
Iマルチメデfア通信と分散処理ワークショップ」 平成¥:¥年¥0月

A Market-Based CPU Resource AlIocation System with Strategic Agents

Wurong Zhu Saneyasu Yamaguchi Tay Jet Kiat HitoshiAida
Aida Lab， Department of Frontier Informatics

The University ofTokyo
{zhu， sane， tjk， aida}@sail.tル

Abstract

We have proposed and implemented a market-based idJe
CPU resource allocation system that utilizes idJe CPU
resources. In this paper we propose two-price setting
strategies. The simulation result shows that both 01 them
work well in terms 01 p'悦 stability，market equilibrium，
and efficient resource utilizations.

1. Introduction

The advances in computing and networking
technology have enabled the utilization of idle
computational resources distributed in the network.
Many researches have been focused on this area. We
proposed and developed a system called the Background
Task Space System (BGTS) [1]， which provides a
platform to use idle computers. However， it relies on the
good will of users to provide their idle resources. Besides，
it does not imposes any constrains on resource
consumption. It is necessary to control access to idle
compu臼tionalresource. M.Oflωver， today， more and more
computers are interconnected with each other because of
the pervasi ve use of the Intemet forming an enormous
computational power; it is an important issue to m紘e
resource owners be convinced that they are able to
account for the relative costs and benefits of providing
idle computational resources.
Since market facilitates resource management in
human societies， researches on applying economic idea
to computational resource allocation have drawn a lot of
attentions recently. Spawn [2] uses auction to allocate
CPU time among tasks competing for CPU time in a
distributed network. The Popcom project [3] goes a s旬p
further by providing an in企astructure for global
computing over the Intemet based on auction
mechanisms. These precedent works show that there are
potential benefits of using economic principles in
managing distributed computing systems.
Underlying these environments， we have designed
and implemented a market-based idle computational
resources (in particularly， CPU time) allocation system
[4]. Resource allocation is modeled in a simple economy，
in which resource consumption is required to charge for
its usage. Prices are introduced to facilitate resource
allocations that are set by resource providers.

-299-

Since price serves to regulate demand and supply in
market-based systems， how to set up price and the price
dynamics have great influenωon whether it can bring
about efficient resource allocations. Ifthe price fluctuates，
it cannot enable resource consumers to make correct
scheduling decisions， which will lead the market-based
approach to be i即日記ctive.Most previous works employ
auction mechanism in which the resource is given to who
submits the highest bid and the price tends to oscillate
and volatile which has been observed in [2]. Moreover，
using economics idea in computer science needs to
consider the tradeofT of e町ortsspent operating the market
versus the improvement in performance gained合om
using market-based approach邸.An undesirable property
of.auction is slow price determination. In an auction， all
interested consumers need to communicate with a
provider (send bids) before any decisions are made， the
provider must then inform all bidders of the acceptance
or rejection of their offers. In addition， the resource
provider， the auctioneer， has the advantage of over
resource consumers in auction while in a peげect
competitive economy prices are set by demand for
resources.
In this paper we propose two price setting strategies

for a demand-driven provider agent and a learning-based
provider agent based on interactions between the
resource provider and the resource consumer where
consumer pays for the resource if it decides that the price
is appropriate while provider sets up price according to
consumer's response to price. The results of simulations
show Demanιdriven provider agent works well in
setting price when resource provider wishes to process
multi-tasks while a Learning-based provider agent can
adaptively set up price when resource provider wishes to
process single-task. Both of them are able 10 lead the
market to a steady state near to market equilibrium which
enables efficient resource allocations.
The rest of this paper is organized as follows.
Section 2 introduces the market-based CPU reso町ce
allocation system. We describe the criteria used to
evaluate the proposa1s in Section 3. And then， we present
two price-setting strategies in Section 4 and 5 in which
simulation results wiLI be shown. Finally， we give
concluding remarks and suggested directions for future
work.

