[RNFAF 4 TREEIRAET -2 3y 71 FRIEICH

Mobile Agent Model for Fault-Tolerant Objects Systems

Takao Komiya, Tomoya Enokido, and Makoto Takizawa
Tokyo Denki University, Japan
{komi, eno, taki}@takilab.k.dendai.ac.jp

Application programs may be faulty as well as server systems. There are many discusses on how to make
servers fault-tolerant, i.e. replication and checkpointing. Applications are also made fault-tolerant by in order
to realize fault-tolerant systems. In this paper, we take an agent approach where the applications are realized
by mobile agents. Agents move around object servers whose objects are manipulated. In traditional systems,
application programs do not work if application servers are faulty. If the server is faulty, the agent finds
another server where the agent can be performed. In addition, replicas of agents move to operational servers
even if some replicas suffer from faults. In the mobile agent approach, applications can be fault-tolerant.

MEEA T P RTADEDDENANI—- Y M EFI

WNE Bt BEF 8t @R #
REEHAFETER

TV —ra/ad s Ad—NERRCEEERD Z LMD D, MEEY—NEHETIEDOHEKICD
WTEBRIhTWS, 77U r—abEi MEEIATFLZERT S DICRBERICERSRTHIE
ok, RRNEEERT TV r—2a s R2ERTHEDIZ. ENMNI—P 2 eERTS, I-x
PhERENETOYILRBA TS M- NEBEBT S, KO AFATIR, 7FUsr—ad—N
MEELTWRARSIE, 7V r—2a7odSL38ELRV. ARXORETEII—C 2 TR 7
TUr—2a Y —NBEELELESIE, FOI-Yx 2 MIBI—DDI—J x> MREFURERY~N%E
BoF3, 35612, I—2x> bV 7Y ARN DhD LT AMEEICH -2 & L THEATGESRY—N
KBTS, ENAMNI—-Yz 2 7 70—FITBNWT, 77V~ a>rnydsAdfBEEL0E3,

1 Introduction Here, agents manipulate objects only in local object
servers. In addition, an agent negotiates with the
agent if some agents manipulate objects in a con-
flicting manner. Through the negotiation, each agent
autonomously makes a decision on whether the agent
continues to hold the objects or releases the objects.
Thus mobile agents have following characteristics:

Systems are composed of object servers and appli-
cations. Applications issue requests to object servers
and then the object servers send response to the
applications. There are many discussions on how
to make object servers fault-tolerant, i.e. replica-
tions [7,17] and checkpointing protocols {5]. Even

if object servers are fault-tolerant, the system is not 1. Agents are autonomously initiated and per-
operational if applications are faulty. In this paper, formed.
applications are realized as mobile agents [1}. An 2. Agents negotiate with other agents.

agent first lands at an object server and then is per-
formed to manipulate objects in the object server. If
the agent finishes manipulating the objects, the agent The two-phase commitment protocol [4, 14] and
moves to another server which has objects to be ma- protocols for replicating object servers {7, 17]are not
nipulated. An agent moves around object servers. robust for faults of application servers while robust

3. Agents are moving around computers.

—=171—-

for servers’ faults. Mobile agents can move to an-
other object server if one server is faulty. Thus, mo-
bile agents can be still operational as long as at least
one object server where the agents can be performed
is operational. In addition, agents can be replicated
and each replica agent is independently performed.
Even if one replica agent is faulty, objects can be ma-
nipulated through other replica agents. If an agent
leaves an object server after manipulating objects,
the agent releases the objects. If an agent releases
objects before committing or aborting, the agent can-
not be aborted. In order to overcome the difficulty, a
surrogate agent for the agent is created and is left on
the object server. The surrogate agent holds the ob-
jects until the agent commits or aborts. We discuss
how to manipulate multiple object servers by using
agents in presence of server and application faults.

In section 2, we present a system model. In section
3, we present a fault-tolerant agent model. In section
4, we discuss how to resolve confliction among agents.
In section 5, we discuss implementation of mobile
agents.

