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Abstract 

We have proposed and implemented a market-based idJe 
CPU resource allocation system that utilizes idJe CPU 
resources. In this paper we propose two-price setting 
strategies. The simulation result shows that both 01 them 
work well in terms 01 p'悦 stability，market equilibrium， 
and efficient resource utilizations. 

1. Introduction 

The advances in computing and networking 
technology have enabled the utilization of idle 
computational resources distributed in the network. 
Many researches have been focused on this area. We 
proposed and developed a system called the Background 
Task Space System (BGTS) [1]， which provides a 
platform to use idle computers. However， it relies on the 
good will of users to provide their idle resources. Besides， 
it does not imposes any constrains on resource 
consumption. It is necessary to control access to idle 
compu臼tionalresource. M.Oflωver， today， more and more 
computers are interconnected with each other because of 
the pervasi ve use of the Intemet forming an enormous 
computational power; it is an important issue to m紘e
resource owners be convinced that they are able to 
account for the relative costs and benefits of providing 
idle computational resources. 
Since market facilitates resource management in 
human societies， researches on applying economic idea 
to computational resource allocation have drawn a lot of 
attentions recently. Spawn [2] uses auction to allocate 
CPU time among tasks competing for CPU time in a 
distributed network. The Popcom project [3] goes a s旬p
further by providing an in企astructure for global 
computing over the Intemet based on auction 
mechanisms. These precedent works show that there are 
potential benefits of using economic principles in 
managing distributed computing systems. 
Underlying these environments， we have designed 
and implemented a market-based idle computational 
resources (in particularly， CPU time) allocation system 
[4]. Resource allocation is modeled in a simple economy， 
in which resource consumption is required to charge for 
its usage. Prices are introduced to facilitate resource 
allocations that are set by resource providers. 
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Since price serves to regulate demand and supply in 
market-based systems， how to set up price and the price 
dynamics have great influenωon whether it can bring 
about efficient resource allocations. Ifthe price fluctuates， 
it cannot enable resource consumers to make correct 
scheduling decisions， which will lead the market-based 
approach to be i即日記ctive.Most previous works employ 
auction mechanism in which the resource is given to who 
submits the highest bid and the price tends to oscillate 
and volatile which has been observed in [2]. Moreover， 
using economics idea in computer science needs to 
consider the tradeofT of e町ortsspent operating the market 
versus the improvement in performance gained合om
using market-based approach邸.An undesirable property 
of.auction is slow price determination. In an auction， all 
interested consumers need to communicate with a 
provider (send bids) before any decisions are made， the 
provider must then inform all bidders of the acceptance 
or rejection of their offers. In addition， the resource 
provider， the auctioneer， has the advantage of over 
resource consumers in auction while in a peげect
competitive economy prices are set by demand for 
resources. 
In this paper we propose two price setting strategies 

for a demand-driven provider agent and a learning-based 
provider agent based on interactions between the 
resource provider and the resource consumer where 
consumer pays for the resource if it decides that the price 
is appropriate while provider sets up price according to 
consumer's response to price. The results of simulations 
show Demanιdriven provider agent works well in 
setting price when resource provider wishes to process 
multi-tasks while a Learning-based provider agent can 
adaptively set up price when resource provider wishes to 
process single-task. Both of them are able 10 lead the 
market to a steady state near to market equilibrium which 
enables efficient resource allocations. 
The rest of this paper is organized as follows. 
Section 2 introduces the market-based CPU reso町ce
allocation system. We describe the criteria used to 
evaluate the proposa1s in Section 3. And then， we present 
two price-setting strategies in Section 4 and 5 in which 
simulation results wiLI be shown. Finally， we give 
concluding remarks and suggested directions for future 
work. 



