[RIVF AT ¢ ZBEEHBUET—2 3971 FRRIZEIA

Invocation Protocol for Replicas in Distributed Object-based
Systems

Katsuya Tanaka and Makoto Takizawa

Tokyo Denki University
Email {katsu, taki}@takilab.k.dendai.ac.jp

Object-based systems are composed of objects, which are encapsulations of data and methods. Ob-
jects are replicated in order to increase reliability and availability of the systems. Objects are manipulated
only through the methods. In addition, methods are invoked in a nested manner. We discuss how to
lock replicas of an object for methods in a quorum-based scheme and perform methods on the replicas in
presence of nested invocation. First, we extend the quorum concept for primitive read and write methods
on simple objects like files to abstract methods supported by objects. The quorum size is decided based
on a conflicting relation among methods and state updatability of methods. We present a quorum-based
protocol for locking replicas of objects.

A7 MDZBEARRICEITHIAYV Y ROBHLUAR

He Bt &R
RRERKE
E-mail {katsu, taki}@takilab.k.dendai.ac.jp
BEEMMT TS b ATALATR, ROV IIARBELLINEZAT 7 b AV y RORHL
ICXOIBRBERTTIRD. TNETIT. read ® write DL S BEEFFRBWICHTE, HEMOIZL 7V HBO—B
HERETHIAHARELT, I—FLRETSHFAMHRINTND, —H, XTIz PNRFETHIAY

RiZ, #¥ O read ® write DSMFEIND L DHRNOLFHETH 3. XPRTIE, EROI-FLHFXEF
T2 FOHMBEBICE IS FAANEIRETRS. 51T, FAHRICEKD, ERAFRXLDbOVIENS

LU ABAHBTES T EERT.

1 Introduction

Various kinds of applications are realized in an
object-based framework like CORBA [15]. Ob-
jects are replicated in order to increase the re-
liability and availability of an object-based sys-
tem. Two-phase locking (2PL) protocols [7] and
quorum-based protocols [10] are so far discussed
to lock replicas. In the two-phase locking proto-
col, one replica is locked for a read method and
all the replicas are locked for a write method. On
the other hand, quorum numbers N, and N, of
the replicas are locked for read and write, respec-
tively, in the quorum-based protocol [10,11] where
N, 4+ Ny > a for the number a of the replicas.
The subset of the replicas is a qguorum.

An object is an encapsulation of data and
methods for manipulating the data. The object
is allowed to be manipulated only through the
methods. Methods are more abstract than prim-
itive methods read and write on a simple object
like file. A pair of methods conflict on an object
if the result obtained by performing the methods
depends on the computation order of the meth-
ods. The methods are compatible if they do not
conflict. For example, increment and decrement
methods are compatible on a counter object. In
the papers [16,17], the quorum concept for read
and write is extended to abstract methods. Sup-
pose a pair of methods t and u are issued to repli-
cas z; and 23 of an object . The method ¢ is
performed on one replica z; and the other method
u on another replica z; if ¢ and © do not conflict.
Here, states of the replicas z; and z; are differ-
ent because u is not performed on z, and ¢ is not
performed on ;. The replicas #; and z; can be

the same ones if u is performed on z; and ¢ is per-
formed on z3. As long as only compatible meth-
ods ¢ and u are issued, the methods are performed
on replicas in their quorums. If some method v
conflicting with ¢ is issued to a replica z,, every
instance of ¢ so far performed on another replica is
required to be performed on z;. Even if a replica
is updated by a method ¢ or u, N; + N, < a only
if £ and u do not conflict. The ezchanging proto-
col is discussed to exchange compatible methods
among the replicas. However, the protocol is com-
plex and implies larger communication overhead
to exchange methods. In this paper, we propose
another quorum-based protocol to lock replicas for
performing abstract methods. In the protocol, no
exchanging protocol is used.

