IRIF AT 1 7HE LML T — 2 2 a3 v 7 FRIEI0H

A Market-Based CPU Resource Allocation System with Strategic Agents

Wurong Zhu

Saneyasu Yamaguchi

Tay Jet Kiat Hitoshi Aida

Aida Lab, Department of Frontier Informatics
The University of Tokyo
{zhu, sane, tjk, aida}@sail.t.u-tokyo.ac.jp

Abstract

We have proposed and implemented a market-based idle
CPU resource allocation system that utilizes idle CPU
resources. In this paper we propose two-price setting
strategies. The simulation result shows that both of them
work well in terms of price stability, market equilibrium,
and efficient resource utilizations.

1. Introduction

The advances in computing and networking
technology have enabled the utilization of idle
computational resources distributed in the network.
Many researches have been focused on this area. We
proposed and developed a system called the Background
Task Space System (BGTS) [1], which provides a
platform to use idle computers. However, it relies on the
good will of users to provide their idle resources. Besides,
it does not imposes any constrains on resource
consumption. It is necessary to control access to idle
computational resource. Moreover, today, more and more
computers are interconnected with each other because of
the pervasive use of the Internet forming an enormous
computational power; it is an important issuc to make
resource owners be convinced that they are able to
account for the relative costs and benefits of providing
idle computational resources.

Since market facilitates resource management in
human societies, researches on applying economic idea
to computational resource allocation have drawn a lot of
attentions recently. Spawn [2] uses auction to allocate
CPU time among tasks competing for CPU time in a
distributed network. The Popcorn project [3] goes a step
further by providing an infrastructure for global
computing over the Internet based on auction
mechanisms. These precedent works show that there are
potential benefits of using economic principles in
managing distributed computing systems.

Underlying these environments, we have designed
and implemented a market-based idle computational
resources (in particularly, CPU time) allocation system
[4]. Resource allocation is modeled in a simple economy,
in which resource consumption is required to charge for
its usage. Prices are introduced to facilitate resource
allocations that are set by resource providers.

Since price serves to regulate demand and supply in
market-based systems, how to set up price and the price
dynamics have great influence on whether it can bring
about efficient resource allocations. If the price fluctuates,
it cannot enable resource consumers to make correct
scheduling decisions, which will lead the market-based
approach to be ineffective. Most previous works employ
auction mechanism in which the resource is given to who
submits the highest bid and the price tends to oscillate
and volatile which has been observed in [2]. Moreover,
using economics idea in computer science needs to
consider the tradeofY of efforts spent operating the market
versus the improvement in performance gained from
using market-based approaches. An undesirable property
of auction is slow price determination. In an auction, all
interested consumers need to communicate with a
provider (send bids) before any decisions are made, the
provider must then inform all bidders of the acceptance
or rejection of their offers. In addition, the resource
provider, the auctioneer, has the advantage of over
resource consumers in auction while in a perfect
competitive economy prices are set by demand for
resources.

In this paper we propose two price setting strategies
for a demand-driven provider agent and a learning-based
provider agent based on interactions between the
resource provider and the resource consumer where
consumer pays for the resource if it decides that the price
is appropriate while provider sets up price according to
consumer’s response to price. The results of simulations
show Demand-driven provider agent works well in
setting price when resource provider wishes to process
multi-tasks while a Learning-based provider agent can
adaptively set up price when resource provider wishes to
process single-task. Both of them are able to lead the
market to a steady state near to market equilibrium which
enables efficient resource allocations.

The rest of this paper is organized as follows.
Section 2 introduces the market-based CPU resource
allocation system. We describe the criteria used to
evaluate the proposals in Section 3. And then, we present
two price-setting strategies in Section 4 and 5 in which
simulation results will be shown. Finally, we give
concluding remarks and suggested directions for future
work.

