
「マルチメディア通信と分散処理ワークショップj 平成1.1年10月

Mobile Agent Model for Fault-Tolerant Objects Systems

Takao Komiya， Tomoya Enokido， and MakoもoTakiza¥va
Tokyo Denki University， Japan
{komi， eno， taki}@takilab.k.dendai.ac.jp

Application programs may be faulty as well as server systems. There are many discusses on how to make

servers fault-tolerant， i.e. replication and checkpointing. Applications are also made fault-tolerant by in order
to realize fault-tolerant systems. In this paper， we take an agent approach where the applications are realized
by mobile agents. Agents move around object servers whose objects are manipulated.ln traditional systems，
application programs do not work if application servers are faulty. If the server is faulty， the agent finds
another server where the agent can be performed. In addition， replic錨 ofagents move to operational servers
even if some replicas suffer from faults. In the mobile agent approach， applic抗ionscan be fault-tolerant.

耐障害オブジェクトシステムのためのモバイルエージェントモデル

小宮貴雄榎戸智也滝沢誠
東京電機大学理工学部

アプリケーションプログラムはサーバと同様に障害被ることがある。耐障害サーバを構築するための方法につ

いて議論されている。アプリケーションもまた、耐障害システムを実現するために耐障害に作成されなければ

ならない。本論文は高信頬アプリケーションを実現するために、モバイルエージェントを使用する。エージェ

ントと呼ばれるプログラムはオブジェクトサーバを移動する。従来のシステムでは、アプリケーションサーバ

が障害しているならば、アプリケーションプログラムは動作しない。本論文の提案するエージェントでは、ア

プリケーションサーバが障害したならば、そのエージェントはもう一つのエージェントが実行可能なサーパを

見つける。さらに、エージェントのレプリカはいくつかのレプリカが障害にあったとしても運用可能なサーバ

に移動する。モパイルエージエントアブローチにおいて、アプリケーションプログラムは耐隙害となり得る。

1 Introduction

Systems are composed of object servers and appli-

cations. Applications issue requests to object servers

and then the object servers号endr凶 ponseto the

applications. There are many discussions on how

to make object servers fault-tolerant， i.e. replica-
tions [7， 17] and checkpointing protocols [5]. Even
if object servers are fault-tolerant， the system is not

operational if applications are faulty. ln this paper，
applications are realized as mobile agents [1}. An

agent first lands at an object server and then is per-

formed to manipulate objects in the object server. If
the agent finishes manipulating the objects， the agent
moves to another server which h錨 objectsto be ma-

nipulated. An agent moves around object servers.

Here， agents manipulate objects only in local object
servers. ln addition， an agent negotiates with the
agent if some agents manipulate objects in a con-

flicting manner. Through the negotiation， each agent
autonomously makes a decision on whether the agent

continues to hold the objects or releases the objects.

Thus mobile agents have following characteristics:

1. Agents are autonomously initiated and per・

formed.

2. Agents negotiate with other agents.

3. Agents are moving around computers.

The two-phase commitment protocol [4，14] and
protocols for rep1icating object servers [7， 17]are not
robust for faults of application servers while robust

-171-

for servers' faults. Mobile agents can move to an-

other object server if one server is faulty. Thus， mo-
bile agents can be still operational as long凶 atleast

one object server where the agents can be performed

is operational. In addition， agents can be replicated
and each replica agent is independently performed.

Even if one replica βgent is faulty， objects can be ma-
nipulated through other replica agents. If an agent

leaves an object server after manipulating objects，
the agent releases the objects. If an agent rel~錨es

objects before commi七tingor aborting， the agent can-
not be aborted. In order to overcome the difficulty， a
surrogαte agent for the agent is created and is le此on

the object server. The surrogate agent holds the ob-

jects until the agent commits or aborts. We discuss

how to manipulate multiple object servers by using

agents in presence of server and application faults.

In section 2， we pl'esent a system model. In section
3， we present a fault-tolerant agent model. In section
4， we discuss how to resolve conftiction among agents.
In section 5， we discuss implementation of mobi1e
agents.