First, these abstract methods supported by ob-
jects are classified with respect to two points,
whether or not methods derive data from objects
and methods change states of objects. In addition,
we discuss how states are changed by methods. In
one type, an object is updated by using the cur-
rent state of the object. An increment method
is an example. In the other type, an object is
updated independently of the current state. A re-
set method is an example of this type. Then, we
define a quorum number for each method based
on these types of methods. Finally, we present
a quorum-based protocol for abstract methods to
lock replicas of objects. The protocol supports
three ways to lock replicas and perform methods
on replicas depending on types of methods.

In section 2, we overview the quorum-based
protocol for replicas of objects. In sections 3, we
classify abstract methods supported by objects.

In section 4, we discuss a protocol.

2 Quorum-based Replication of Ob-
Jject
An object is an encapsulation of data and ab-

stract methods. Let us consider a counter ob-
ject ¢ which supports four types of methods re-

set (res), increment (inc), decrement (dec), and
display (dsp). A counier value is incremented
and decremented by methods inc and dec, respec-
tively. A counter value is displayed by dsp. By
performing a method res, a value of the counter
object ¢ is initialized to be zero. Suppose there
are four replicas ¢;, ¢3, c3, and ¢4 of the object c.
Methods res, inc, and dec are traditionally con-

sidered to be write methods because the state of
the counter object ¢ is changed by the methods.

dsp is a read method. Hence, N,., + Nin > 4,
Nies + Ngee > 4, Nees + Ndap > 4, Nine + Naec
> 4, Ndsp + Ninc > 4, and Ndap + Ngee > 4
according to the traditional quorum-based proto-
cols [10]. For example, N,.; = Nipc = Ngee = 3
and Ny, = 2.

The quorum concept for primitive methods
read and write [10] is extended to methods of ob-
jects [16,17]. Here, a pair of methods ¢ and u
are referred to as conflict on an object iff a re-
sult obtained by performing ¢ and u on the object
depends on the computation order of the meth-
ods [3). Otherwise, ¢ and u are compatible. In
the counter object, res conflicts with all the other
methods inc, dec, and dsp. inc and dec are com-
patible but inc and dec conflict with dsp and res.
dsp is compatible with itself.

[Object-based quorum (OBQ) constraint] If
a pair of methods ¢ and u conflict, N;: + N, > a
where a is the total number of the replicas. O

It is noted that Ny + N, < a only if a pair of
methods ¢t and u are compatible even if ¢ or u is
an update type. Every pair of conflicting methods
t and u of an object z are performed on at least
k (= N: + Ny - a) replicas in the same order.
Nine + Ngee < 4, .80 Nipe = Nyge = 2 because
inc and dec are compatible. Suppose Q;n. = {c1,
c2} and Q4. = {c3, ca}. Since either inc or dec
is performed on each replica in the quorum, the
states of the replicas in @;,. are different from
Q4e.. However, if dec is performed on ¢; and ¢;
and inc is performed on c3 and ¢, all the replicas
can be the same. This is an ezchanging procedure
where every method ¢ performed on one replica is
sent to other replicas where ¢ has not been per-
formed and only methods compatible with ¢ have
been performed. Suppose a method dsp is issued
to three replicas cy, ca, and c3 where Qq4,p = {c3,
€2, c3}. Since dsp conflicts with inc and dec, dsp
cannot be performed on any replica in Qg,p be-
cause only inc has been performed on replicas c;
and ¢; and only dec has been performed on c3 as
shown at step 1 of Figure 1. Before performing
dsp, dec is performed on ¢; and c; and inc on cj.
tnc and dec can be performed in any order be-
cause they are compatible. Here, ¢, ¢z, and c3
get the same at step 2. dsp is performed on ¢y,
c2, and c3 at step 3.

Hence, the exchanging procedure implies large
amount of overhead. Methods performed on one
replica are required to be transmitted to other

Figure 1: Exchanging procedure.

replicas where the methods have not been per-
formed.

