TIVFAF A TREEHBUET -V 3y T FRIELA

Design of Multiagent-based Asynchronous Messaging System

Takuo Suganuma*, Jiro Sekiba*, Gen Kitagéta*,
Tetsuo Kinoshita*, Ken-ichi Okada** and Norio Shiratori*

*Research Institute of Electrical Communication /
Graduate School of Information Sciences, Tohoku University
2-1-1, Katahira, Aoba, Sendai 980-8577, Japan
E-mail: {jir,minatsu,suganuma,kino,norio} @shiratori.riec.tohoku.ac.jp
**Information and Computer Science Department, Keio University
14-1, Hiyoshi 3-chome, Kohoku-ku, Yokohama 223-0061, Japan
E-mail: okada@inst.keio.ac.jp

Abstract

Asynchronous Messaging Systems like e-mail systems
today need some advanced features, such as intelligence,
controllability and scalability, to accomplish more
effective and sophisticated message handling. In this
paper, we propose a framework of Flexible Asynchronous
Messaging System (FAMES), which consists of
autonomous and collaborative software agents. In FAMES,
various messaging functions composed by agents can be
utilized to integrate heterogeneous user environment.
Moreover, FAMES operates message flow in intelligent
manner, considering the receiver's own convenience and
the flexible message delivery can be achieved. We designed
and implemented the proposed system based on multi-
agent technology, and have shown its effectiveness through
the experimental studies using the prototype system.

1. Introduction

As the Internet and personal computers are widely used,
lot of people come to have their own individual
environments on computers wired to the net at their home
or office. On those environments, asynchronous messaging
systems, standing for e-mail systems, has become one of
the most popular tools to communicate with others. The
asynchronous messaging system is useful in various
applications, however, many problems remain in terms of
user's viewpoint. For instance, when a user wants to use
extended messaging functions other than ordinal ones,
such as message cancellation or circulation, it may be
impossible unless all recipients' messaging environments
support the specific functions. Since the asynchronous

messaging system is realized as a loose coupled distributed
system, their environments tend to be highly
heterogeneous. Such heterogeneity makes the enhancement
of messaging functions very difficult. On the other hand, if
areply to a received message is delayed due to absence or
convenience of a recipient, messaging process will not be
completed as sender's wish. Although such inconvenience
originates from the intrinsic property of the asynchronous
systems, any systematic supports are not considered.

All these problems may be caused by inflexibility in
traditional asynchronous messaging systems against
various types of changes of both systems' situations and
users' demands. In 'this paper, to solve these problems, we
propose a framework of Flexible Asynchronous Messaging
System (FAMES), which is applied the concept of
"Flexible Networks" [1,2] on traditional e-mail
environment. FAMES is a system aimed for more effective
and sophisticated asynchronous message processing, by
adding following mechanisms as, (a)adaptive service
reconfiguration mechanism, (b)user-centered flexible
messaging mechanism, and (c)function abstraction
mechanism, on traditional system. In FAMES, various
messaging functions realized as software agents are
utilized to integrate heterogeneous user environments.
Moreover, since FAMES provides intelligent message
controls for users considering receiver's own convenience,
flexible message delivery can be attained. We have
designed and implemented the proposed FAMES as a
multi-agent system on bases of agent-oriented computing’
environment called ADIPS framework[3], developed by
authors. Using a prototype system, we have confirmed the
effectiveness of the proposed FAMES.

2. Framework of FAMES
2.1. Limitations of traditional messaiging systems

In traditional asynchronous messaging systems,
following limitations have been pointed out, i.e.,

(P1) Lack of dynamic service reconfiguration
capability: When a user requires an extended function to
his/her own familiar e-mail client, both of sender and
receiver e-mail clients have to select and utilize the proper
function modules tailored to their own environments. Due
to heterogeneity of individual e-mail environment
customized to respective users, it is difficult to adopt or
change the functions at run-time dynamically. Although
several e-mail clients which the additional function
modules can be "plugged in" have been proposed, the
problems such as how to choose, install and maintain the
adequate modules are still open.