2 System Model

2.1 Object servers

A system is composed of object servers D1， ...，
Dm (m 2: 1)， which are interconnected with reliable，
high-speed communication networks. Each object

server supports a collection of objects and methods

for manipulating the objects. Objects are encapsula-

tions of data and methods. Objects are manipulated

only through methods supported by the objects.

Suppose a pair of subtransactions T1 and T2 ma-

nipulate an object in an object server Di by using

methods OPl and oP2， respectively. Here， if the re-
sult obtained by performing OPl and OP2 depends on

a computation order of OPl and OP2， OPl and OP2
are referred to as conflict with one another on the

object [41. For example， reαd and ωrite conflict on
a file object. A pair of methods increment and

deC1'ement do not conflict， i.e. are compαtible on a
counter object. On the other hand， reset confiicts
with incre'ment and decre-ment on the counter ob-

ject. If a method from a transaction T1 is perゐrmed

before a method from another transaction T2 and

the methods confiict， every method OPl from T1恒

required to be performed before every method OP2

from T2 conflicting with the method OPl. This is a

.r;erializαbility property of trar闘 ction[4]. The lock圃

ing protocol and timestamp ordering protocol [4] are

used to realize the serializability. In the locking prか

tocol， if one transaction holds an objec色， then other

transactions are regard to wait. Transactions lock
an object in an arbitrary order. On七heother hand，
transactions are totally ordered in their timestamps.

The objects are held by the transactions according

to the timestamp order.

2.2 Mobile agents

An agent is a program which can be autonomously

performed on one or more than one object server.

An agent issues methods. to manipulate objects in

an object server where the agent exists. Every object

server is assumed to support a platform to perform

agents.

First， an agent A is autonomously initiated on an
object server. The agent A is first stored in the mem-

ory of an object server Di' If enough resource like
memory is aUocated for the agent A on the object

server Di， the agent A moves to the object server
Di' i.e. lands at Di. Here， Di is a current object
server of the agent A.

Suppose an agent A lands at a server Di to

manipulate an αccount object through a method

increment. Here， suppo鉛 anotheragent B is now
resetting the aα'Ount object. Since reset consicts

with incremeni， the agent A cannot start. A pair of
agents A 1 and A2 are referred to邸 canflictif Al

and A2 manipulate a same object through conftict-

ing methods. A此erlanding at an object server Dj，
the agent A is allowed to be performed if there is no

agent on Dj which confticts with A.

σo
n

ゐ

LU

O

Fa
d

n

争

bnr o

唱・Ae

v且u

g
o

-----P&

2.3 Termination conditions

Suppose an agent A manipulates objects in multi-

ple object servers Dl， .…， Dm (m > 1). The agent
A visits these object servers in serial or parallel ways

-172-

as discussed beゐE・e.After finishing manipulating ob-

jects in all the object servers， the agent A commits
if some ∞nsensus condition C on the object servers
Dl， ...， Dm is satisfied. Otherwise， the agent A
aborts. For example， an agent commits if all the ob-
ject servers are successfully manipulated. Otherwise，
the agent aborts， i.e. no update is done on objects
in any object server. The two-phase commitment

(2PC) protocol is used to realize the atomicity prin-

ciple in distributed database systems [4]. In another

example， an application would like to book. one ho-
tel. Suppose there are a pair of hotel object server

Hl and H2・ Anagent A is separatedむoa pair of

subagents Al and A2. Al and A2 are issued to the

object servers H1 and H2， r四pectively. Each sub-
agent tries to hook a hotel. Suppose one subagent

Al makes a success at booking a hotel but A2 fails.

Since the application would like to book one hotel，
the agent A can commit although the agent A suc-

cessfully manipulates only one object server. Thus，
if at least one of the object servers is successfully ma-

nipulated，七heagent A commits. There are following

types of consensus conditions:

[Consensus conditions]

1. Atomic consensus: an agent is successfully per・

おrmedon all the object servers. This is a all-

or-nothing principle consensus condition used in

the traditional two-phase commitment protocol.

2. Mαjority consensus: an agent is successfully

performed on more than half of the objec七

servers.

3. At-leαst-one consensus: an agent is successfully

performed on at least one object server.

4. (;)倒的仰 anagen1. is successfully per-
formed on more than r object servers (γ 三n).