3 Types of Methods

Objects support abstract levels of methods
which are procedures for manipulating the ob-
jects. Methods are realized to be procedures
which may be implemented by using primitive

read and write methods. The methods are more
compﬁgc than primitive met%oﬁ% reed and wriie

on simple objects like files and tables [9]. For ex-
ample, a counter object ¢ presented in the pre-
ceding subsection supports four types of methods
res (reset), inc (increment), dec (decrement), and
dsp (display). The state of the counter object c is
changed by the methods inc, dec, and res but dsp
does not change the object c. Data is derived from
the object ¢ by the method dsp but no data is de-
rived from ¢ by the other methods inc, dec, and
res. A new state obtained by performing tnc and
dec on a current state of the counier object ¢ de-
pends on the current state. However, a new state
obtained by performing res is independent of the
current state of the object ¢. That is, any state
of the counier object ¢ is initialized to be zero
by performing res. Thus, there are some types
of methods. We classify each abstract method ¢
supported by an object o with respect to following
points, state type (siype), state-dependency type
(dtype), and output type (otype) [Figure 2):

1. By performing a method ¢ on an object o, a
state of the object o is changed if stype(t) is
Y. Otherwise, stype(t) is N.

2. If a state t(s) obtained by performing the
method ¢ on a current state s of an object
o depends on the current state s, diype(t) is
Y. Otherwise, diype(t) is N.

3. By performing a method ¢, if some data is de-
rived from the object o and output, otype(t)
is Y. Otherwise, otype(t) is N.

Here, it is trivial stype(t) =Y if diype(t) = Y.

For example, four methods res, inc, dec, and
dsp supported by a counter object ¢ are classified
as shown in Table 1. For example, any state of
the object ¢ is changed with initial value 0 by the
method res. Hence, siype(res) = Y. The state
of the counter object ¢ obtained by performing
res on a current state of ¢ is independent of the
current state. Hence, diype(res) = N. Since data
is not derived by res, otype(res) = N. A new state

Des
|

)
A

)

diype(t) =Y diype(t) = N otype(t) =Y
=Y stype(t) =Y =N

Figure 2: Types of methods.

obtained by performing methods ¢nc and dec on a
current state of the counter object ¢ depends on
the current state. Hence, dtype(inc) = diype(dec)
=Y. stype(inc) = stype(dec) =Y. Since no data
is output by the methods inc and dec, otype(inc)
= otype(dec) = N. On the other hand, a state is
not changed by a method dsp. Hence, stype(dsp)
= diype(dsp) = N but otype(dsp) =Y.

Table 1: Classification of methods
stype | diype | olype
Tes Y N N
tncfdec | Y Y N
dsp N N Y

Each replica o; of an object o has a version
counter ct;. The version counter ct; is initially
0. Each time a state of the replica o; is changed
by performing a method, the counter ct; is incre-
mented by one. That is, ¢t; := ct; + 1 if a method
t where stype(t) = Y is performed on the replica
0;,.i.e. the replica o; is changed by t. The version
counter ct; of a replica o; shows how many times
the replica o; is updated, i.e. state is changed.

4 Quorum-based Protocol

4.1 Quorum

Based on types of methods discussed in the
preceding section, we extend the traditional quo-
rum concept for primitive read and write methods
to abstract methods supported by objects. If a
method ¢ is invoked on an object o, the object o
is tried to be locked in a mode u(t). A compati-
bility relation among modes of methods is defined
as follows:

[Definition] A mode u(t;) is compatible with a
mode pu(t3) iff a method t; is compatible with a
method ¢ on an object 0. O

In a counter object ¢, a method inc (incre-
ment) is compatible with a method dec (decre-
ment). Hence, a mode p(inc) is compatible with
a mode p(dec). p(inc) conflicts with u(dsp) and
i(res) since inc conflicts with methods dsp (dis-
play) and res (reset).

Here, suppose a method ¢ is issued to an object
o. If an object o is not locked by any transaction
or o is locked only in modes which are compatible
with a2 mode pu(t), the object o is locked in the
mode p(t). Otherwise, the request of the method

1 is kept waiting in a wait queue.