2. A Market-Based CPU Resource

AlIocation

2.1 Tbe Concept of Market-Based CPU
Resource Allocation

ηlC market-based CPU res'Ource all'Ocati'On system
perf'Onns distributed res'Ource alJ'Ocati'On by empl'Oying
market-based technique. As figure 1 sh'Ows， it c'Onsists 'Of
three basic entities， resource providers， resource
consumers， and a market. A問s'Ourcepr'Ovider， an idle
computer， advertises its inf'Onnation (price， c'Omputer
specifications) with the market. A resource c'Onsumer， an
overl'Oaded computer wishing to rent idle res'Ourc邸 gets
informati'On fr'Om the market attempting t'O find a suitablc
res'Ource. Upon decisi'On， it sends the res'Ource provider a
request f'Or transacti'Ons. After receiving a request for
transacti'On， the res'Ource pr'Ovider will agree t'O accept the
transacti'On upon decisi'On. Then， it starts to execute the
task， after the completi'On of executi'On， resource provider
retums result t'O resource consumer， this results a
payment合omthe res'Ource consumer. The resource
pr'Ovider then updates the corresponding inf'Ormation in
the market. lf there is n'O res'Ource consumer requesting
for transaction， the resource pr'Ovider will c'Ontinually
adjust the price and update the c'Orresponding entry in由e
market so as to be able to make transaction with res'Ource
consumers. S'O in setting prices， resource providers are
t'Otally passive， this is exactly the case in an economy
with perfect competiti'On. The market provides service t'O
facilitate resource allocation like advertising information
and managing account.
Since we focus on investigating using economic idea
in問sourceallocation， we assume th剖 usersparticipating
in the system d'O n'Ot have malicious intenti'Ons.

2.2 An Economy ofCPU Time
2.2.1 Tlre Good旨andTlre Money
Our basic resource allocation unit is a block of CPU time，
i.e.， the number of instructions used t'O run a task. For
example， a task consumes the same am'Ount 'Of CPU time
(number 'Of instructi'Ons)， even though running it on an
under-Ioaded computer whose pr'Ocessing speed is 2GIPS

-300ー

may take half ofthe time compared with running it on an
under-Ioaded c'Omputer with lGIPS processing power.
The CPU resource allocation is carried 'Out in terms of an

abstract currency (￥)， which represenぉaf'Orm of ri帥t
with which users can use idle CPU resources.

2.2.2 Resource Prov;der
We intend t'O model an idle ∞mputer wh'Ose user agrees
t'O host tasks仕om'Other users in exchange f'Or the
currency. Since we are considering the use of idle CPU
resources， it is reasonable to make such a simplification
that user would rather get his idle computer run tasks for
'Other users to make profit than let it idle on the conditi'On
that users are assumed not t'O take the expenses needed
for running computers into considerati'On. The res'Ource
provider sets up price acc'Ording demand合omres'Ource
c'Onsumers. The algorithm is expressed in provider agent
which will be discussed later.

2.2.3 Resource Consumer
To model the user behavior in the BGTS system [1]，
resource consumer generates a random number of tasks
and maintains them in a pool waiting for service.
Resource c'Onsumer expresses its demand for renting
CPU time骨omresource provider in form of tasks. The
task parameters inc1ude: the旬skcomplexity， the amount
'Of CPU time it needs t'O consume represented by the time
needed to run it on a baseline computer of speed 1 GIPS，
and the task value which represents the budget the
resource consumer can pay for the resources.
Like pr'Ovider agent， the actual purchase decision and
buying activity are handed over a consumer agent in
which user's buying strategy is coded. At the prl白ent，we
implemented an agent which purchases the lowest priced
CPU resources. We use a queue to maintain these tasks;
this is a priority queue maintained based on the rati'O of
task va/ue per task comp/exity and resource c'Onsumer
makes purchase decisi'On by giving high execution
pri'Ority to tasks with high priorities.

