

element V;' is manipulated for 叩~ as follows :

・ [op~ sends a message m] no， no， + 1 V;~
(id(opi)， れ叫 m carries the vector η 回 m.V
where m.巧町(j= 1， ...， n).

・[叩 receivesa message m from 0;] V;~ := m.巧i

• [op~ commits] η:= max(η，円:j)(j二 1，...， n)j

• [op~ aborts] V‘is not changed.

Oi ~・
<0，0> 1<0，0>

伊;

ぐ
o~

< liO， 0 > 〉

time

Figure 5: Object vector

In Figure 5， the vectors V‘and V' are initially (0，
0). An instance oPI is initiated in 0， where V{ (0，
0). After sending a message m to o~ ， e.g. m is a
request of OP2 to 0;， Vi is changed to (liO， 0) where
liO is the global event number of the sending action

of m. m carriesη(= (liO， 0)) to 0品.On receipt of

m， o~ changes Vi to (liO， 0). After o~ commits，巧
of句 ischanged to be (liO， 0)
3.2 Message transmission and receipt

A message m includes the following fields:
m.sT・c= sender object of m.
m.dst = set of destination objects.
m.ty戸=message type， i.e. T・equest，responce，

commit， and abort.
m.op = method. m.d = data.
m.tno = global event number (m.id， m.no).
m.V = object 1Jector (V1! ...，九)•
m.SQ = vector of sequence numbers (sql' ...， sqn)'

If m is a request message， m.tno is a global event
number of the sending action of m. m.id shows the
instance identifier and m.no indicates the event num-
ber in the instance. If m is a response message of a
requesもm'，m.tno = m'.tno and m.op = m'.op.

An object 0， manipulates variables Sql， ...， sqn to
detect a message gap， i.e. messages lost or unexpect-
edly delayed. Eachもime0， sends a message to another
object 0;， sq; is incremented by one. Then， 0， sends a
message m もoevery destination object in m.dst. The
object 0; can detect a gap between messages received
from 0， by checking the sequence number. Oi manipu-
lates variables rsql， ・・.， rsqn to receive messa.ges. rsqj
shows a sequence number of message which 0， expects
to receive next from Oj. On receipt of m from 0"
there is no gap if m.sqj = rsq，. If m.sq; > rsq" there
is a gap message m' where m.sq; > m'.sq;主 rsq，・

-46-

That is， 0; h出 notyet received m' which is sent by
0，. 0; correctly receives m if 0; receives every message
m' where m人sq;< m.sq;. That is， 0; receives every
message wh.ich 0， sends to勺 beforem. The selective
retransrnission to recover from the message l05s is used
in the protocol. If 0， does not receive a gap message
m in some time units after the gap is detected， Oj re-
quires 0， to send m again. Oj enqueues m in a receipt
queue RQ; even if a gap is aetected on receipt of m.

Suppose an instance引 inan object 0， invokes a
method op. Here， op may be sent to multiple objects.
0， constructs a message m for op坦 followsand sends
m to the destination objects :
m.src:= o.‘m.dst := set of destinationsj
m.type := requestj m.op:= opj
m.tno = (m.id， m.no) := (id(op~) ， πo，))j
sqh := sqh + 1 for every Oh in m.dstj
m.巧:=V;j and m.sq; := sq; for j = 1， ...， nj