An object o is replicated. Let a cluster C(o)
be a set of replicas 01, ..., 0, of the object o.
Suppose a method ¢ is invoked on an object o.
A lock request with a mode u(t) is issued to a
subset @, of the replicas in the cluster C(o0). @,
is referred to as a guorum of the method £. @; C
C(0). N, is a quorum number of the method 2,
i.e. the number of replicas in Q;, N; = |Q:] (<
n). The quorum numbers for methods satisfy the
following properties:

[Quorum properties] Let ¢; and ¢2 be a pair of
methods supported by an object 0. Here, n is the
number of replicas of o. '

1. N;, + Ni, > nif the method ¢; conflicts with

the method 5.
2. Ni, + Ny, > nif stype(t1) =Y and stype(ta)
=Y.O

Let Q., and Q;, be quorums of methods ¢, and
t, for an object o, respectively. According to the
quorum properties, Q:, N Q;, # ¢ if ¢; conflicts
with £; or both of ¢; and ¢, are update methods.
If a pair of methods ¢; and ¢; are compatible on .
an object o, Ny, + Ny, < a. In a counter object
¢, inc and dec are compatible. The other methods
conflict with inc and dec. Suppose there are four
replicas of the counter object c. The methods inc
and dec are compatible but a state of the counter
object ¢ is changed by inc and dec, i.e. stype(inc)
= stype(dec) = Y. Hence, Njn. + Ngec > 4. Nyyp
+ Nin. > 4. For example, N;,. = 3, Ng.. = 3,
and Ndap = 2.

4.2 Protocol ‘

We discuss a protocol for invoking methods on
replicas of an object. Suppose a method % is in-
voked on an object 0. An invoker of the method ¢
is referred to as transaction. Let C(o) be a cluster
{o1, ..., on} of replicas for an object o. Since the
method ¢ may invoke other methods, trnasactions
are nested. First, a quorum @, is constructed for a
given quorum number Ny, i.e. |@:| = N;and @y C
C(0). In this paper, replicas to be included in the
quorum @, of a method ¢ are randomly decided
each time ¢ is invoked. Then, a lock request is is-
sued to every replica in the quorum Q. Replicas
in a quorum Q; are first locked. Then, it is decided
on which replica the method is performed. Lastly,
if the locks are obtained on replicas, the method ¢
is performed on the replicas. Thus, the protocol is
composed of three phases, locking, decision, and
ezecution phases.

[Locking phase]
1. A lock request of a method ¢ is issued to every
replica in a quorum @,.
2. If a replica o; in the quorum @Q: is already

locked in a mode which conflicts with a mode
u(t), a response No is sent back to the trans-

action, i.e. invoker of t.

3. Otherwise, the replica o; in the quorum Q; is
locked in a mode u(t). Here, let L(o;) be a
set of methods whose locks are being held on
the replica o; and whose stype is Y. That is,
methods in L(o;) are ones by which the state
of the replica o; is changed. The information
{cti, L(o;)) is sent back in a Yes message to
che transaction where ct; is a counter of o;.

The transaction, i.e. invoker of the method ¢
waits for responses from all the replicas in the quo-
rum Q.

[Decision phase]

1. If No is received from a replica, the trans-
action sends Abort to all the replicas which
have sent Yes. The locks on the replicas are
released.

2. If Yes is received from every replica in the
quorum @, the transaction sends a Do mes-
sage to all the replicas in the quorum Q; to
perform the method ¢. O

If all the replicas in the quorum Q; are success-
fully locked, the method t is tried to be performed
on the rephcas It depends on types of methods
how to perform the methods on the replicas in the
quorum Q. There are following types of methods:

1. otype(t) =Y and stype(t) = diype(t) =

2. stype(t) =Y and diype(t) = N.