—299—

2. A Market-Based CPU Resource
Allocation

2.1 The Concept of Market-Based CPU
Resource Allocation

Market

Machine N

ol BC Task Space

Figure 1. System architecture

The market-based CPU resource allocation system
performs distributed resource allocation by employing
market-based technique. As figure 1 shows, it consists of
three basic entities, resource providers, resource
consumers, and a market. A resource provider, an idle
computer, advertises its information (price, computer
specifications) with the market. A resource consumer, an
overloaded computer wishing to rent idle resources gets
information from the market attempting to find a suitable
resource. Upon decision, it sends the resource provider a
request for transactions. After receiving a request for
transaction, the resource provider will agree to accept the
transaction upon decision. Then, it starts to execute the
task, after the completion of execution, resource provider
returns result to resource consumer, this results a
payment from the resource consumer. The resource
provider then updates the corresponding information in
the market. If there is no resource consumer requesting
for transaction, the resource provider will continually
adjust the price and update the corresponding entry in the
market so as to be able to make transaction with resource
consumers. So in setting prices, resource providers are
totally passive, this is exactly the case in an economy
with perfect competition. The market provides service to
facilitate resource allocation like advertising information
and managing account.

Since we focus on investigating using economic idea
in resource allocation, we assume that users participating
in the system do not have malicious intentions.

2.2 An Economy of CPU Time

2.2.1 The Goods and The Money
Our basic resource allocation unit is a block of CPU time,
i.e., the number of instructions used to run a task. For
example, a task consumes the same amount of CPU time
(number of instructions), even though running it on an
under-loaded computer whose processing speed is 2GIPS

—300—

may take half of the time compared with running it on an
under-loaded computer with 1GIPS processing power.
The CPU resource allocation is carried out in terms of an
abstract currency (¥), which represents a form of right
with which users can use idle CPU resources.

2.2.2 Resource Provider

We intend to model an idle computer whose user agrees
to host tasks from other users in exchange for the
currency. Since we are considering the use of idle CPU
resources, it is reasonable to make such a simplification
that user would rather get his idle computer run tasks for
other users to make profit than let it idle on the condition
that users are assumed not to take the expenses needed
for running computers into consideration. The resource
provider sets up price according demand from resource
consumers. The algorithm is expressed in provider agent
which will be discussed later.

2.2.3 Resource Consumer
To model the user behavior in the BGTS system [1],
resource consumer generates a random number of tasks
and maintains them in a pool waiting for service.
Resource consumer expresses its demand for renting
CPU time from resource provider in form of tasks. The
task parameters include: the task complexity, the amount
of CPU time it needs to consume represented by the time
needed to run it on a baseline computer of speed 1GIPS,
and the task value which represents the budget the
resource consumer can pay for the resources.

Like provider agent, the actual purchase decision and
buying activity are handed over a consumer agent in
which user’s buying strategy is coded. At the present, we
implemented an agent which purchases the lowest priced
CPU resources. We use a queue to maintain these tasks;
this is a priority queue maintained based on the ratio of
task value per task complexity and resource consumer
makes purchase decision by giving high execution
priority to tasks with high priorities.

2.2.4 Market Equilibrium
The basic question about the market-based approach is
whether it works in terms of economical efficiency, i.e.,
market equilibrium. The market equilibrium is reached at
the intersection of the demand and supply curve where
supply equals to supply. To facilitate discussion, we
define system load as the expected amount of processing
requested per time unit divided by the total amount of
processing power in the system. In formula form, it is:

L=A/uT ¢))

where 1/ A is the mean time of task arrival interval,
1/ 1 is the mean time of individual task complexity, T is
the total processing power in the system, and L is the

. system load. It is obvious that the system load L

represents the relative demand to supply. In an over-

loaded system, only 1/L of total tasks will be processed.
The market equilibrium p. can be calculated as (2),
where f{p) represents the probability density function of
every task’s value to complexity ratio.

S(pydp = uT /L)
Peq

3. Evaluation Metrics ,
Since the actual resource allocation is carried by resource
consumers and resource providers, the way the resource
provider sets up prices is quite sensitive to whether the
market mechanism works well. We have designed two
provider agents; a demand-driven provider agent and a
learning-based provider agent. Our main interest is
whether the market mechanism can bring about efficient
resource allocation. Thus, we will evaluate our proposal
with respect to the following criteria:
1. Market equilibrium, price stability, and price
adaptation
2. Resource utilization efficiency
We are interested in whether the price can reach market
equilibrium calculated by formula (2). Price stability is
crucial to ensure resource consumers’ scheduling
stability. If the price fluctuates wildly, resource
consumers that base their decisions on the state of price
will follow suit, leading to poor performance. We are
also interested in whether the price responds in a
reasonable way to the changes of relative demand and
supply. Resource utilization efficiency measures how
effective the market-based approach works to allocate
resources. If the overhead needed for market operation,
i.e., price adjustment and transactions between resource
providers and resource consumers, is too high, it means
the market approach is not succeeding in efficient
resource allocation.