2 System Model
2.1 Object servers

A system is composed of object servers Dy, ...,
Dy, ({m > 1), which are interconnected with reliable,
high-speed communication networks. Each object
server supports a collection of objects and methods
for manipulating the objects. Objects are encapsula-
tions of data and methods. Objects are manipulated
only through methods supported by the objects.

Suppose a pair of subtransactions 7 and T, ma-
nipulate an object in an object server D; by using
methods op; and ops, respectively. Here, if the re-
sult obtained by performing op; and op, depends on
a computation order of op; and ops, op; and ops
are referred to as conflict with one another on the
object (4]. For example, read and write conflict on
a file object. A pair of methods increment and
decrement do not conflict, i.e. are compatible on a
counter object. On the other hand, reset conflicts
with increment and decrement on the counter ob-
ject. If a method from a transaction T3 is performed
before a method from another transaction T and
the methods conflict, every method op; from T is
required to be performed before every method ops
from T, conflicting with the method op;. This is a
serializability property of transaction [4]. The lock-
ing protocol and timestamp ordering protocol [4] are
used to realize the serializability. In the locking pro-

tocol, if one transaction holds an object, then other
transactions are regard to wait. Transactions lock
an object in an arbitrary order. On the other hand,
transactions are totally ordered in their timestamps.
The objects are held by the transactions according
to the timestamp order.

2.2 Mobile agents

An agent is a program which can be autonomously
performed on one or more than one object server.
An agent issues methods to manipulate objects in
an object server where the agent exists. Every object
server is assumed to support a platform to perform
agents.

First, an agent A is autonomously initiated on an
object server. The agent A is first stored in the mem-
ory of an object server D;. If enough resource like
memory is allocated for the agent A on the object
server D;, the agent A moves to the object server
D;, ie. lands at D;. Here, D; is a current object
server of the agent A.

Suppose an agent A lands at a server D; to
manipulate an account object through a method
increment. Here, suppose another agent B is now
resetting the account object. Since reset conflicts
with increment, the agent A cannot start. A pair of
agents A; and A, are referred to as conflict if A,
and A2 manipulate a same object through conflict-
ing methods. After landing at an object server D,
the agent A is allowed to be performed if there is no
agent on D; which conflicts with A.

() f /:
=

Figure 1: Optimal routing.

2.3 Termination conditions

Suppose an agent A manipulates objects in multi-
ple object servers Dy, ..., D, (m > 1). The agent
A visits these object servers in serial or parallel ways

—172—

as discussed before. After finishing manipulating ob-
jects in all the object servers, the agent A commits
if some consensus condition C on the object servers
Dy, ..., Dy, is satisfied. Otherwise, the agent A
aborts. For example, an agent commits if all the ob-
ject servers are successfully manipulated. Otherwise,
the agent aborts, i.e. no update is done on objects
in any object server. The two-phase commitment
(2PC) protocol is used to realize the atomicity prin-
ciple in distributed database systems {4]. In another
example, an application would like to book one ho-
tel. Suppose there are a pair of hotel object server
Hy and H,. An agent A is separated to a pair of
subagents A; and A;. A; and Ay are issued to the
object servers H; and Hs, respectively. Each sub-
agent tries to book a hotel. Suppose one subagent
A, makes a success at booking a hotel but A4, fails.
Since the application would like to book one hotel,
the agent A can commit although the agent A suc-
cessfully manipulates only one object server. Thus,
if at least one of the object servers is successfully ma-
nipulated, the agent A commits. There are following
types of consensus conditions:

[Consensus conditions]

1. Atomic consensus: an agent is successfully per-
formed on all the object servers. This is a all-
or-nothing principle consensus condition used in
the traditional two-phase commitment protocol.

2. Majority consensus: an agent is successfully
performed on more than half of the object
servers.

3. At-least-one consensus: an agent is successfully
performed on at least one object server.

4. (7) consensus: an agent is successfully per-
formed on more than r object servers (r < n).

O

More general consensus conditions are discussed in
a paper {13]. Each agent A is assumed to have a con-
sensus condition Cons(A) given by an application.
The agent A commits if Cons(A) is satisfied after
manipulating object servers. Otherwise, the agent A
aborts.