3. stype(t) = Y and diype(t) =

First, let us consider the type 1, i.e. a method
t derives the data, but does not change the state
of the replica, i.e. stype(t) = diype(t) = N and
otype(t) =
[Execution phase for type 1] [Figure 3] Data
18 derived from an object o but a state of o is not
changed by a method ¢, i.e. otype(t) = Y and
stype(t) = diype(t) =

1. Let R; be a subset of the replicas whose ver-
sion counters are maximum in the quorum
Qq, ie. {0; | 05 € Q¢ A ct; 2 ctj for every oj
in Q:}.

2. The transaction sends a Do message with a
method ¢ to every replica in the subset R;.

3. The method ¢ is performed on each replica in
R;. Here, the method ¢ might invoke other
methods. If the method ¢ eventually com-
pletes, a response Done with data derived is
sent back to the transaction. O

N

oi o o o OJ

0 1

(ets, = {etj, =
/
\t>

dala p

/
\ Y time

0O: computation of £
Figure 3: Type 1.

In the type 2, a state of the object o is changed
by a method ¢, i.e. atype(t) =Y. Here, there a.re
two additional cases, diype(t) =Y or diype(t) =
depending on whether or not a new state obtained
depends on the current state of the object o. If
diype(t) = N, a state of the object o is changed

with some new state independently of the current
state of the object o.

[Execution phase for type 2] [Figure 5] A state
of an object o is changed by a method t indepen-
dently of a current state of o, i.e. diype(t) =

1. A method ¢ is issued to every replica in the
quorum Q.

2. The method t is performed on every replica
in the quorum Q.

3. If otype(t) =Y, the response of ¢ with output

data is sent to the transaction. The transac-
tion takes a response from a replica o; in the

quorum @; whose version counter ct; is max-
imum in the quorum @;. O

T (214 o e e 0,'
lock(t)
———] =

Y Y time

Figure 4: Type 2.

Next, let us consider the type 3 a new state of
an object o obtained by performing a method t on
a current state of o depends on the current state,
i.e. diype(t) =
[Execution phase for type 3] [Figure 5] A state
of an object o is changed by a method ¢ depending
on a current state, i.e. diype(t) =

1. Let Lbeaset {t | Q: N Qv # ¢, t' € L(a;),
and o; € @;} of methods whose locks are held
on replicas in the quorum Qg and are compat-
ible with the method t. R, = {0; | 0; € Q; A
ct; > ctj for every o in Qg}

2. The method ¢ is performed on every rephca
in the quorum Q;.

3. For every replica o; in the subset Ry, a collec-
tion L; of methods where L; = L — L(o;) are
obtained. L; shows methods which are not
performed on the replica o; and by which a
state of o; is changed, i.e. stype =Y. The
methods in L; are issued to the replica o; in
the subset R;.

4. The methods in the set L; are performed on
each replica o;. O

Here, every replica has the same state as the
others in the quorum @ since every method which
changes the state is performed. Each time a
method in the set L; is performed on a replica
o;, the version counter ct; of the replica o; is in-
cremented by one. Every replica o; in the quorum
@ has the same version counter ct;.

Let o; and o; be replicas of an object 0. A
replica o; is referred to as newer than another

] time

Figure 5: Type 3.

replica o; if cf; > ct;. A replica o; is newest in
a cluster C(o) iff there is no replica o; such that
o0; is newer than o;.

It is straightforward for the following theorem
to hold according to the protocol.

[Theorem)] If a method ¢ such that otype(t) =Y
is issued to an object o, the data is derived from
the newest replica in a cluster C(o) by the method
t. D

According to the definition of the quorum, even
if one of methods ¢ and u changes an object o, N;
+ N, < nfor a total number n of the replicas. In
traditional quroum-based protocols, N; + N, >
n i8 required to be held. Thus, we can reduce the
number of replicas to be locked in the protocol.