4. A demand-driven provider agent
4.1 Price Setting Strategy

The demand-driven provider agenmt wishes to process
multi-task who needs to denote the maximum number of
tasks it wishes to take in simultaneously'. It raises and
lowers the price according to an intuitive algorithm; if
the asking price is accepted by a resource consumer, it
raises the price; on the other hand, if none of the resource
consumers responds to the price, it lowers the price until
one of the resource consumers accepts the price and asks
for transaction. The price adjustment action is event
driven.

! We make a simplification by assurhing that the amount of CPU
resource consumed by each task to be one Nth of the total available
resource, where N represents the number of concurrently running task.
A research about precise measurement of the number of instructions
executed by each thread can be found in [5].

The demand-driven provider agent’s strategy is
parameterized by an initial asking price, the maximum
number of tasks and an up/down ratio, where the
up/down ratio indicates an upper and lower limit that a
resource provider wishes to adjust each time. The current
asking price is simply expressed by multiplying the
previous asking price by a price adjustment ratio shown
as

currentPrice = ratio* previousPrice 3)

Where the price adjustment ratio is expressed in a
deterministic function of the number of tasks currently
processed by resource provider shown as follows:

ratio = downRatio
+ taskNum* (upRatio — downRatio) | max TaskNum (4)

The ratio increases from the lower to the upper limit
linearly in proportion to the number of tasks currently
running. If the tasks currently running on the resource
provider are more than half of the maximum number of
tasks, the agent raises the price upon considering that is
still a chance of setting up higher price; otherwise, the
agent will lower the price to avoid missing the chance of
transactions. The purpose of updating the price
adjustment ratio is to resolve two contradictory goals;
attempting to make transactions at a high price is
desirable while a high price may lead resource consumers
not being able to afford for resources.

4.2 Simulations
Simulation Conditions: At first we made a simple
setting; 6 resource providers and 1 resource consumer
were involved in the market. Each resource provider used
a demand-driven provider agent, the resource consumer
made purchase decisions by selecting the cheapest CPU
resource to run the most valuable task as described in
Section 2. Each resource provider’s maximum number of
tasks is 6.

Tasks were generated on the resource consumer
following a Poisson distribution whose mean armrival
interval was 1/ 1, which was fixed at 1000ms. Individual
task complexity was assumed to follow an Exponential
distribution whose mean time was 1/, and individual
task value per complexity was drawn from a Gaussian
distribution with a mean of 5 ¥ /Gl and a standard
deviation of 1.

The resource providers were identical computers
whose processing power was 1.5 times as fast as the
baseline computer (1GIPS), hence yielding a total
computational power of 9GIPS. Thus according to
formula (1), it is easy to compute system load L. We
have conducted several experiments under different
system load which is achieved by adjusting 1. Table 1
gives the experiment conditions; experiment A, E, F, G
were carried out under varying system load while

—301—

experiment A ~ D were done with different price
adjustment ratio (up/downRatio).

Vo 174 UpRauo
Exp L
fms}] [ms] /DownRatio
A 20,000 1000 20/9 0.03%
B 20,000 1000 |20/9 0.3%
C 20,000 1000 20/9 3%
D 20,000 1000 |20/9 10%
E 10,000 1000 10/9 003%
F 30,000 1000 |30/9 003%
G 40,000 1000 40/9 0 03%

Table 1: Experiment parameters

4.3 Results
Price Stability and Market Equilibrium: Experiment
results are shown in Table 2. We use the average price
(Price-Avg.) to compare with the market equilibrium,
which is calculated from transaction prices of each
resource provider after the price has reached the steady
state. To measure the price stability, we calculate the

Exp Pnlc:jaﬂ:]vg [Xl:c(?l | Price_Stdev Diff
A 5.216 5.101 1.66% 2225%
B 5518 - 3.65% 8.175%
C 5647 - 7.56% 10.703%
D 5658 - 9.30% 10912%
E 41310 3.718 1.99% 15923%
F 5701 5.500 1.68% 3.654%
G 5947 5739 1.25% 31624%

Table 2: Experiment results

standard deviation of the price (Price-Stdev). We also
give a column to show the market equilibrium (p<)
calculated according to formula (2), and how much
difference the average price from it is shown in Diff
column. Figure 2 is an example for transaction price
convergence to steady state. As it shows, the transaction
prices are low during start-up. Prices increase until
equilibrium is reached where it fluctuates within a certain
band (indicated by Price-Sidev). We also note that when
the price adjustment ratio increases, the value of Price-
Stdev becomes large.