2. A Market-Based CPU Resource 

AlIocation 

2.1 Tbe Concept of Market-Based CPU 
Resource Allocation 

ηlC market-based CPU res'Ource all'Ocati'On system 
perf'Onns distributed res'Ource alJ'Ocati'On by empl'Oying 
market-based technique. As figure 1 sh'Ows， it c'Onsists 'Of 
three basic entities， resource providers， resource 
consumers， and a market. A問s'Ourcepr'Ovider， an idle 
computer， advertises its inf'Onnation (price， c'Omputer 
specifications) with the market. A resource c'Onsumer， an 
overl'Oaded computer wishing to rent idle res'Ourc邸 gets
informati'On fr'Om the market attempting t'O find a suitablc 
res'Ource. Upon decisi'On， it sends the res'Ource provider a 
request f'Or transacti'Ons. After receiving a request for 
transacti'On， the res'Ource pr'Ovider will agree t'O accept the 
transacti'On upon decisi'On. Then， it starts to execute the 
task， after the completi'On of executi'On， resource provider 
retums result t'O resource consumer， this results a 
payment合omthe res'Ource consumer. The resource 
pr'Ovider then updates the corresponding inf'Ormation in 
the market. lf there is n'O res'Ource consumer requesting 
for transaction， the resource pr'Ovider will c'Ontinually 
adjust the price and update the c'Orresponding entry in由e
market so as to be able to make transaction with res'Ource 
consumers. S'O in setting prices， resource providers are 
t'Otally passive， this is exactly the case in an economy 
with perfect competiti'On. The market provides service t'O 
facilitate resource allocation like advertising information 
and managing account. 
Since we focus on investigating using economic idea 
in問sourceallocation， we assume th剖 usersparticipating 
in the system d'O n'Ot have malicious intenti'Ons. 

2.2 An Economy ofCPU Time 
2.2.1 Tlre Good旨andTlre Money 
Our basic resource allocation unit is a block of CPU time， 
i.e.， the number of instructions used t'O run a task. For 
example， a task consumes the same am'Ount 'Of CPU time 
(number 'Of instructi'Ons)， even though running it on an 
under-Ioaded computer whose pr'Ocessing speed is 2GIPS 
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may take half ofthe time compared with running it on an 
under-Ioaded c'Omputer with lGIPS processing power. 
The CPU resource allocation is carried 'Out in terms of an 

abstract currency (￥)， which represenぉaf'Orm of ri帥t
with which users can use idle CPU resources. 

2.2.2 Resource Prov;der 
We intend t'O model an idle ∞mputer wh'Ose user agrees 
t'O host tasks仕om'Other users in exchange f'Or the 
currency. Since we are considering the use of idle CPU 
resources， it is reasonable to make such a simplification 
that user would rather get his idle computer run tasks for 
'Other users to make profit than let it idle on the conditi'On 
that users are assumed not t'O take the expenses needed 
for running computers into considerati'On. The res'Ource 
provider sets up price acc'Ording demand合omres'Ource 
c'Onsumers. The algorithm is expressed in provider agent 
which will be discussed later. 

2.2.3 Resource Consumer 
To model the user behavior in the BGTS system [1]， 
resource consumer generates a random number of tasks 
and maintains them in a pool waiting for service. 
Resource c'Onsumer expresses its demand for renting 
CPU time骨omresource provider in form of tasks. The 
task parameters inc1ude: the旬skcomplexity， the amount 
'Of CPU time it needs t'O consume represented by the time 
needed to run it on a baseline computer of speed 1 GIPS， 
and the task value which represents the budget the 
resource consumer can pay for the resources. 
Like pr'Ovider agent， the actual purchase decision and 
buying activity are handed over a consumer agent in 
which user's buying strategy is coded. At the prl白ent，we 
implemented an agent which purchases the lowest priced 
CPU resources. We use a queue to maintain these tasks; 
this is a priority queue maintained based on the rati'O of 
task va/ue per task comp/exity and resource c'Onsumer 
makes purchase decisi'On by giving high execution 
pri'Ority to tasks with high priorities. 