3.3 島fessagedelivery

Let us con副 erth問 objects0"句，回dOlr. [Figure
6]. An instance oPI in 0， sends a message ml to 0;

and Olr.・ oplis inte巾 avedwith oPI in 0" i.e.叩1

and op~ are concurrent in 0， (oPI 11 op~). op~ sends

m3 to Olr.・ o~ sends m2 to Olr. after receiving ml・
Here， ml significant1y precedes m2 (ml→ m2). Olr.
h剖 toreceive ml before m2・ However，ml 11 m3 since

opi 11 op~. Simila均町 11m3・However，since ~ is
initiated after receiving ml from叩 Iand oPI 11叩L
ml・V= m3.V. Hence， m2'V > TnJ.V. Although Olr.
can receive m2 and m3 in any order since m2 11 m3，
“m2 precedes m♂ by the object vector. In orderもo
resolve this problem， an additional recei戸 1JectorRV
= (RVlt...， R凡)is given to each message m received
from 0，・ m.RVshows RV in m. m.RV is the same嗣

m. V except that m.RVi shows the global event number
of the sending event of m for an object oi which sends
m. m.RV is manipulated as follows :

• m.RVi := m.tno j

• m.RVh := m.Vh for h = 1，・ー，n (h i i)j

In Figure 6， id(opi) < id(op~) because 0吟 starts
after oPI. Hence， ml.RV < m3.RV as shown in Table
1. The instance oPI sends a message mlもoobjects
町 andOlr. where 肌 tno= liO and m.V = (0， 0， 0).
On receipt of ml， 0; enqueues ml into a receipt queue
RQ;. Here， 0; gives RV to ml， i.e. ml・RV= (liO， 0，
0) while ml. V is still (0， 0， 0). Table 1 shows values of
tno， V， and RV. ml.V < m2.v and ml.RV < m2.RV.
On the other hand， m2.V > m3.V but m2.RV and
m3.RV are not comparable.

Following出isexample， a pair of messages ml and
m2 are ordered by the following rule.
[Ordering ruleJ A message ml precedes another one
同2(ml =争 m2)If the following one holds :
if ml・V< ~ .V and ml.RV < m2.RV，
・ml・op= m2.op or ml.op conflicts wi出 m2・op.

else mlιype m2・type request， ml・opconflicts
with m2.op， and ml.tno < m2.tno.ロ

ln Figure 6， m1 => m2 since m1. V < m2. V and
m1.RVく m2.RV.On the other hand， m1.V = m3'V
but m1.RV < m3.RV. Accordingly， m1'o.p and m3・叩

are checked. Since o.Pi and 0.吟 arecompatible， m1 and
m3 are not ordered in the precedent relation “二争11

Table 1: Object vectors
m.tπo
寸iO
2jO
2iO

q
op:

0，
J 正弘

t初日

Figure 6: Receipt vector.

[Theorem] A message m1 significantly precedes an-
other messa.ge m2 (ml→ m2) iπm1 争 m2.ロ

The messages in RQ， are ordered in the precedent
order =争 Messagesnot ordered in斗 arestored in
RQ， in the receipt order.
[Stable message] A message m which an object 0.，
sencls to 0.; and is stored in the receipt queue RQ; is
stable iff one of the following conditions holds :

1. There exists such a message ml in RQj that
m1・sqj= m.sqj + 1 and ml is sent by 0.，.

2. 0.; receives at least one message m1 from every
object， where m → m1.ロ

The top message m in RQj can be delivered if m is
stable， because every messa.ge significantly preceding
m is surely delivered in RQj・ Amessage m in RQ;
is ready in an object 0.; if no method consicting with
the method m.op is being computed in 0.・-ロ

ln addition， only significant messages in RQj are
delivered by the following procedure in order to reduce
time for delivering messages.
[Delivery procedure] While each top message m in
RQj is stable and ready， m is delivered from RQj・ロ
[Theorem] The OG protocol delivers a message m1
before m2 if ml→ m2・ロ

If an object 0.， sends no message to another object
o.j， messages in RQj cannot be stable. ln order to re-
solve this problem， 0， sends 0.; a message without data
if 0.， had sent no data to o.j for some predetermined e
time units. 0.; considers that 0.; loses a message from
0.， if o.j receiv.es no message from 0.， for e or 0.; detects
a message gap. 0.， also considers that 0.; loses a mes-
sage m unless 0.; receives the receipt conn.rmation of m
from o.j in 2e after 0.， sends m to 0.;. Here， o.i resends
m.