Price Transition (Eap. A)

6.00
500
4.00
3.00
200 :
100 Fommmmgin cionin
000 o

——Prayt |
Prov?
Prov3

——Provd |

P rovs

' Prov |

Transaction Price | Y1G1 |

L

0 5000 10000 15000 20000 25000 30000

Time |sec)

Figure 2: Price transition
Price Response to Changes in the Relative Demand and
Supply: According to the results of experiment A, E, F
and G; the increase of demand results in an increase in
the average price. We can see that the system adapts to
changes in demand and the price is meaningful.
Resource Utilization Efficiency: We use the CPU

—302—

utilization efficiency, i.e., the percentage of CPU time
that is used to run tasks, to measure the resource
utilization efficiency. In each experiment, a value of
about 87% has been achieved; when the maximum
number of tasks is increased to 20, the value rises to
about 96%. This tells that the pricing mechanism is
efficient in terms of resource utilization.

5. A learning-based provider agent

Since there may be different requirements from resource
consumers, e.g., a consumer with deadline tasks may
wish to buy resources from such a provider who runs
single task so that it can use the CPU time exclusively to
meet task deadline. Therefore, we need to investigate the
strategy for setting up price in processing single task. In
this case, if resource provider adjusts the price solely
according to the number of tasks currently running which
is 1 or 0, it may raise or lower the price extremely which
let the price tend to fluctuate. This is not favorable for
both resource providers and resource consumers; the
resource provider as an idle computer wishes execute as
many tasks as possible to make profit while the resource
consumer has the needs to get tasks processed as many as
possible provided that they can afford.

This inspires us to investigate an adaptive pricing
algorithm. The number of tasks currently running shows
whether the current asking price is appropriate. Besides,
the resource consumer’s response to the price adjustment
action is also important. For example, if it raises the price
at a certain price level and this action tends to lead no
transactions from resource consumers, the provider agent
should lower the possibility of taking this action at the
same situation. The idea is the same as what we do in our
daily life; we learn by interacting with our environment.
The computational approach to learning from interaction
is reinforcement learning that deals with learning what to
do — how to map situations to actions — so as to maximize
a numerical reward signal.

5.1 Model
We have designed a learning-based provider agent by
adding the reinforcement learning ability in its price
setting strategy. The price adjustment can be modeled as:
the provider agent interacts with the environment (the
market) through taking actions (adjust price), the market
responds to the action, accept or reject it and presents
new situations (state) to the agent. ‘

One of the most distinctive features of reinforcement
learning is using “reward”’ to formalize the idea of a goal.
The provider agent's goal is to achieve proper price
setting policy. We use reward to.evaluate how good
taking action 4 in state s is for a provider agent. Through
interaction with the market, the provider agent learns
how. to change its price adjustment policy as a result of
its experience. Details about the reinforcement learning

can be found at [6]. Thus, we need to define “state’’,
“action’’ and “reward’’ in our pricing model.

State: To describe a “state”, we assume that the resource
provider has the pre-knowledge of the maximum and
minimum price of the market; therefore we can divide the
price range into different price levels.

A “state” is described by a combination of a price
level and whether the price is accepted (we call it a
“busy” state, in which the provider is running a task) or
not (we call it an “idle” state) shown as follows.

state = (price _level, busy or idle) (5)

For example, if the price is known to be greater than
0¥/GI and less than 5¥/Gl, we can divide the price
range into 5 levels and define 10 states like:

" state 0(0~ 1% /Gl ,busy)"

" state 1(0~1¥ /Gl ,idle)"

“state 2(1~ 2% / GI ,busy)"

“state 8(4~ 5% / GI ,busy)"

“state 9(4~S¥ /GI ,idle }' . i
Action: The “action” is the current price decision, which

is to raise or lower the price and by how much
percantage the price will be adjusted. Like the demand-
driven provider agent, we specify sevaral price
adjustment ratios for the learning-based provider agent
to choose. Thus, the price adjustmen ratio is a direct
mapping from the action chosen. A new asking price is
calculated according to (3).