2.2.4 Market Equi/ibrium
The basic question ab'Out the market-based appr'Oach is
whether it works in terms of economical efficiency， i .e.，
market equilibrium. The market equilibrium is reached at
the intersection of the demand and supply curve where
supply equals t'O supply. To facilitate discussion， we
define system l'Oad as the expected amount of proc白sing
requested per time unit divided by the total amount of
processing power in the system. In formula form， it is:

L=λ/μ T (1)

where 1/λIs the mean time oftask arrival interval，
11μis the mean time 'Of individual task complexity， T is
the total pr'Ocessing power in the system， and L is the
system load. It is obvious that the system load L
represents the relative demand to supply. In an over-

loaded system， only IIL oftotal tasks will be processed.
The market equi1ibrium p吋 canbe calculated as (2)，
where f(p) rep問sen也 theprobability density function of
every task's value to complexi砂ratio.

If(p)中 =μTIλ(2)
，}Peq

3. Evaluation Metrics
Since the actual resource allocation is carried by resource
consumers and resource providers， the way the resource
provider se陪 upprices is quite sensitive to whether the
market mechanism works well. We have designed two
provider agents; a demand-driven provider agent and a
learning-based provider agent. Our main interest is
whether the market mechanism can bring about efficient
resource allocation. Thus， we will evaluate our proposal
with respect to the following criteria:
1. Market equilibrium. price stability， and price
adaptation
2. Resource utilization efficiency
We are interested in whether the price can reach market
equilibrium calculated by formula (2). Price s帥i1ityis
crucial to ensure resource consumers' scheduling
stability. If the price fluctuates wildly， resource
consumers出atbase their decisions on the state of price
will follow suit， leading to poor performance. We are
also interested in whether the price responds in a
reasonable way to the changes of relative demand and
supply. Resource utilization efficiency measures how
e能 ctivethe market-based approach works to allocate
resources. If the overhead needed for market operation，
i.e.， price adjustment and transactions between resource
providers and resource consumers， is too high， it means
the market approach is not succeeding in efficient
resource allocation.

4. A demand-driven provider agent
4.1 Price Setting Strategy
The demand-driven provider agent wishes to process
multi-task who needs to denote the maximum number of
tasks it wishes to take in simultaneouslyl. It raises and
lowers the price according to an intuitive algorithm; if
the asking price is accepted by a resource consumer， it
raises the price; on the other hand， if none of the resource
consumers responds to the price， it lowers the price until
one of the resource consumers accepts the price and asks
for transaction. The price adjustment action is event
driven.

I We make a simplification by assuming白紙 theamount of CPU
resource consumed by each task to be one Nth 01' the total availablc
resou陀e，where N rep同時nlsthe number of concurrently running task.
A research about precise measurement of the number of instructions
executed by each thread can be found in [5].

The demand-driven provider agent's strategy is
parameterized by an initial asking price， the maximum
number 01 tasks and an up/down ratio， where the
up/down ratio indicates an upper and lower limit that a
resource provider wishes to adjust each time. The current
asking price is simply expressed by multiplying the

previous asking price by a price adjustment ratio shown
as

C仰urr附切切，匂w切eω仰ntP桁ri，比ce=ra官aぽtωiω0*pr附噌匂-ev沼e

Where the price adjus剖tme目n同E首tratio is expressed in a
det旬，erminis坑ticfi白mctionof the number of tasks cur口πTen同1tl勿y
processed by陀s叩ourceprovider shown as follows:

ratio == downRatio

+ taskNum * (upRatio -downRatio) I max TasJcNum (4)
The ratio increases合omthe lower to the upper limit
linearly in proportion t'O the number of tasks currently
running. If the tasks currently running on the resource
provider are more than half of the maximum number of
tasks， the agent raises the price upon considering that is
still a chance of setting up higher price; '0由erwise，the
agent will lower the price to av'Oid missing the chance of
transactions. The pu巾ose of updating the price
adjustment ratio is t'O resolve two contradict'Ory goals;
attempting to make transactions at a high price is
desirable while a high price may lead resource consumers
not being able to afford for resources.

4.2 Simulations
Simulation Conditions: At first we made a simple
setting; 6 resource providers and 1 resource consumer
were involved in the market. Each resource provider used
a demand-driven provider agent，由ereso町ceconsumer
made purchase decisions by selecting the cheapest CPU
res'Ource to run the most valuable task as described in
Section 2. Each resource provider's maximum number 'Of
tasks is 6.