口

JMore general consensus conditions are discussed in

a paper [13]. Each agent A is assumed to have a con-

sensus condition Cons(A) given by an application.

The agent A commits if Cons(A) is satisfied after

manipulating object servers. Otherwise， the agent A
aborts.

3 Fault-Tolerant Agents

3.1 Surrogates

There are two types of faults， object servers and

agents faults 1.0 occur in a system. First， object
servers may be faulty， i忠 crash.If an object server

Figure 2: Split and merge of agents.

to which an age凶 wouldlike to move is faul句r，the
agent has to find another candidate object server.

For example， if an object server is replicated， an-
other replica is found. Next， agen七smay be faulty槌
well. If an object server where an agent is faulty， the
agent is also faulty. Here， the agent is aborted.

Suppose an agent A finishes on a server Di' Here， if
the agent A leaves the object server Di， objects ma-
nipulated by the agent A in Di are released and can

be used by other agents. After visiting other servers，
the agent A cannot abort because the agent A al-

l'eady committed on the server Di' i.e. the agent is

unrecoverαble. In addition， if an object server where
an agent A exists is faulty， the agent A is also faulty.
Here， the agent A cannot be recovered because the
agent A crashes. In order to resolve th回eproblems，
an agent A creates a surrogαte agent Ai of the agent

A on an object serverDi before the agent A leaves
Di [Figure 4].

Suppose an agent A manipulates multiple object

servers Dl' . . .， Dm. Thel'e are two ways to manipu-
late 1.he object servers， seriαl and pαrαllel ways. ln
the serial way， the agent A visits one object server
at a time， for example， the agent A first visits the
object server Dl， next Dぁ...， and lastly Dm. An

optimal sequence of object servers in which the agent

A to visit has to be obtained， e.g. to minimize the
computation time and communication time [Figure

1] . In the parallel way， the agent A is divided into
multiple subagents A}， ...， Am. Each subagent Ai
concurrently moves七oan object server Di' Here，
the subagents Al' ・叶 Amare required to be inde-
pendently performed. A氏erall the su bagents finish，

the agents are merged into an agent A again [Fig-

ure 3]. The agent A is referred to錨 pαrentof each

surrogate agent Ai' The surrogate agent Ai plays

following roles :

1. The surrogate agent Ai holds objects manipu-

lated by the agent A until the agent A termI-

-173-

nates. The surrogate Ai does not move to an-

other object.

2. The surrogate Ai negotiates with other agents

conflicting with Ai'

3. The surrogate Ai also negotiates wi色hthe parent

agent A and the other surrogates of A to make

a decision on commit or abort.

4. The surrogate Ai recreates an agent A if A is

faulty.

move

Di Di+l

Figure 3: Surrogate agent.

As shown in Figure 4， suppose a surrogate agent
Ai is created on an object server Di a氏era sur-

rogate Ai-1 on Di-1・ Here，Aj{j < i) is referred
to邸 precedingsurrogate of Ai' Ai-1 is the most

preceding surrogate of Ai. On the other hand， Aj (j

> 1) is a succeeding subagent of Ai. Ai+l is the
most succeeding surrogate of Ai'

Suppose another agent B might come to an object

server Dj a氏erthe agent A leaves the object server

Dj. Here， the agent B negotiates with the surrogate
age凶 Aiif B conflicts with Ai' Depending on the
negotiation， the agent B might take over the surro-
gate Ai' Thus， when the agent A finishes visiting
a11 the object servers， some surrogate Ai of A may

not exist. The agent A starts the negotiation with

its surrogates A 1， ..・， Am. If a consen8us condi-
tion C on the surrogates Al， . .・，Am is satisfied，むhe
agent A commits. For example， an agent commits
if al1 the surrogates safely exist in the atomic con-

sensu8 condition. If one 8urrogate had aborted， the
agent aborts. Ifthe agent terminates， i.e. commits or
aborts， the surrogates of the agent A are annihilated.
Here， other agents conflicting with the agent A are
allowed to manipulate objects which are released by

Ai'

~ : surrogate of agent

Figure 4: Surrogate agents.