4 Implementation and Evaluation

4.1 Implementation
An OG protocol module is implemented as a prcト

cess of Solaris 2.6 in the Sun workstation. Each pro-
cessor has one OG protocol module and objects. The
OG modules exchange messages by using UDP [15].
The OG module in each processor delivers messages
to the objects in the signi五cantlyprecedent order. A
transaction in a client processor issues request mes-
sages to objects in server processors. Each OG protcト
col module in a processor Pt includes two threads， Rec
for receiving messages and Snd for sending messages
[Figure 7]. These threads share the variables showing
the sequence numbers sq， rsq， the object vector V，
the event number no.， and the instance identifier id in
the shared rnemory. The Rec and Snd threads mutu-
ally exclusively manipulate the variables by using the
semaphore. The OG module delivers messages in the
delivery queue DQ of each object in the significantly
precedent order by the ordering rule.

Each object oi is realized by one process. The ob-
ject 0.， takes a top message in the delivery queue DQ.
On taking a request o.Pt from DQ， oi is locked in a
rnode μ(叩 t).If 0.， could be locked， a thread for明

is created. Otherwise， o.Pt blocks in a block queue of
0.;. In this implementation， unless an object could be
locked by a transaction in a fixed time after the lock
request is issued， the transaction aborts. ln this irnple-
rnentation， the semi-叩叩 lockingscherne is adopted
to release objects locked. Suppose that the rnethod
o.Pt of 0.， invokes rnethods o.Pt1! ・・・， o.Pth. on objects
0.'1， .・・，Oih. (ん三 1).Before computing o.ptu， the ob-
ject Oiu is locked. If o.Pt cornmiもs，the objects 0;1， . . .，

o.'h. are released while 0.; is still being locked. If 0Pt
aborts， not only 0.山・.， o.'h. but also oi are released.
The object 0.， is released if the rnethod invoking o.Pt
cornpletes or OPt aborts.

objecl

.........J.・・・・・・・...............J.......，

Figure 7: lmplementation of OG protocol.

4.2 Evaluation
In the evaluation， each processor is irnplemented in

one Ultra Sparc CPU in a Cray Super Server 6400 with
10 CPUs. Three objects :1:， y， and z are distributed
in the processors. Each of :1: and y supports three
types of methods and z supports two types of rneth-
ods. Each rnethod invokes one or two methods in other
objects. Each processor has one object. First， eight
transactions are sequentially initiated in each proces-

ウ

i
A
4
4

sor. Each transaction invokes one methods randomly
selected from eight methods supported by the objects
x， y， and z. A method invoked by the transaction
furthermore invokes other methods. Each transaction
randomly invokes one method in the system. Then，
the method invokes other methods. In the evaluation，
each transaction invokes methods in a nested manner
at a fuced number of levels. Table 2 shows number of
transactions issued for each nesting level. We measure
the total response time of the transactions in the OG
protocol and the message-based protocol. The average
response time is calculated from the response time ob-
tained by computing four times the evaluation. Figure
8 shows the average response time of the transactions
for the level of nested invocation. The dotted line
shows the response time of the message-based proto-
col. The straight line indicates the OG protocol. The
figure shows the transactions can finish earlier than
the message-based one because insigni貧cantrequest
messages are computed without waiting for messages
causally preceding in the OG protocol.

---ーーー・幡崎町p品副伊抽出

[.103.ec) 一一一 OGprot目。t

•
‘

50-

I.OCI.

5Q...1..ー

1.00-

→ ， ， ，

50..

， ， ，

2.00..

5Q.
e， ， ， ン〆

i制L
X/

5Q.
，ンF

〕メキ/

0 3.
E 。4

3
0
ω
C::2
0
a
ω2
0

a:: 150-

1.

0.50..

O.