Tasks were generated on the res'Ource c'Onsumer
following a Poisson distribution whose mean arrival

interval was 1/λ， which was fixed at 1000ms. Individual
task complexity was assumed to follow an Exponential

distribution whose mean time was 11μ， and individual
task value per complexi.伊 wasdrawn合oma Gaussian
distribution with a mean of 5￥IGI and a standard
deviati'On of] .

The resource providers were identical computers
whose processing power was 1.5 times as fast as the
baseline computer (l GIPS)， hence yielding a total
computational power of 9GIPS. Thus according to
formula (1)， it is ，easy to compute system load L. We
have conducted several experiments under di偽rent

system load which is achieved by adjustingμ. Table 1

gives the experiment∞nditions; experiment A， E， F， G
were carried out under varying system load while

-301-

experiment A ~ D were done with different price
adjustment rati'O (up/downRatio).

Exp
11μ 11.¥

L
U pRatlo

1m 5J 1m 5) 10 ow n R atlo

A 20、000 1000 20/9 0.03%

B 20.000 1000 20/9 0.3耳も

C 20，000 1000 20/9 3%

D 20.000 1000 20/9 10%

E 10.000 1000 10/9 o 03%
F 3 (1，000 1000 30/9 o 03%
G 40，000 1000 40/9 o 03%

Table 1: Experiment parameters

4.3 Rej'ults
Price Stabi/i，砂 alJdMarket Eqllilibriunr: Experiment
results are shown in Table 2. We use the average price
(Price-Avg.) to compare with the market equilibrium，
which is calculated合omtransaction prices of each
resource provider after the price has reached the steady
state. To measure the price stability， we calculate the

Exp
Pnce_Avg Peq

Pnce Stdev DilT
l￥氾Jj [V/OI)

A 5.216 5.101 1.66% 2.225%

B 5518 3.65% 8.175%

C 5647 7.56% 10.703%

D 5 &58 9]0% 10912%

E 4310 3.718 1.99% 15923"10

F 5.701 5500 1.68% 3.654ーも

G 5.947 5.739 1.25% 3624%

Table 2: Experiment results
standard deviation of the price (Price-Stdev). We als'O
give a c'Olumn to Sh'OW the market equilibrium (P ~q)
calculated acc'Ording t'O f'Ormula (2)， and how much
di汀erencethe average price from it is shown in D(ff
column. Figure 2 is an example f'Or transacti'On price
c'Onvergence to steady state. As it Sh'OWS， the transacti'On
prices are I'OW during start-up. Prices increase until
equilibrium is reached where it fluctuates within a certain
band (indicated by Price-Stdev). We als'O n'Ote th剖 when
the price adjustment rati'O increases， the value of Price-
Stdev bec'Omes large.

j'riu Trllnsilion ，民主p.A)

5000

Timr 1悶 "1

Figure 2: Price transition

ーー-I'，ovf1
P，o旬2
ProvJ
-Prov4，
、‘-Pr。、・5
古品-P，ov6

Price Response 10 Changes ;n tl，e Relative Demand and
Supply: Acc'Ording t'O the results of experiment A， E， F
and G; the increase 'Of demand results in an increase in
the average price. We can see that the system adapts to
changes in demand and the price is meaningful.
Resollrce UtilizaliOll Efficiency: We use the CPU

-302-

utilizati'On efficiency， i.e.， the percentage 'Of CPU time
that is used to run tasks， to measure the res'Ource
utilization efficiency. ln each experiment， a value of
about 87% has been achieved; when the maximum
number 'Of tasks is increased to 20， the value rises (0
about 96%. This tells that the pricing mechanism is
efficient in terms of res'Ource utilization.