2.2.4 Market Equi/ibrium 
The basic question ab'Out the market-based appr'Oach is 
whether it works in terms of economical efficiency， i .e.， 
market equilibrium. The market equilibrium is reached at 
the intersection of the demand and supply curve where 
supply equals t'O supply. To facilitate discussion， we 
define system l'Oad as the expected amount of proc白sing
requested per time unit divided by the total amount of 
processing power in the system. In formula form， it is: 

L=λ/μ T (1) 

where 1/λIs the mean time oftask arrival interval， 
11μis the mean time 'Of individual task complexity， T is 
the total pr'Ocessing power in the system， and L is the 
system load. It is obvious that the system load L 
represents the relative demand to supply. In an over-



loaded system， only IIL oftotal tasks will be processed. 
The market equi1ibrium p吋 canbe calculated as (2)， 
where f(p) rep問sen也 theprobability density function of 
every task's value to complexi砂ratio.

If(p)中 =μTIλ(2)
，}Peq 

3. Evaluation Metrics 
Since the actual resource allocation is carried by resource 
consumers and resource providers， the way the resource 
provider se陪 upprices is quite sensitive to whether the 
market mechanism works well. We have designed two 
provider agents; a demand-driven provider agent and a 
learning-based provider agent. Our main interest is 
whether the market mechanism can bring about efficient 
resource allocation. Thus， we will evaluate our proposal 
with respect to the following criteria: 
1. Market equilibrium. price stability， and price 
adaptation 
2. Resource utilization efficiency 
We are interested in whether the price can reach market 
equilibrium calculated by formula (2). Price s帥i1ityis 
crucial to ensure resource consumers' scheduling 
stability. If the price fluctuates wildly， resource 
consumers出atbase their decisions on the state of price 
will follow suit， leading to poor performance. We are 
also interested in whether the price responds in a 
reasonable way to the changes of relative demand and 
supply. Resource utilization efficiency measures how 
e能 ctivethe market-based approach works to allocate 
resources. If the overhead needed for market operation， 
i.e.， price adjustment and transactions between resource 
providers and resource consumers， is too high， it means 
the market approach is not succeeding in efficient 
resource allocation. 

4. A demand-driven provider agent 
4.1 Price Setting Strategy 
The demand-driven provider agent wishes to process 
multi-task who needs to denote the maximum number of 
tasks it wishes to take in simultaneouslyl. It raises and 
lowers the price according to an intuitive algorithm; if 
the asking price is accepted by a resource consumer， it 
raises the price; on the other hand， if none of the resource 
consumers responds to the price， it lowers the price until 
one of the resource consumers accepts the price and asks 
for transaction. The price adjustment action is event 
driven. 

I We make a simplification by assuming白紙 theamount of CPU 
resource consumed by each task to be one Nth 01' the total availablc 
resou陀e，where N rep同時nlsthe number of concurrently running task. 
A research about precise measurement of the number of instructions 
executed by each thread can be found in [5]. 

The demand-driven provider agent's strategy is 
parameterized by an initial asking price， the maximum 
number 01 tasks and an up/down ratio， where the 
up/down ratio indicates an upper and lower limit that a 
resource provider wishes to adjust each time. The current 
asking price is simply expressed by multiplying the 

previous asking price by a price adjustment ratio shown 
as 

C仰urr附切切，匂w切eω仰ntP桁ri，比ce=ra官aぽtωiω0*pr附噌匂-ev沼e

Where the price adjus剖tme目n同E首tratio is expressed in a 
det旬，erminis坑ticfi白mctionof the number of tasks cur口πTen同1tl勿y 
processed by陀s叩ourceprovider shown as follows: 

ratio == downRatio 

+ taskNum * (upRatio -downRatio) I max TasJcNum (4) 
The ratio increases合omthe lower to the upper limit 
linearly in proportion t'O the number of tasks currently 
running. If the tasks currently running on the resource 
provider are more than half of the maximum number of 
tasks， the agent raises the price upon considering that is 
still a chance of setting up higher price; '0由erwise，the 
agent will lower the price to av'Oid missing the chance of 
transactions. The pu巾ose of updating the price 
adjustment ratio is t'O resolve two contradict'Ory goals; 
attempting to make transactions at a high price is 
desirable while a high price may lead resource consumers 
not being able to afford for resources. 