(P2) Lack of user-centered effective messaging
capability: The advanced messaging features, such as
cancellation, delivery confirmation or circulation of
messages, can not be supported in a systematic way.
Several groupware applications can offer some of these
functions, but it requires to replace the users' messaging
environments. Therefore, it may not be a good approach
from user's point of view. Furthermore, when a member of
message circulation is absent, the circulation task may
hang up at the place. This may cause inconvenient
situation in ongoing business process.

(P3) Lack of absorption capability to reduce functional
differences: No matter what different e-mail clients have
the same function, there is no way to guarantee the
interoperability between them. Therefore users can not
revive the required functions each other.

The reason why these problems are caused can be
explained by analyzing the intrinsic properties of the
system in two dimensions, that is, system architectural
property and temporal asynchronous property. The system
tends to be constructed in highly distributed and loose
coupled architecture. This means that the system will
possibly be uncontrollable and heterogeneous. To make
matters worse, temporal asynchronous property allows
users to do their own convenience, which may cause
undesirable effects to whole system behavior.

2.2. Required functions of FAMES

We propose a framework called Flexible Asynchronous
Messaging System: FAMES to solve the problems
described in section 2.1. FAMES is reached by adding the
following mechanisms to the ordinal messaging systems.
(M1) Adaptive service reconfiguration mechanism:This
is a mechanism which percepts both the users' demands
and the status of systems' environments, reconfigures by
themselves automatically, and offers the most suitable
services to users. For example, when a user wants to cancel
a message sent to others by using his/her e-mail client
which does not support a cancellation service, the most
suitable module which can realize the cancellation is

..20

instantiated automatically, and incorporated to the current
e-mail client. After cancel action is done, the module
would be removed by itself autonomously. This
mechanism solves problem(P1).

(M2) User-centered flexible messaging mechanism: This
is a mechanism to realize an intelligent decision making to
control message flow, based on users' demands, their own
conveniences, and status of ongoing tasks. For example,
suppose that user-A wants to circulate a message in an
order of user-B, user-C, user-D and user-E, and that user-D
plans to make a business trip tomorrow. Then sequence of
the circulation may be reordered automatically to give a
priority to user-D. This will solve problem(P2).

(M3) Function abstraction Mechanism: This is a
mechanism to bridge functional gaps between various
different e-mail clients by abstracting their functions.
Using this mechanism, interoperability between the
different implementations of the same functionality can be
guaranteed. This will solve problem(P3).

2.3. Applying agent-based computing technology

To realize the mechanisms described in section 2.2, we
adopt agent-oriented approach, in which software agents
provide the required functions based on the following
characteristics, i.e., autonomy, controllability, self-
recognition, adaptability, mobility, cooperative problem
solving capability and function abstraction.

(1)Realization of adaptive service reconfiguration (M1):
A personal environment of a user is realized as an
organization of agents. According to the agents'
characteristics such as self-recognition and adaptability,
they can percept the environment autonomously. The
agents are instantiated to the user's environment on
demand, based on its autonomy and mobility. These
agents reconfigure their organization, and provide the
required services to users.

(2)Realization of user-centered flexible messaging
(M2): Making whole system as an organization of agents,
the message flow can be controlled with respect to users'
demands based on cooperative problem solving capability
of agents.

(3)Realization of function abstraction (M3): Reforming
the conventional e-mail clients as agents by agentification
operation, each peculiar function of e-mail client is
abstracted, therefore it can get to connect together using
common interfaces and protocols among agents.