5. A learning-based provider agent
Since there may be di斤erentrequirements fr'Om res'Ource
consumers， e.gザ ac'Onsumer with deadline tasks may
wish to buy resources fr'Om such a provider who runs
single task s'O thatit can use the CPU time exclusively to
meet task deadline. Theref'Ore， we need to investigate the
strategy for setting up price in processing single task. In
this case， if res'Ource provider adjusts the price s'Olely
according to the number 'Of tasks currently running which
is I or O. it may raise or l'Ower the price extremely which
let the price tend t'O fluctuate. This is not favorable for
both res'Ource providers and resource consumers; the
resource provider as an idle ∞mputer wishesexecute as
many tasks as P'Ossible t'O make profit while the resource
consumer has the needs to get tasks processed as many as
p'Ossible pr'Ovided that they can aff'Ord.
This inspires us to investigate an adaptive pricing
aIg'Orithm. The number of tasks currently running sh'Ows
whether the current asking price is appropriate. Besides，
the res'Ource c'Onsumer's resp'Onse to the price adjustment
acti'On is also important. F'Or example， ifit raises the price
at a ce巾 inprice level and this acti'On tends t'O lead n'O
transacti ons命omresource c'Onsumers， the provider agent
sh'Ould lower the possibility 'Of taking this acti'On at the
same situati'On. The idea is the same as what we do in 'Our
daily life; we leam by interacting with 'Our environment.
Thec'Omputational approach t'O learning骨'ominteraction
is reinforcement leaming that deals wIth leaming what to
do -h'Ow t'O map situations t'O actIons -s'O as t'O maximize
a numerical reward signal.

5.1 Model
We have designed a /earning-based provider agent by
adding the reinforcement leaming abiIity in its price
setting strategy. The price a司justmentcan be modeled as:
the provider agent interacts with the envir'Onment (the
market) through taking actions (adjust price)， the market
resp'Onds t'O the aClion， accept or reject it and pr白ents
new situations (state) to the agent.
One 'Of the most distinctive features of reinforcement
leaming is using "reward" t'O formalize the idea of a goal.
The provider agent's goal is to achieve proper priω
setting policy. We use reward t'O. evaluate h'OW g'O'Od
taking action a in state s is for a pr'Ovider agent. Through
interaction with the market， the provider agent learns
how to change its price adjustment p'Olicy as a result of
its experience. Details ab'O~t the reinforcement Iearning

can be found at f6J. Thus， we need to define“state" ，
“action" and "reward" in our pricing model.
State: To describe a “state". we assume出atthe resource
provider has the pre-knowledge of the maximum and
minimum price ofthe market; therefore we can divide the
price range into different price levels.
A“state" is described by a combination of a price
level and whether the price is accepted (we call it a
“busy" state， in which the provider is running a task) or
not (we call it an “idle" state) shown as follows.
sta館 =(price _level， busy or idle) (5)

For example， if the price is known to be greater than

O￥IGI and less than 5￥IGI， we can divide the price
range into 5 levels and define 10 states 1 ike:

"stale 0(0.......)￥I GI .bu~y)"

"stale) (0 "-)￥ I GI .id/e)"

"sωle 2(1....... 2￥IGI ，husy)"

"stale 8(4"-" 5￥/ GI ，busy)"

" stqle 9(!f -: 5￥IGI .idle)"
Action: The “action" -is the current price decision， which
is to raise or lower the price and by how much
percantage由eprice will be adjusted. Like the demand-
driven provider agenl， we speciちr sevaral price
adjustment ratios for the learning-based provider agent
to choose. Thus， the price叫justmenratio is a direct
mapping合omthe action chosen. A new asking price is
calculated according to (3).
Reward: .For a provider agent. a good action is setting up
a high price that can result in transactions from resource
consumers. If an action， i.e.， price adjustment， leads to a
transaction， it is praised by giving its asking price as
immediate reward; otherwise， it is penalized by giving a
zero reward. The reward is defined as:

グ(asking_ price is accepted)

reward = pr;ce
else

reward=O

(6)

Most reinforcement learning algorithms are based on
estimating value functions・functionsof states (or of
state-action pairs)出atestimate the reward th剖 canbe
expected. We use a state-action function known as Q
learning algorithm [6] to estimate how good it is to a
provider agent for taking action a instate s:

Q(SI，αt> = Q(s{，af} +
α牟(rt+γ* max Q(st+l，at+I>-Q(st，af}) (7)

at+ I
Where Q(s，a) represen胞 the discounted long-tenn

expected reward s，γis the discounting parameter and α
is the leaming rate par創neter.