3 Fault-Tolerant Agents
3.1 Surrogates
There are two types of faults, object servers and

agents faults to occur in a system. First, object
servers may be faulty, i.e. crash. If an object server

Dy

/
@)
)

Figure 2: Split and merge of agents.

0

to which an agent would like to move is faulty, the
agent has to find another candidate object server.
For example, if an object server is replicated, an-
other replica is found. Next, agents may be faulty as
well. If an object server where an agent is faulty, the
agent is also faulty. Here, the agent is aborted.

Suppose an agent A finishes on a server D;. Here, if
the agent A leaves the object server D;, objects ma-~
nipulated by the agent A in D; are released and can
be used by other agents. After visiting other servers,
the agent A cannot abort because the agent A al-
ready committed on the server D;, i.e. the agent is
unrecoverable. In addition, if an object server where
an agent A exists is faulty, the agent A is also faulty.
Here, the agent A cannot be recovered because the
agent A crashes. In order to resolve these problems,
an agent A creates a surrogate agent A; of the agent
A on an object server D; before the agent A leaves
D; [Figure 4].

Suppose an agent A manipulates multiple object
servers Dy, ..., Dy,. There are two ways to manipu-
late the object servers, seriel and parallel ways. In
the serial way, the agent A visits one object server
at a time, for example, the agent A first visits the
object server Dy, next D, ..., and lastly Dy,,. An
optimal sequence of object servers in which the agent
A to visit has to be obtained, e.g. to minimize the
computation time and communication time [Figure
1]. In the parallel way, the agent A is divided into
multiple subagents Ay, ..., A;,. BEach subagent A4;
concurrently moves to an object server D;. Here,
the subagents Aj, ..., A, are required to be inde-
pendently performed. After all the subagents finish,
the agents are merged into an agent A again [Fig-
ure 3]. The agent A is referred to as parent of each
surrogate agent A;. The surrogate agent A; plays
following roles :

1. The surrogate agent A; holds objects manipu-
lated by the agent A until the agent A termi-

—173—

nates. The surrogate A; does not move to an-
other object.

2. The surrogate A; negotiates with other agents
conflicting with A;.

3. The surrogate A; also negotiates with the parent
agent A and the other surrogates of A to make
a decision on commit or abort.

4. The surrogate A; recreates an agent A if A is

faulty.
A move
O
Di

Figure 3: Surrogate agent.

D:’-u

As shown in Figure 4, suppose a surrogate agent
A; is created on an object server D; after a sur-
rogate A;_; on D;_;. Here, A;(j < 1) is referred
to as preceding surrogate of A;. A;—; is the most
preceding surrogate of A;. On the other hand, A;(j
> 1) is a succeeding subagent of A;. A;y1 is the
most succeeding surrogate of A;.

Suppose another agent B might come to an object
server D; after the agent A leaves the object server
D;. Here, the agent B negotiates with the surrogate
agent A; if B conflicts with A;. Depending on the
negotiation, the agent B might take over the surro-
gate A;. Thus, when the agent A finishes visiting
all the object servers, some surrogate A; of A may
not exist. The agent A starts the negotiation with
its surrogates A;, ..., Ay. If a consensus condi-
tion C on the surrogates A, ..., Ay, is satisfied, the
agent A commits. For example, an agent commits
if all the surrogates safely exist in the atomic con-
sensus condition. If one surrogate had aborted, the
agent aborts. If the agent terminates, i.e. commits or
aborts, the surrogates of the agent A are annihilated.
Here, other agents conflicting with the agent A are
allowed to manipulate objects which are released by
A;.

D 1] Di Dm

@) : surrogate of agent A

" Figure 4: Surrogate agents.