5 Concluding Remarks

In object-based systems, objects are manipu-
lated through methods which are implemented in
procedures. In this paper, we discussed how repli-
cas of objects are locked for abstract methods in
the quorum-based scheme. Abstract methods are
first classified with respect to whether or not data
is derived, whether state is changed depending
on a current state or independently of a current
state. We defined the quorums for abstract meth-
ods based on the method types. Then, we dis-
cussed the quorum-based protocol to lock replicas
and to perform the methods on the replicas. The
protocol is composed of three phases, locking, de-
cision, and execution phases depending on types
of methods. By using the protocol, the number of
replicas to be locked can be reduced.

Acknowledgment

This research is partially supported by Re-
search Institute for Technology, Tokyo Denki Uni-
versity.

References
[1] Ahamad, M., Dasgupta, P., LeBlanc R.,
and Wilkes, C., “Fault Tolerant Computing

in Object Based Distributed Operating Sys-
gzré:s,” Proc. 6th IEEE SRDS, 1987, pp. 115~

(2] Barrett, P. A., Hilborne, A. M., Bond, P.
G., and Seaton, D. T., “The Delta-4 Extra
Performance Architecture,” Proc. 20ih Int’l
Symp. on FTCS, 1990, pp. 481-488,

Bernstein, P. A., Hadzilacos, V., and Good-
man, N.,; “Concurrency Control and Recov-
ery 7in Database Systems,” Addison- Wesley,
1987.

(4] Bernstein, P. A., and Goodman, N., “The
Failure and Recovery Problem for Replicated
Databases,” Proc. 2nd ACM POCS,

[5] Birman, K. P. and Joseph, T. A., “Reliable
Communication in the Presence of Failures,”
%‘CM TOCS, Vol. 5, No. 1, pp 1987, pp. 47-

[6] Borg, A., Baumbach, J., and Glager, S.,
“A Message System Supporting Fault Toler-
ance,” Proc. 9th ACM Symp. on Operating
Sys. Principles, 1983, . 27-39.

[7] Carey, J. M. and Livny, M., “Conflict De-
tection Tradeoffs for Replicated Data,” ACM
TODS, Vol.16, No.4, 1991, pp. 703-746.

[8] Chevalier, P. -Y., “A Replicated Object
Server for a Distributed Object-Oriented Sys-
tem,” Proc. IEEE SRDS, 1992, pp.4-11.

[9] Date, C. J., “An Introduction to Database
Systems,” Addison Wesley, 1990.

[10] Garcia-Molina, H. and Barbara, D., “How
to Assign Votes in a Distributed System,”
JACM, Vol 32, No.4, 1985, pp. 841-860.

[11] Gifford, D. K., “Weighted Voting for Repli-
cated Data,” Proc. 7th ACM Symp. on Oper-
ating Systems Principles, 1979, pp. 150-159,

[12] Hasegawa, K., Higaki, H., and Takizawa, M.,
“Object Replication Using Version Vector,”
Proc. of the 6th IEEE Int’l Conf. on Par-
allel and Distributed Systems (ICPADS-98),
1998, pp. 147-154.

[13] Jing, J., Bukhres, O., and Elmagarmid, A.,
“Distributed Lock Management for Mobile
Transactions,” Proc. IEEE ICDCS-15, 1995,
pp. 118-125.

(14] Korth, H. F., “Locking Primitives in a
Database System,” JACM, Vol. 30, No. 1,
1983, pp. 55-79.

[15]) Silvano, M. and Douglas, C. S., “Construct-
ing Reliable Distributed Communication Sys-
tems with CORBA,” IEEE Comm. Maga-
zine, Vol.35, No.2, 1997, pp.56-60.

[16] Tanaka, K., Hasegawa, K., and Takizawa, M.,
“Quorum-Based Replication in Object-Based
Systems,” Journal of Information Science
and Engineering (JISE), Vol. 16, 2000, pp.
317-331.

[17]) Tanaka, K. and Takizawa, M., “Quorum-
Based Replication of Objects,” Proc. Ird

[3

—_—

DEXA Int’l Workshop:on Network-Bused In-
formation Systems (NBIS-3), 2000, pp. 33—
37.