4.2 Simulations 
Simulation Conditions: At first we made a simple 
setting; 6 resource providers and 1 resource consumer 
were involved in the market. Each resource provider used 
a demand-driven provider agent，由ereso町ceconsumer 
made purchase decisions by selecting the cheapest CPU 
res'Ource to run the most valuable task as described in 
Section 2. Each resource provider's maximum number 'Of 
tasks is 6. 

Tasks were generated on the res'Ource c'Onsumer 
following a Poisson distribution whose mean arrival 

interval was 1/λ， which was fixed at 1000ms. Individual 
task complexity was assumed to follow an Exponential 

distribution whose mean time was 11μ， and individual 
task value per complexi.伊 wasdrawn合oma Gaussian 
distribution with a mean of 5￥IGI and a standard 
deviati'On of ] . 

The resource providers were identical computers 
whose processing power was 1.5 times as fast as the 
baseline computer (l GIPS)， hence yielding a total 
computational power of 9GIPS. Thus according to 
formula (1)， it is ，easy to compute system load L. We 
have conducted several experiments under di偽rent

system load which is achieved by adjustingμ. Table 1 

gives the experiment∞nditions; experiment A， E， F， G 
were carried out under varying system load while 

-301-



experiment A ~ D were done with different price 
adjustment rati'O (up/downRatio). 

Exp 
11μ 11.¥ 

L 
U pRatlo 

1m 5J 1m 5) 10 ow n R atlo 

A 20、000 1000 20/9 0.03% 

B 20.000 1000 20/9 0.3耳も

C 20，000 1000 20/9 3% 

D 20.000 1000 20/9 10% 

E 10.000 1000 10/9 o 03% 
F 3 (1，000 1000 30/9 o 03% 
G 40，000 1000 40/9 o 03% 

Table 1: Experiment parameters 

4.3 Rej'ults 
Price Stabi/i，砂 alJdMarket Eqllilibriunr: Experiment 
results are shown in Table 2. We use the average price 
(Price-Avg.) to compare with the market equilibrium， 
which is calculated合omtransaction prices of each 
resource provider after the price has reached the steady 
state. To measure the price stability， we calculate the 

Exp 
Pnce_Avg Peq 

Pnce Stdev DilT 
l￥氾Jj [V/OI) 

A 5.216 5.101 1.66% 2.225% 

B 5518 3.65% 8.175% 

C 5647 7.56% 10.703% 

D 5 &58 9]0% 10912% 

E 4310 3.718 1.99% 15923"10 

F 5.701 5500 1.68% 3.654ーも

G 5.947 5.739 1.25% 3624% 

Table 2: Experiment results 
standard deviation of the price (Price-Stdev). We als'O 
give a c'Olumn to Sh'OW the market equilibrium (P ~q) 
calculated acc'Ording t'O f'Ormula (2)， and how much 
di汀erencethe average price from it is shown in D(ff 
column. Figure 2 is an example f'Or transacti'On price 
c'Onvergence to steady state. As it Sh'OWS， the transacti'On 
prices are I'OW during start-up. Prices increase until 
equilibrium is reached where it fluctuates within a certain 
band (indicated by Price-Stdev). We als'O n'Ote th剖 when
the price adjustment rati'O increases， the value of Price-
Stdev bec'Omes large. 

j'riu Trllnsilion ，民主p.A) 