5.2 Price Setting Strategy
With the above defined state and action， the Q(s，a)
function is represented by a lookup Q table containing a

value for every possible state-action pair. 官官 table
entries are initial ized to arbitrary val ues. Then the
procedure for price adjustment is as follows:
1. In a certain state， choose an action a corresponding
to the maximum Q value to set up price with

probability 1・εandarandom action is chosen with

e probability. The price is calculated based on the
chosen action a according to (3).
2. Observe the response仕omthe market to decide the

the successor state S川 accordingto (5) and give

an immediate reward rt according to (6) to evaluate
action a. Update the Q(s，α) of state-action pair (s，a)
according to (7) where the max operation represents

choosing the optimal action al+l among all possible

actions in the successor state Sl+l

3. Return to step 2.
The learning-based provider agent's strategy is
parameterized by an initial asking price， definition of
state and actions. and related Q leaming parameters.

5.3 Simulations and Results
Simulation Conditions: We conducted experiments by
involving 4・resourceproviders with 2.5GIPS processing
power and 4・resourceconsumers in the market. Each
resource provider used a learning圃bα'sedprovider agent.
The way the resource consumer makes purchase
decisions is the same as that of Section 4.1.2. Task
generation followed the same distributions as that in

Section 4.2. The mean time (11μ) of individual task's
complexity was set to 100，000 ms， and individual task's

value per complexity was set to a mean of 3￥IGI with a
standard deviation of 1. Table 3 gives the experiment
conditions; experiments H， 1 and J were carried out under
varying system load.

The state is divided into 5 price levels from 0￥IGI
to 5￥IGI by 1￥IGI interval， and there are 5 actions
(aO....a4) with different up/downRatio of(+5%， +1%， 0%，

・1%，・5%).α，r and e were all set to 0.1， the Q table is
initialized to 3.
Simulation Results: Table 3 also shows the simulation
results. We can see that the Price-Avg largely complies
with market equilibrium under different system loads.
The price also shows adaptations to changes of demand;
the price rises when the relative demand increases.

Fxp.
11μ 1/λ

L
pri但ーAvg. 民珂

pri図説dev
αu

[1115] [1115] [WIα1 [WGI] L厄lRatio

H 1ω，脱旧 20，αm 2 3.14 2988 5.~Æ。 鈍 12似

1ω，剖旧 10，αm 4 3.653 3.“泊 9刀却も 兜.l~も

J 1ω，償問 5，αm 8 4.138 4.126 3.6'1丹色 兜話野ら

Table 3: Experiment Parameters and Resu/ts
The significant result is that resource utilization
e町iciency(indicated in the CPU _ Uti1Ratio column) is

-303-

extremely high; this results from leaming algorithm.
Since provider agent's price adjustment action is

evaluated in form of reward. which is defined 部
rewarding busy state while penalizing idle state. A failure
action may lead its Q value to become small; hence the
provider agent will avoid taking this action. The Spawn

[2] system using auction mechanism to aIlocate resources
in distributed network operates with 7.6% overhea42.

Figurc 3. I'rkc Tr，tnsition CExp.l)

n
u
n
u
n
u
n
u
n
u
向

U
n
u

h
u
n
u
n
u
n
u
n
u
n
u
n
u

B
o
z
-
w
a曲7
4

0

ぬ

4

・tn
u

ご。、一潟一

u
u叩
』
私

g
o窓
M
自
由

E
曹
』

.
F

:ー一-provl
.... prov2
prov3

l一一一prov4
o '00000 200000 300000

Time Isecl

日'gure3: Price Iransition

5.4 Refillement 0/ State
Figure 3 shows the transaction price of Exp. 1. the price
tends to tluctuate which suggests us to divide the state by
a finer interval. We then refine the state with an interval

of 0.2￥101. From Figure 3， we assume the market

equilibrium is between price level 3￥101 and 4￥101，
thus the state is defined as:
.. state O{ 0...... 3￥/ G1 ， busy)" " s臼te1{0-3￥IGl，idle)"