3.2 Agent fault

Agents and surrogate agents are faulty if object
servers where the agents exist are faulty. Suppose an
agent A moves to an object server D; from an object
server D;. A surrogate A; of the parent agent A is
left on the object server D;. Suppose the server D;
is faulty after the agent A lands at D;. Here, the
agent A is also faulty. The preceding surrogate A;
communicates with the agent A. If the surrogate A;
could not communicate with the agent A, A; finds
that A is faulty. Here, the surrogate A; recreates an
agent A on D, and then the agent A finds another
operational server Dy for which A to leave [Figure
5]. That is, the agent A rolls back to the previous
state shown by the 'surrogate A; and then restarts.

Dx

Figure 5: Recreations of agent.

Surrogates may be also faulty. In Figure 4, sup-
pose that a surrogate agent A; is faulty due to the
fault of an object server D; while an agent A exists
on an object server D,,. It depends on a consen-
sus condition on surrogates how a faulty surrogate
recovers. For example, there is no need to recover
the faulty surrogate A; if at-least-one consensus con-
dition is taken. If the agent A could not commit
without the surrogate A; like atomic consensus con-
dition, A; is required to be recovered. One way to
recover a surrogate A; is that a preceding surrogate
A;_1 recreates a surrogate agent A’ and issues the

—174—

agent A’ to another object server D] where A’ can
be performed, e.g. a replica of the server D;. After
the agent A’ is performed on the server D}, a surro-
gate A] is left and A’ is annihilated. Here, the new
surrogate A! takes over the faulty surrogate A;. That
is A; is a most succeeding surrogate of A;_; and a
most preceding surrogate of A;41.

An agent A is in parallel performed by subagents
A, ..., An as shown in Figure 3. Here, suppose
a subagent A; is faulty. As stated here, there is no
need to recover the faulty subagent A; if the agent A
could commit without A;, e.g. at-least-one consen-
sus condition is taken. Otherwise, a subagent A; is
recreated by a most preceding surrogate of A;.

3.3 Deadlock

Suppose an agent A; passes over an object server
D; and is moving to another server Dy, and another
agent As passes over D and is moving to D; as
shown in Figure 6. If a pair of the agents A; and
A, conflict on each of Dy and Ds, neither A; can be
performed on Dj nor Ay can be performed on D;.
Here, deadlock occurs.

A '\/

D D:

Figure 6: Deadlock.

Suppose that an agent A is on an object server Dy
after visiting object servers D;, D,, and D3, and
the agent A cannot be performed because A is dead-
locked. One way to resolve the deadlock is that the
agent A is aborted. In stead of aborting all the com-
putation done by the agent A, only a part of the com-
putation required to resolve the deadlock is tried to
be aborted. Suppose a surrogate A3 is also included
in a same deadlock cycle as the agent. The surrogate
A3 recreates an agent A. Since the agent A is still
deadlocked, the surrogate Az is also aborted. The
agent A is referred to as retreated to a surrogate A».
The surrogate A; recreates an agent A on the server
D3 and then the agent A finds another server D5 on
which A can be performed.

Figure 7: Retreat.

4 Implementation

An agent is implemented in Java [11,16) and Aglets
[1]. Oracle8i database systems [12] on Windows2000
are used as object servers which are interconnected
in 100base Ethernet. An agent manipulates table
objects in Oracle object servers by issuing SQL com-
mands, select, update, insert, and delete.

As presented before, after an agent leaves an object
server, a surrogate of the agent stays on the object
server while the surrogate agent holds objects ma-
nipulated by the agent. The surrogate agent releases
the object only if the agent commits or aborts. In
this implementation, an agent A and its surrogates
are realized as follows [Figure 8]. Here, suppose an
agent A lands at an object sever D;.

1. An agent A manipulates objects in an object
server D; by issuing SQL commands.

2. A clone A’ of the agent A is created if the agent
A finishes manipulating objects in the object
server D;. The clone A’ leaves the server D;
for another server D;. Here, the clone A’ is an
agent A.

3. The agent A stays on the object server D; as a
surrogate.

Thus, a clone of an agent A is created and moves to
another server as an agent. The agent A is just per-
formed on the object server D; and then is changed
to the surrogate. If the agent A leaves D;, locks on
objects held by the agent are released. Therefore,
an agent A stays on an object server D; without re-
leasing the objects. A clone of the agent leaves D;
for another object server IJ;. Here, the clone of the
agent A plays a role of the agent A in the server Dj.