3. Design of FAMES
3.1. ADIPS framework

We make use of ADIPS (Agent-based Distributed
Information Processing System) framework(3] as a
platform of design and implementation of an agent-based
prototype system of FAMES. ADIPS framework is an
agent-based computing infrastructure proposed by the
authors aiming for construction of flexible distributed
systems[4]. ADIPS framework has the following

advantages to realize the agent-oriented facilities of
FAMES we need, i.e., (i) a system is autonomously
organized/reorganized in user-driven and event-driven
manner, (1) agents use expertise of domain experts, such
as designer, administrator and operator of distributed
system, (iii) legacy computational processes or application
softwares can be used as reusable components by
agentification operation. In ADIPS framework, user agents
request tasks to the ADIPS Repository on users' demands,
then the most suitable agents in ADIPS Repository are
bided based on contract net protocol[5], and the selected
agents are instantiated in a personal user environment
called ADIPS Workspace. Agents which are instantiated
onto Workspaces communicate with other agents in their
own Workspaces or in other users' Workspaces, and they
cope with users' demands and change-full environments
flexibly.

3.2. Conceptual design of FAMES based on
ADIPS framework

Figure 1 shows a conceptual model of applying FAMES
to the ordinal e-mail environment. (a) in Figure 1 stands
for traditional common e-mail environment. Here, sender's
e-mail client sends e-mails to a mailhost by a message
transfer protocol, SMTP, then the mailhost deliver e-mails
to the destination mailhost. Receivers' e-mail client gets
delivered e-mails from mailhost using a message retrieving
protocol, such as POP and so on. We apply the proposed
framework to this e-mail environment, shown in (b) of
Figure 1. E-mail clients and mailhosts are agentified in
accordance with ADIPS framework, and they play their
roles as a part of agent system. Since the agents use
traditional e-mail environment to deliver e-mails' contents,
they can accomplish the enhanced message delivery
platform without any introduction of new delivery
infrastructures (realization of (M1)). E-mail delivery is
controlled by agents in ADIPS Workspace, thus, it can
make intelligent delivery control achieve(realization of
(M2)). Moreover, since the agentification using ADIPS

|e-mai | mail | mail | |e-mail
ilir:nat" @]lho_it; ~|client |
(a) Traditional e-mail environment
(Ag) Agent | Rt
[T N ADIPS Workspace|
Ay @9 Ag) Ag) |
6 | | G OREEOR
5 Lia k]A;na'il | e-mail ||
) lnost 1] foent |

mail
| host

e-mail
lient

Nl

= -

(b) Agent-based e-mail environment

Figure 1: Agent-based e-mail environment.

framework encapsulates the differences of
implementations, many types of e-mail clients can
cooperate using inter-agent communication protocols
defined by ADIPS framework(realization of (M3)). The
reason why we apply this framework is that all of the
required mechanisms for FAMES can be reached by the
framework comprehensively and effectively.

Figure 2 shows examples of circulation and cancellation
function realized by ADIPS framework. Circulation is a
function by which a user touch up a received e-mail, and
just reply to it, then it is delivered automatically to the next
circulation address. In FAMES, users can utilize their
favorite e-mail clients to browse, touch up and reply to.
First sender specifies the circulation addresses. For an e-
mail client without any circulation functions, an agent
autonomously detects the absence of the function,
instantiates from Repository, and offers the function to
realize circulation processing. On the other hand,
cancellation is a function by which a user can cancel a
delivered e-mail. Receiving a cancel request issued by a
user, cancellation agents are instantiated to both sender site
and receiver site from Repository. Then cancellation is
performed by negotiation between cancellation agents.

3.3. Design of agents for FAMES

To realize the mechanisms of FAMES described in
section 2.2, we designed agents and their organization
based on ADIPS framework. Agents for FAMES are
organized in Personal Environments(PEs). A PE is a
logical agent workspace existing in ADIPS Workspace,
and it is dedicated to a user to give the individual
messaging services. In each PE, two kinds of agents reside,
namely full-time agents and part-time agents. Full-time
agent exists in the PE permanently to perform such

Circulation

Repository
instantiate
'pirculate}_’
equest
Bl/q Circulation
Circulatiol
Agent
Agent
Cancellation Repository
(Cancel 8
f\Request -’
% ®
Cancellation
Agent
Cancellation
@ Agent Agent

Figure 2: Examples of messaging function
using ADIPS framework.

constant tasks as monitoring status of users and
environments, controlling activities of agent organization,
spooling the incoming messages, and so forth. While part-
time agent is instantiated from Repository on demand, and
exists in the PE temporary. The configuration of part-time
agents is dynamically changed in run-time to provide
necessary and sufficient services.