"s臼le2(3.0---3.2￥/Gl，busy)" "state3(3.0-3.2￥I Gl • idJe)"

"slate 4(3.4---3.6￥/GJ ，busy)" "s師te5(3.4-3.6￥IGl，idJe)"

"state 6{3.6-3.8￥IGJ ，busy)" "state 7(3.6-3.8￥IGI，idle)"

"state 8(3.8......4.0￥/GI，bu，砂)" "state9(3.8......4.0￥IGI，idJe)"

"slale 1 O(4.0￥IGl -，busy)" "statell(4.0￥IG1-，idle)"

ηle other parameters remains the same， the result is
very satistied， the price tends to approach the market
equilibrium with a Price-Avg of 3.773￥IGI and a Price-
Sldev of 3.532%. Figure 4 shows the average Q values of
one of the provider agents合'Omstate 6 to stateJ 2. Action

index is on X-axis， state index is on Y -axis and Q value
is on Z-axis. We can see that the provider agent takes
actions of raising price (aO) in state 6. When the price is
near to the market equilibrium (state 8， 10)， it
alternatively chooses actions al， a2 and a3， which lead to
a stable price. When the price rises to a high level (state
12). action 4 is chosen. The agent obtains the policy to
set up price with respect to price levels.
For a single agent， the ordinary Q-Ieaming is
guaranteed to find the optimal policy. However， in血e
presence of a population of agents， the problem becomes
non-stationary and history dependent，it is not known
whether any global convergence can be obtained. Despite

2 It runs auction to receive bids from鈎5ksat a regular time 51 ice of
120，OOOms. Each time it executes a single task.

the lack of theoretical guarantees， we find that each
provider agent has obtained self-consistent poIicy which
enables it to reach market equilibrium.

。v剖凶#InDi膏側首瞳(slato，aCllon) Palfa
宮崎06.Td'-¥)-
'D:ぬ08.Td'向吋-

QVIぬm ~泊10.Þd' -否ト

Figure 4: Q values in dij)きrent(sωte， action) pairs

6 Conclusions and Future Work
In this paper， we present two price-setting strategies used
in our proposed market-based CPU resource allocation
system. The results show through setting up price
according to consumer's response. the market
equilibrium can be reached， and the price is relative
stable， particularly the addition of learning ability
perfonns well. Moreover， two strategies show the price
determination is quick and the overhead of. market
operation is low. With elaborated price setting strategies，
the market-based approach can display its potential
advantage in computational resource al1ocations. For
future work， the obvious extension is to make the
learning-based provider agent available to deal with
setting up price in the case of processing multi-tasks，
which may produce further improved results; in addition，
an elaboration of the definition of reward and state is
needed.
References
[1] S.Yarnaguchi， M.Takirnoto， H.Ai伽 and T.Saito.
Cooperative background task spa∞s and its evaluation. In The
4th Intemational Workshop 00 Network-Based Information
Systern (NBIS '2001)， September 2001.
[2] C.A.Waldspurger， T.Hogg， B.A.Hubennan， J.O.Kepha民
組 dS.Stornetta Spawn: A distributed computational economy.
In IEEE Transactions on Software Engineeringl8ムpages103
・177，February 1992.
[3] N.Nisan. S.London， O.Regev， and N.Carniel. Globally
distributed computation over the Intemet・thepopcorn project.
In International Conference on Distributed Computing System
(lCDS '98)， 1998.
[4] S.Yarnaguchi， W.Zhu， and H.Aida. A market-based CPU
resource al1ocation system. In the 9th DPS Workshop IPSJ，
October 2001. .(in Japanese).
[5] O.Hayamizui， K.Taura， and A.Yonezawa. Java bytecode
transformation for fine grain CPU resource management. In
IPSJ， July 2001. (in Japanese).
[6] R.S.Sutton， and A.G.Barto. Reinforcement Learning: An
In釘oduction.MIT Press， Cambridge， MA， 1998.

-304-