Reward: .For a provider agent, a good action is setting up
a high price that can result in transactions from resource
consumers. If an action, i.e., price adjustment, leads to a
transaction, it is praised by giving its asking price as
immediate reward; otherwise, it is penalized by giving a
zero reward. The reward is defined as:

if (asking _ priceis accepted)

(6)

reward = price
else

reward =0
Most reinforcement learning algorithms are based on
estimating value functions - functions of states (or of
state-action pairs) that estimate the reward that can be
expected. We use a state-action function known as Q
learning algorithm [6] to estimate how good it is to a
provider agent for taking action a in state s:

O(st.ar) = Q(sg.ar) +

a* (g +v* max O(st+1.8¢4+1)-Q(st.ar)) (D

ar+1 .
Where Qf(s,a) represents the discounted long-term
expected reward s, v is the discounting parameter and «
is the learning rate parameter.

5.2 Price Setting Strategy
With the above defined state and action, the Q(s.a)
function is represented by a lookup Q table containing a

value for every possible state-action pair. The table

entries are initialized to arbitrary values. Then the

procedure for price adjustment is as follows:

1. In a certain state, choose an action a corresponding
to the maximum Q value to set up price with
probability 1- € and a random action is chosen with
€ probability. The price is calculated based on the
chosen action a according to (3).

2. Observe the response from the market to decide the

the successor state 5,,, according to (5) and give

an immediate reward rf according to (6) to evaluate
action a. Update the O(s, @) of state-action pair (s,a)
according to (7) where the max operation represents

choosing the optimal action @,,, among all possible

actions in the successor state §, .

3. Return to step 2.

The learning-based provider agent’s strategy is
parameterized by an initial asking price, definition of
state and actions, and related Q learning parameters.

5.3 Simulations and Results
Simulation Conditions: We conducted experiments by
involving 4-resource providers with 2.5GIPS processing
power and 4-resource consumers in the market. Each
resource provider used a learning-based provider agent.
The way the resource consumer makes purchase
decisions is the same as that of Section 4.1.2. Task
generation followed the same distributions as that in
Section 4.2. The mean time (1/) of individual task’s
complexity was set to 100,000 ms, and individual task’s
value per complexity was set to a mean of 3 ¥/GI with a
standard deviation of 1. Table 3 gives the experiment
conditions; experiments H, I and J were carried out under
varying system load.

The state is divided into 5 price levels from 0¥ /Gl

to 5 ¥/GI by | ¥/GI interval, and there are 5 actions
(a0~a4) with different up/downRatio of (+5%, +1%, 0%,
-1%, -5%). &, Y and & were all set to 0.1, the Q table is
initialized to 3.
Simulation Results: Table 3 also shows the simulation
results. We can see that the Price-Avg largely complies
with market equilibrium under different system loads.
The price also shows adaptations to changes of demand;
the price rises when the relative demand increases. -

Ve | VA ‘[Price_ Avg.| Peq . U
B g | | | e | e [P iaio

100,000| 10,000} 4 | 3653 3660 | 9773% | 98.162%

H [100,000]20,000) 2 314 2988 | 5.600% | 98.120%
1
]

100,000| 5000 [8 | 4.138 | 4.126 | 3.697% | 98.365%

Table 3: Experiment Parameters and Results
The significant result is that resource utilization
efficiency (indicated in the CPU_UtilRatio column) is

—303—

extremely high; this results from learning algorithm.
Since provider agent’s price adjustment action is
evaluated in form of reward, which is defined as
rewarding busy state while penalizing idle state. A failure
action may lead its Q value to become small; hence the
provider agent will avoid taking this action. The Spawn
[2] system using auction mechanism to allocate resources
in distributed network operates with 7.6% overhead?.