5000 

Timr 1悶 "1

Figure 2: Price transition 

ーー-I'，ovf1 
P，o旬2
ProvJ 
-Prov4， 
、‘-Pr。、・5
古品-P，ov6

Price Response 10 Changes ;n tl，e Relative Demand and 
Supply: Acc'Ording t'O the results of experiment A， E， F 
and G; the increase 'Of demand results in an increase in 
the average price. We can see that the system adapts to 
changes in demand and the price is meaningful. 
Resollrce UtilizaliOll Efficiency: We use the CPU 
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utilizati'On efficiency， i.e.， the percentage 'Of CPU time 
that is used to run tasks， to measure the res'Ource 
utilization efficiency. ln each experiment， a value of 
about 87% has been achieved; when the maximum 
number 'Of tasks is increased to 20， the value rises (0 
about 96%. This tells that the pricing mechanism is 
efficient in terms of res'Ource utilization. 

5. A learning-based provider agent 
Since there may be di斤erentrequirements fr'Om res'Ource 
consumers， e.gザ ac'Onsumer with deadline tasks may 
wish to buy resources fr'Om such a provider who runs 
single task s'O thatit can use the CPU time exclusively to 
meet task deadline. Theref'Ore， we need to investigate the 
strategy for setting up price in processing single task. In 
this case， if res'Ource provider adjusts the price s'Olely 
according to the number 'Of tasks currently running which 
is I or O. it may raise or l'Ower the price extremely which 
let the price tend t'O fluctuate. This is not favorable for 
both res'Ource providers and resource consumers; the 
resource provider as an idle ∞mputer wishesexecute as 
many tasks as P'Ossible t'O make profit while the resource 
consumer has the needs to get tasks processed as many as 
p'Ossible pr'Ovided that they can aff'Ord. 
This inspires us to investigate an adaptive pricing 
aIg'Orithm. The number of tasks currently running sh'Ows 
whether the current asking price is appropriate. Besides， 
the res'Ource c'Onsumer's resp'Onse to the price adjustment 
acti'On is also important. F'Or example， ifit raises the price 
at a ce巾 inprice level and this acti'On tends t'O lead n'O 
transacti ons命omresource c'Onsumers， the provider agent 
sh'Ould lower the possibility 'Of taking this acti'On at the 
same situati'On. The idea is the same as what we do in 'Our 
daily life; we leam by interacting with 'Our environment. 
Thec'Omputational approach t'O learning骨'ominteraction 
is reinforcement leaming that deals wIth leaming what to 
do -h'Ow t'O map situations t'O actIons -s'O as t'O maximize 
a numerical reward signal. 

5.1 Model 
We have designed a /earning-based provider agent by 
adding the reinforcement leaming abiIity in its price 
setting strategy. The price a司justmentcan be modeled as: 
the provider agent interacts with the envir'Onment (the 
market) through taking actions (adjust price)， the market 
resp'Onds t'O the aClion， accept or reject it and pr白ents
new situations (state) to the agent. 
One 'Of the most distinctive features of reinforcement 
leaming is using "reward" t'O formalize the idea of a goal. 
The provider agent's goal is to achieve proper priω 
setting policy. We use reward t'O. evaluate h'OW g'O'Od 
taking action a in state s is for a pr'Ovider agent. Through 
interaction with the market， the provider agent learns 
how to change its price adjustment p'Olicy as a result of 
its experience. Details ab'O~t the reinforcement Iearning 



can be found at f6J. Thus， we need to define“state" ， 
“action" and "reward" in our pricing model. 
State: To describe a “state". we assume出atthe resource 
provider has the pre-knowledge of the maximum and 
minimum price ofthe market; therefore we can divide the 
price range into different price levels. 
A“state" is described by a combination of a price 
level and whether the price is accepted (we call it a 
“busy" state， in which the provider is running a task) or 
not (we call it an “idle" state) shown as follows. 
sta館 =(price _level， busy or idle) (5) 

For example， if the price is known to be greater than 

O￥IGI and less than 5￥IGI， we can divide the price 
range into 5 levels and define 10 states 1 ike: 

"stale 0(0.......)￥I GI .bu~y )" 

"stale ) ( 0 "-)￥ I GI .id/e )" 