If all the object servers are manipulated, an agent
makes a decision on commit or abort by communi-
cating with the surrogates as discussed in this paper.
If commit is decided, every surrogate A; commits on
an object server D;.

Suppose an agent B comes to an object server D;.

—175—

@ Q) cione
DO NG

JOC

Figure 8: Surrogates.

If the agent B conflicts with the agent A, B negoti-
ates with the surrogate A; on D;. If B takes aver 4;
by the negotiation, the surrogate A; is aborted.

5 Concluding Remarks

This paper discussed a mobile agent model for pro-
cessing fault-tolerant transactions which manipulate
multiple object servers. An agent first moves to an
object server and then manipulates objects. The
agent autonomously moves around the object servers
to perform the computation. If the agent conflicts
with other agents in an object server, the agent nego-
tiates with the other agents. After leaving an object
server, a surrogate of an agent is left on the server.
If the agent A is faulty on a server, the surrogates
on servers which A visited recreate the agent A. In
addition, an agent is replicated and the replicas are
performed in parallel. In the mobile agent model, we
can increase reliability and availability since agents
do not suffer from faults.

References

[1] Aglets Software Development Kit Home,
http://www.trl.ibm.com/aglets/.

[2] American National Standards Institute,
“Database Language SQL,” Document ANSI
X3.135, 1986,

(3] Barrett, P. A., Hilborne, A. M., Bond, P. G.,
and Seaton, D. T., “The Delta-4 Extra Perfor-
mance Architecture,” Proc. 20th Int’l Symp. on
FTCS, 1990, pp. 481-488.

[4] Bernstein, P.A., Hadzilacos, V., and Good-
man, N., “Concurrency Control and Recovery

in Database Systems,” Addison Wesley, 1987.

[5) Chandy, K. M. and Lamport, L., “Distributed
Snapshots : Determining Global States of Dis-
tributed Systems,” ACM TOCS, Vol. 3, No. 1,

pp. 63-75, 1985.

—

[6] Date, C. J., “Introduction to Database System »
Prentice-Hall, 1994.

O ‘surrogate (7] Garcia-Molina, H. and Barbara, D., “How to

Assign Votes in a Distributed System,” Journal
of ACM, Vol.32, No.4, 1985, pp.841-860.

[8) Mattern, F., “Virtual Time and Global States
of Distributed Systems,” in Parallel and Dis-
tributed Algorithms (Cosnard, M. and Quinton,
P. eds.), North-Holland, Amsterdam, 1989,
pp.215-226.

[9] Mehdi, J. and Wolfgang, L. “A Component-
based Mobile Agent System,” 1999.

[10] Nagi, K., “Transactional Agents : Towards a
Robust Multi-Agent System,” LNC'S No. 2245,
Springer-Verlag, 2001.

[11] Omicini, A., Zambonelli, F., Klusch, M.
and Tolksdorf, R., “Coordination of Internet
Agents,” Springer-Verlag, 2001.

[12] Oracle Corporation, “Oracle8i Concepts Vol. 1,”
Release 8.1.5, 1999.

[13] Shimojo, I., Tachikawa, T., and Takizawa, M.,
“M-ary Commitment Protocol with Partially
Ordered Domain,” Proc. of the 8th Int’l Conf.
on Database and FExpert Systems Applications
(DEXA’97), 1997, pp.397-408.

(14] Skeen, D., “Nonblocking Commitment Proto-
cols,” Proc. of ACM SIGMOD, 1982, pp.133-
147.

[15] Tanaka, K. and Takizawa, M., “Quorum-based
Locking Protocol in Nested Invocations of Meth-
ods,” Proc. of DEXA’2001, 2001, pp.857-866.

{16] The Source for Java
http://java.sun.com/.

(TM) Technology,

[17] Wiesmann, M., et al., “Understanding Repli-
‘cation in Databases and Distributed Systems,”
Proc. of IEEE ICDCS-2000, 2000, pp.264-274.

—176—