Figure 3. Price Traasition (Exp.1)

¥ 600 :
£ 500 ;
& — LI
3 5 400 e
2 < 300 prove .
.;, 3 200 prov3d |
g 100 i prové |
= o000 K s
0 100000 200000 300000
Time |sec}

Figure 3: Price transition

5.4 Refinement of State
Figure 3 shows the transaction price of Exp. I, the price
tends to fluctuate which suggests us to divide the state by
a finer interval. We then refine the state with an interval
of 0.2 ¥ /GI. From Figure 3, we assume the market
equilibrium is between price level 3 %/GI and 4 ¥/GI,
thus the state is defined as:
"state 0(0~3¥ /GI , busy)"
"state 2(3.0~3.2% /GI ,busy)"
"state 4(3.4~3.6% /GI ,busy)"
“state 6(3.6~3.8¥ /Gl ,busy)"
"state 8(3.8~4.0% /G ,busy)" "state 9(3.8~4.0% /G ,idle)"
“state 10(4.0% / GI ~ ,busy)" "state 1 1{4.0% /Gl ~,idle)"

The other parameters remains the same, the result is
very satisfied, the price tends to approach the market
equilibrium with a Price- Avg of 3.773 ¥ /GI and a Price-
Stdev of 3.532%. Figure 4 shows the average Q values of
one of the provider agents from state 6 to statel2. Action
index is on X-axis, state index is on Y-axis and Q value
is on Z-axis. We can see that the provider agent takes
actions of raising price (a0) in state 6. When the price is
near to the market equilibrium (state 8, 10), it
alternatively chooses actions al, a2 and a3, which lead to
a stable price. When the price rises to a high level (state
12), action 4 is chosen. The agent obtains the policy to
set up price with respect to price levels.

For a single agent, the ordinary Q-learning is
guaranteed to find the optimal policy. However, in the
presence of a population of agents, the problem becomes
non-stationary and history dependent, it is not known
whether any global convergence can be obtained. Despite

“state |(0~3%¥ /Gl ,idle)"

"state 3(3.0~3.2¥ /Gl ,idle)"
"state 5(3.4~3.6¥ /Gl ,idle)"
"state 7(3.6~3.8%¥ /Gl ,idle)"

2 It runs auction to receive bids from tasks at a regular time slice of
120,000ms. Each time it executes a single task.

the lack of theoretical guarantees, we find that each
provider agent has obtained self-consistent policy which
enables it to reach market equilibrium.

Q Values in Differeat (state, action) Pairs

T~ 1 State Index
Actonlodes. 23

Figure 4: Q values in different (state, action) pairs

6 Conclusions and Future Work

In this paper, we present two price-setting strategies used
in our proposed market-based CPU resource allocation
system. The results show through setting up price
according to consumer’s response, the market
equilibrium can be reached, and the price is relative
stable, particularly the addition of learning ability
performs well. Moreover, two strategies show the price
determination is quick and the overhead of market
operation is low. With elaborated price setting strategies,
the market-based approach can display its potential
advantage in computational resource allocations. For
future work, the obvious extension is to make the
learning-based provider agent available to deal with
setting up price in the case of processing multi-tasks,
which may produce further improved results; in addition,
an elaboration of the definition of reward and state is
needed.

References

[1] S.Yamaguchi, M.Takimoto, H.Aida, and T.Saito.
Cooperative background task spaces and its evaluation. In The
4th International Workshop on Network-Based Information
System (NBIS 2001), September 2001.

[2] C.A.Waldspurger, T.Hogg, B.A.Huberman, J.O.Kephart,
and S.Stornetta. Spawn: A distributed computational economy.
In IEEE Transactions on Software Engineeringl8,2, pages 103
=177, February 1992.

[3] N.Nisan, S.London, O.Regev, and N.Camiel. Globally
distributed computation over the Internet - the popcorn project.
In International Conference on Distributed Computing System
(ICDS "98), 1998.

[4} S.Yamaguchi, W.Zhu, and H.Aida. A market-based CPU
resource allocation system. In the 9th DPS Workshop IPSJ,
October 2001. (in Japanese).

[5] O.Hayamizui, K.Taura, and A.Yonezawa. Java bytecode
transformation for fine grain CPU resource management. In
IPSJ, July 2001, (in Japanese).

[6] R.S.Sutton, and A.G.Barto. Reinforcement Learning: An
Introduction. MIT Press, Cambridge, MA, 1998.

—304—