"sωle 2(1....... 2￥IGI ，husy )" 

"stale 8( 4"-" 5￥/ GI ，busy )" 

" stqle 9(!f -: 5￥IGI .idle)" 
Action: The “action" -is the current price decision， which 
is to raise or lower the price and by how much 
percantage由eprice will be adjusted. Like the demand-
driven provider agenl， we speciちr sevaral price 
adjustment ratios for the learning-based provider agent 
to choose. Thus， the price叫justmenratio is a direct 
mapping合omthe action chosen. A new asking price is 
calculated according to (3). 
Reward: .For a provider agent. a good action is setting up 
a high price that can result in transactions from resource 
consumers. If an action， i.e.， price adjustment， leads to a 
transaction， it is praised by giving its asking price as 
immediate reward; otherwise， it is penalized by giving a 
zero reward. The reward is defined as: 

グ(asking_ price is accepted) 

reward = pr;ce 
else 

reward=O 

(6) 

Most reinforcement learning algorithms are based on 
estimating value functions・functionsof states (or of 
state-action pairs)出atestimate the reward th剖 canbe 
expected. We use a state-action function known as Q 
learning algorithm [6] to estimate how good it is to a 
provider agent for taking action a instate s: 

Q(SI，αt> = Q(s{，af} + 
α牟(rt+γ* max Q(st+l，at+I>-Q(st，af}) (7) 

at+ I 
Where Q(s，a) represen胞 the discounted long-tenn 

expected reward s，γis the discounting parameter and α 
is the leaming rate par創neter.

5.2 Price Setting Strategy 
With the above defined state and action， the Q(s，a) 
function is represented by a lookup Q table containing a 

value for every possible state-action pair. 官官 table
entries are initial ized to arbitrary val ues. Then the 
procedure for price adjustment is as follows: 
1. In a certain state， choose an action a corresponding 
to the maximum Q value to set up price with 

probability 1・εandarandom action is chosen with 

e probability. The price is calculated based on the 
chosen action a according to (3). 
2. Observe the response仕omthe market to decide the 

the successor state S川 accordingto (5) and give 

an immediate reward rt according to (6) to evaluate 
action a. Update the Q(s，α) of state-action pair (s，a) 
according to (7) where the max operation represents 

choosing the optimal action al+l among all possible 

actions in the successor state Sl+l 

3. Return to step 2. 
The learning-based provider agent's strategy is 
parameterized by an initial asking price， definition of 
state and actions. and related Q leaming parameters. 

5.3 Simulations and Results 
Simulation Conditions: We conducted experiments by 
involving 4・resourceproviders with 2.5GIPS processing 
power and 4・resourceconsumers in the market. Each 
resource provider used a learning圃bα'sedprovider agent. 
The way the resource consumer makes purchase 
decisions is the same as that of Section 4.1.2. Task 
generation followed the same distributions as that in 

Section 4.2. The mean time (11μ) of individual task's 
complexity was set to 100，000 ms， and individual task's 

value per complexity was set to a mean of 3￥IGI with a 
standard deviation of 1. Table 3 gives the experiment 
conditions; experiments H， 1 and J were carried out under 
varying system load. 

The state is divided into 5 price levels from 0￥IGI 
to 5￥IGI by 1￥IGI interval， and there are 5 actions 
(aO....a4) with different up/downRatio of(+5%， +1%， 0%， 

・1%，・5%).α，r and e were all set to 0.1， the Q table is 
initialized to 3. 
Simulation Results: Table 3 also shows the simulation 
results. We can see that the Price-Avg largely complies 
with market equilibrium under different system loads. 
The price also shows adaptations to changes of demand; 
the price rises when the relative demand increases. 