Figure 3 shows the organization of agents for FAMES.
The role of each agent is defined as follows;
(1)SA(Secretary Agent): SA is a mediator between
human user and software agents. Human user tells his/her
requirements to agents via SA, and SA shows various
information from agents to user. SA has an user interface
to interact with user. When SA receives the requirement
from a user, it sends the TaskAnnouncement to Message
Manager Agent. SA also manages user's preference and
personal information such as schedules. The information is
utilized to realize user-centric functions such as (M2) in
section 2.2. SA is a full-time agent.

(2JMMA(Message Manager Agent): MMA is a central
controller of agents in a PE. It is responsible for managing
the whole agent organization in each PE. It also replies to a
query from other agents concerning information about the
organization which it takes charge of. When MMA
receives a TaskAnnouncement from SA, it decomposes the
announcement and sends the TaskAnnouncement to
UIMA, FCMA, and MTMA, respectively. If MMA judges
that the required task from SA needs to change of agent
organization in other PE, it also propagates the
TaskAnnouncement to MMA in other PE. MMA is a full-
time agent.

(3)MCA(Mail Client Agent): MCA is an agent realized
by agentification of existing e-mail client software, and
controls the software directly. MCA recognizes the
functionality and capability of respective e-mail client, so
it can analyze whether required functions can be provided
or not. This capability of MCA is utilized to achieve (M1)
in section 2.2. MCA also abstracts its functional
differences, which accomplishes (M3). MCA is a part-time
agent.

(4)UIA(User Interface Agent): UIA controls interfaces of
messaging functions. It is a part-time agent, and is
instantiated with related FCA together.

(5)UIMA(User Interface Manager Agent): UIMA is an
agent to manage all the UJAs and MCA in each PE.
According to the TaskAnnouncements from MMA, UIMA
issues the TaskAnnouncement in terms of e-mail client and
additional user interfaces to Repository. It is a full-time
agent.

(6)FCA(Flow Control Agent): FCA is an agent to
perform message flow control such as circulation,
cancellation, prioritized message delivery and so on. Each
service function has its own FCA to abstract the function
and abserb differences among heterogeneous messaging
functions. FCA cooperates with other FCA or SA“in other
PE, and provides sophisticated message handling defined
in (M2). It is a part-time agent.

(7)FCMA (Flow Control Manager Agent): FCMA is an
agent to manage all the FCAs in each PE. According to the

TaskAnnouncements from MMA, FCMA issues the
TaskAnnouncement in terms of message flow control to
Repository. It is a full-time agent.

(8)MTA (Message Transfer Agent): MTA is an agent to
perform message delivery actually. MTA receives address
from FCA and contents from MCA, and sends it to
addressed receiver MTA. MTA also receives messages
from another MTA and spools them. It is a full-time agent.
(9 MTMA (Message Transfer Manager Agent): MTMA
is an agent to manage all the MTAs in each PE. It is a full-
time agent.