2 3 5 4

Maximum nesting level

Figure 8: Evaluation.

The computation overhead of the OG protocol
module is almosもthesame as the message-based pro-
tocol.

5 Concluding Remarks
In this paper， we have discussed how to support

the significantly ordered delivery ofmessages. While
network messages are causally ordered in most group
protocols， only messages to be causally ordered at the
application level are ordered. The system is modeled
to be a collection of objects. Based on the conflicting
relation among methods， we have defined the signifi-
cantly precedent relation among request and response
messages. We have discussed出eobject vector to sig-
nificantly order messages in the object-based systems.

The size of the object vector depends on the number
of objects， not the number of method instances. We
have presented the implementation of the OG protocol
and how the OG protocol reduces the response time
of the transactions through the evaluation.

References
[1] Ahamad， M.， Raynal， M.， and Thia-Kime，

G.，“An Adaptive Protocol for Implementing
Causally Consistent Distributed Services，" Proc.
olIEEE ICDCS-18， 1998， pp.86-93.

[2] Bernstein， P. A.， Hadzilacos， V.， Goodman， N.，
“Concurrency Control and Recovery in Database
Systems，" Addison-Wesley， 1987.

[3] Birman， K.， Schiper， A.， and Stephen附 1，P.，
“Lightweight Causal and Atomic Group Multi-
C剖 t，"ACM Trans. Computer Systems， Vo1.9，
No.3， 1991， pp.272-314.

[4] Che出 on，D. R. and Skeen， D.，“Understanding
the Limitations of Causally and Totally Ordered
Communication，" Proc. 01 ACM SIGOPS'93，
1993， pp.44-57.

[5] Enokido， T.， Higaki， H.， and Takizawa， M.，
“Group Protocol for Distributed Replicated Ob-
jects，" Proc. 01 ICPP'98， 1998， pp.570-577.

[6] Enokido， T.， Higaki， H.， and Takizawa，Jv!'1 "Prか
tocol for Group of Objects，" Proc. 01 DEXA '98，
1998， pp.470-479.

[7] Lampo爪 L.，“Time，Clocks， and the Ordering of
Events in a Distributed System，" CACM， Vo1.21，
No.7， 1978， pp.558-565.

[8] Leong， H. V. and Agrawal， D.，“U sing Message
Semantics to Reduce Rollback in Optimistic Mes-
sage Logging Recovery Schemes，" Proc. olIEEE
ICDCS・14，1994， pp.227-234.

[9] Mattern， F.，“Virtual Time and Global States of
Distributed Systems，" Para/lel and Distributed
Algorithms (Cosnard， M. and Quinton， P. eds.)，
North-Hollaπd， 1989， pp.215-226.

[10] Nakamura， A. and Takizawa， M.，“Causally
Ordering Broadcast Protocol，" Proc. 01 IEEE
ICDCS・14，1994， pp.48-55.

[11] Ravindran， K. and Shah， K.，“Causal Broadc剖 t・
ing and Consistency of Distributed Shared Data，"
Proc. olIEEE ICDCS-14， 1994， pp.40-47.

[12] Tachikawa， T.， Higaki， H.， and Takizawa， M.，
“Significantly Ordered Delivery of Messages in
Group Communication，" Computer Communica-
tions Journal， Vol. 20， No.9， 1997， pp. 724-731.

[13] Tachikawa， T.， Higaki， H.， and Takizawa， M.，
“Group Communication Proもocolfor Realtime
Applications，" Proc. 01 IEEE ICDCS・18，1998，
pp.40-47.

[14] Tanaka， K.， Higaki， H.， and Takizawa， M.，
“Object-Based Checkpoints in Distributed Sys-
tems，" JOU1・nal01 Computer Systems Science and
Engineering， Vol. 13， No.3， 1998， pp.125-131.

[15] User Datagram Protocol， RFC 0768， 1980， pp.
1-3.

。八U
S
斗
A