Fxp. 
11μ 1/λ 

L 
pri但ーAvg. 民珂

pri図説dev
αu 

[1115] [1115] [WIα1 [WGI] L厄lRatio

H 1ω，脱旧 20，αm 2 3.14 2988 5.~Æ。 鈍 12似

1ω，剖旧 10，αm 4 3.653 3.“泊 9刀却も 兜.l~も

J 1ω，償問 5，αm 8 4.138 4.126 3.6'1丹色 兜話野ら

Table 3: Experiment Parameters and Resu/ts 
The significant result is that resource utilization 
e町iciency(indicated in the CPU _ Uti1Ratio column) is 
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extremely high; this results from leaming algorithm. 
Since provider agent's price adjustment action is 

evaluated in form of reward. which is defined 部
rewarding busy state while penalizing idle state. A failure 
action may lead its Q value to become small; hence the 
provider agent will avoid taking this action. The Spawn 

[2] system using auction mechanism to aIlocate resources 
in distributed network operates with 7.6% overhea42. 

Figurc 3. I'rkc Tr，tnsition CExp.l) 
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5.4 Refillement 0/ State 
Figure 3 shows the transaction price of Exp. 1. the price 
tends to tluctuate which suggests us to divide the state by 
a finer interval. We then refine the state with an interval 

of 0.2￥101. From Figure 3， we assume the market 

equilibrium is between price level 3￥101 and 4￥101， 
thus the state is defined as: 
.. state O{ 0...... 3￥/ G1 ， busy )" " s臼te1{0-3￥IGl，idle)" 

"s臼le2(3.0---3.2￥/Gl，busy)" "state3(3.0-3.2￥I Gl • idJe )" 

"slate 4(3.4---3.6￥/GJ ，busy)" "s師te5(3.4-3.6￥IGl，idJe)" 

"state 6{3.6-3.8￥IGJ ，busy)" "state 7(3.6-3.8￥IGI，idle)" 

"state 8(3.8......4.0￥/GI，bu，砂)" "state9(3.8......4.0￥IGI，idJe)" 

"slale 1 O( 4.0￥IGl -，busy)" "statell(4.0￥IG1-，idle)" 

ηle other parameters remains the same， the result is 
very satistied， the price tends to approach the market 
equilibrium with a Price-Avg of 3.773￥IGI and a Price-
Sldev of 3.532%. Figure 4 shows the average Q values of 
one of the provider agents合'Omstate 6 to stateJ 2. Action 

index is on X-axis， state index is on Y -axis and Q value 
is on Z-axis. We can see that the provider agent takes 
actions of raising price (aO) in state 6. When the price is 
near to the market equilibrium (state 8， 10)， it 
alternatively chooses actions al， a2 and a3， which lead to 
a stable price. When the price rises to a high level (state 
12). action 4 is chosen. The agent obtains the policy to 
set up price with respect to price levels. 
For a single agent， the ordinary Q-Ieaming is 
guaranteed to find the optimal policy. However， in血e
presence of a population of agents， the problem becomes 
non-stationary and history dependent，it is not known 
whether any global convergence can be obtained. Despite 

2 It runs auction to receive bids from鈎5ksat a regular time 51 ice of 
120，OOOms. Each time it executes a single task. 

the lack of theoretical guarantees， we find that each 
provider agent has obtained self-consistent poIicy which 
enables it to reach market equilibrium. 
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Figure 4: Q values in dij)きrent(sωte， action) pairs 

6 Conclusions and Future Work 
In this paper， we present two price-setting strategies used 
in our proposed market-based CPU resource allocation 
system. The results show through setting up price 
according to consumer's response. the market 
equilibrium can be reached， and the price is relative 
stable， particularly the addition of learning ability 
perfonns well. Moreover， two strategies show the price 
determination is quick and the overhead of. market 
operation is low. With elaborated price setting strategies， 
the market-based approach can display its potential 
advantage in computational resource al1ocations. For 
future work， the obvious extension is to make the 
learning-based provider agent available to deal with 
setting up price in the case of processing multi-tasks， 
which may produce further improved results; in addition， 
an elaboration of the definition of reward and state is 
needed. 
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