4. Implementation of FAMES

We have implemented a prototype of FAMES based on
an architecture explained in Section 3. The implementation
environment is shown in Figure 4. The hardware
environment consists of an Sun Ultra SPARCStation with
Solaris2.5.1 operating system, and three personal
computers with MS-Windows95, which are all connected
by LAN. As to the software environment, we utilized
ADIPS/Java, the latest version of ADIPS framework
written in Java language. ADIPS framework was
configured by installing ADIPS Repository on the
SPARCStation and ADIPS Workspaces on each personal
computers. We also prepared the famous legacy e-mail
clients, i.e., MS InternetMail, MS Outlook Express and
Eudora-Pro. On the hardware/software environment stated
previously, we implemented agents in accordance with the
design in section 3. SA, MMA, UIMA, FCMA, MTMA
and MTA are implemented as full-time agents. As FCA,
we developed Cancellation agent and Circulation agent,
which performs message cancellation and message
circulation, respectively. With FCAs, UIAs for
cancellation and circulation are also developed. UIAs have
function-oriented user interface processes which are
agentified to incorporate UIAs. MCAs are implemented by
agentifying three legacy e-mail clients. Each user interface
and messaging function, we call base processes, are written
in Java. To construct FAMES, 12 agents are implemented

User
q
Interface

MC(Mail
Client)

Additional
ul

O Part-time agent

) Full-time agent

Figure 3: Agents organization for FAMES.

totally and whole code size to describe agents are
approximately 2500 lines. While the total size of base
processes are approximately 4000 lines.

5. Experiment

In this paper, we evaluate the effectiveness of one of the
proposed mechanisms defined in section 2.2, i.e., adaptive
service reconfiguration mechanism(M1), through an
experimentation. Adaptive service reconfiguration
mechanism is realized by cooperative behavior of agents
designed and implemented in section 3 and 4.

We experimented in the environment shown in figure 4
under a situation that User-A uses InternetMail on PC-1,
User-B uses Eudora-Pro on PC-2 and User-C uses Outlook
Express on PC-3. All PCs are wired by LAN. Since those
e-mail clients don't have circulation function and
cancellation function, no users can use such additional
functions. Even if OutlookExpress has an additional
function such as circulation or cancellation, the user of it
can not use the function because rest of two e-mail clients
can not utilize such function. Furthermore, even if all of
those e-mail clients have such functions, users may not be
able to use the functions because there is no
interoperability between the functions.

In the prototype of FAMES, as we mentioned above,
SA, MMA, UIMA, FCMA and MTA are instantiated from
Repository as full-time agent when the system booted up,
and the agent organization is composed as shown in figure
5. Then, User-A wanted to make a circulation message.
Using FAMES, User-A could make a request through an
interface provided by SA. Additional functions available
are presented in the interface. This information is acquired

by cooperation among SA and agents in the Repository.
Users can instantiate any combination of e-mail clients and
additional functions, thus users can use the functions
together with their favorite e-mail clients. In this
experiment, User-A chosen Microsoft InternetMail to
browse or compose e-mails. Then, User-A selected

Repository
SUNVRNNNNNANRAR

Workspace
(T
ﬁ.\‘ Sun Ultra SPARCStation|
Solaris 2.5.1
e B
PC-1
Windows95
User-A with Workspace
InternetMail Workspace R
’ ‘ v.
e =
User-B with } PC-3
Eudora-Pro PC-2 Windows95
Windows95 User-C with
OutlookExpress

Figure 4: Implementation environment.

circulation function from the interface of SA to send a
circulation message. SA perceived user request and issued
a TaskAnnouncement to MMA. MMA decomposed that
task and issued the TaskAnnouncement to manager agents,
i.e., UIMA, FCMA and MTMA. Each manager agent
autonomously detected that it could not provide the
requested service for User-A, and then made a
TaskAnnouncement to Repository in order to realize this
function. In the Repository, Circulation FCA and
Circulation UIA were awarded with respect to this request
based on the contract-net protocol, and instantiated
autonomously in the user's Workspace. Then agents in
Workspace reorganized their ‘own organization
autonomously, and realize the circulation function which
user's e-mail clients didn't have, as shown in Figure 6.

Through the circulation interface, User-A set an order
of circulation, such as User-A -> User-B -> User-C. In this
case, User-B receives first, and next User-C receives the
circulation message. Request of circulation was accepted
by Circulation FCA of User-A, then this agent started to
negotiate with Circulation FCA of User-B which is
instantiated autonomously from Repository. User-B used
Eudora-Pro which does not support circulation function.
User-B received the circulation message as if it had been
just an ordinary e-mail for Eudora-Pro. When User-B just
replied, Circulation FCA perceived that it is a circulation
message to be sent to User-C. This experiment represents
that a circulation function was achieved among
InternetMail, Eudora-Pro and OutlookExpress, which
haven't got circulation function.

In the same way, when User-A made a cancellation
request, the request was received by SA. Agents on the
Workspace autonomously detected that they can not
provide the requested service for User-A, and issued a
TaskAnnouncement to realize this function to Repository.
Cancel FCA and Cancel UIA were instantiated

work.canary. shirator.Aec. 1ohoku ac jp

nuli-agent going doun)))

Figure 5: Initial state of agent organization.

autonomously in the user's Workspace. Then agents in
Workspace tried to reorganize their organization and
realized the cancellation function which user's e-mail
clients didn't have. Here User-A requested cancellation
message through the interface of Cancel UIA. The request
was accepted by Cancel FCA, then it started to negotiate
with Cancel FCA of other users. Cancel FCA of other user
were autonomously instantiated from Repository to
negotiate, accepted the cancel request and removed the
message from e-mail spool if message was not read.
Through this experiment, we confirmed that cancellation
function can be achieved among InternetMail, Eudora-Pro
and OutlookExpress, which doesn't support the
cancellation function.

As a results, we confirmed that the adaptive service
reconfiguration mechanism(M1) was realized, and it is
useful and effective from user's view point. Using this
mechanism, the system can provide services adaptively
which are not supported by e-mail clients in accordance
with various users' requests.

6. Conclusion

In this paper, we proposed a framework of Flexible
Asynchronous Messaging System (FAMES), which
consists of autonomous and collaborative software agents.
Asynchronous Messaging Systems like e-mail systems
today need some advanced features, such as intelligence,
controllability and scalability, to accomplish more

ur
irculater:

Circulation UIA

fperforn: dissoiution §
From: null 18

to: u
repis ths
InRe @

fc
‘Circulaterl

effective and sophisticated message handling. In FAMES,
various messaging functions composed by agents can be
utilized to integrate heterogeneous user environment.
Moreover, FAMES operates message flow in intelligent
manner, considering the receiver's own convenience and
the flexible message delivery can be achieved. We
designed and implemented the proposed system based on
multi-agent technology, and have shown its effectiveness
through the experimental studies using the prototype
system.

[References]

[1]N. Shiratori, K, Sugawara. T, Kinoshita. and G. Chakraborty:
Flexible Networks: Basic concepts and Architecture, IEICE
Trans. Comm., Vol. E77-B, No. 11, pp.1287-1294(1994).

[2]N. Shiratori, S. Suganuma, S. Sugiura, G. Chakraborty, K.
Sugawara, T. Kinoshita. and E.S.Lee.: Framework of a flexible
computer communication network. Computer Communications,
Vol.19, pp. 1268-1275, 1996.

[31S. Fujita, K. Sugawara, T. Kinoshita, and N. Shiratori: Agent-
based Architecture of Distributed Information Processing
Systems, Trans. IPS. Japan Vol. 37, No. 5, pp. 840-852, 1996.
[4]S. Fujita, H. Hara, K. Sugawara, T. Kinoshita and N. Shiratori:
Agent-Based Design Model of Adaptive Distributed Systems,
Applied Intelligence, Vol. 9, No. 1, 1998.

[5]R.G.Smith: The contract net protocol: High-level
communication and control in a distributed problem solver, IEEE
Trans. on Computers, Vol. 29, No. 12, pp. 1104-1113, 1980.

i
gent Monitor

ion FCA

Circulation U/l

Figure 6: Agent organization after reorganizing to realize circulation

function.