3.2 Agent fault

Agents and surrogate agents are faulty if object

servers where the agents exist are faulty. Suppose an

agent A mo~回 to an object server Dj from an object

server Di' A surrogate Ai of the parent agent A is

le此onthe object server Di' Suppose the server Dj

is faulty after the agent A lands at Dj・Here，the
agent A is also faulty. The preceding surrogate Ai

communicates with the agent A. If the surrogate Ai

could not communica七ewith the agent A， Ai finds
that A is faulty. Here， the surrogate Ai recreat回 an
agent A on Di and then the agent A finds another

operational server Dk for which A to' leave [Figure
5]. That is， the agent A ro118 back to the previous
state shownby the 8urrogate Ai and then restarts.

Dk Di a
Figure 5: Recreations of agent.

Surrogates may be also faulty. ln Figure 4， sup-
pose七hata surrogate agent Ai is faulty due to the

fault of an object server Di while an agent A exists

on an object server Dm. It depends on a consen-

sus condition on surrogates how a faulty surrogate

recovers. For example， there is no need to recover
the faulty 8urrogate Ai if at-least-one consensus con-

dition is taken. If the agent A could not commit

without the surrogate Ai like atomic consensus con-

dition， Ai is required to be recovered. One way to
recover a surrogate Ai is that a preceding 8urrogate

Ai-1 recreates a surrogate agent A' and i8sues the

-174-

agent A' to another object server D~ where A' can

be performed， e.g. a replica of the server Di. After
the agent A' is performed on the server D~ ， a surro-

g叫eA~ is left and A' is annihilated. Here， the new
surroga七eA~ takes over the faulty surrogate Ai・That

is A~ is a most succeeding surrogate of Ai-l and a

most preceding surrogate of Ai+l・

An agent A is in parallel performed by subagents

At，....， Am as shown in Figure 3. Here， suppose
a subagent Ai is faulty. As stated here， there is no

need to recover the faulty subagent Ai if the agent A

could commit without Ail e.g. at-least-one consen-

sus condition is taken. Otherwise， a subagent Ai is
recreated by a most preceding surrogate of Ai'

3.3 Deadlock

Suppose an agent Al pa部esover an object server

D1 and is moving to another server D2， and another
agent A2 pa槌esqver D2 and is moving to D1 as

shown in Figure 6. If a pair of the agents Al and

A2 conflict on each of D1 and D2' neither Al can be

perゐrmedon D2 nor A2 can be performed on D1・
Here， deadlock occurs.

DI D2

Figure 6: Deadlock.

Suppose that an agent A is on an object server D4

after visiting object servers Dt， D2， and D3， and
the agent A cannot be performed because A is dead-

locked. One way to resolve the deadlock is that the

agent A is aborted. In stead of aborting all the com-

putation done by the agent A， only a part of the com-
putation required to resolve the deadlock is tried to

be aborted. Suppose a surrog抗eA3 is also included

in a same deadlock cycle as the agent. The surrogate

A3 recreates an agent A. Since the agent A is still

deadlocked， the surrogate A3 is also aborted. The
agent A is referred to as retreαted to a surrogate A2 •

The surrogate A2 recreates an agent A on the server

D2 and then the agent A finds another server D5 on

which A can be performed.

I - 1'-"-::::::、νヘ deadlocked

z-AC玄過
日日日日

Figure 7: Retreat.

4 Implementation

An agent is implemented in Java [11，16] and Aglets
[1]. Oracle8i database systems [12] on Windows2000

are used as object servers which are interconnected

in 100base Ethernet. An agent manipulates色able

objects in Oracle object servers by issuing SQL com-

mands， select， update， insert， and delete.

As presented before， after an agent leaves an object
server， a surroga七eof the agent stays on the object
server while the surrogate agent holds objects ma-

nipula七edby the agent. The surrogate agent rele舗 es

the object only if the agent commits or aborts. 1n

this implementation， an agent A and i色ssurrogates
are realized as follows [Figure 8]. Here， suppose an
agent A lands at an object sever Di'

1. An agent A manipulates objects in an object

server Di by issuing SQL commands.

2. A done A' of the agent A is created if the agent

A finishes manipula七ingobjects in the object

server Di' The clone A' leaves the server Di

for another server D j. Here， the clone A' is an
agent A.

3. The agent A stays on the object server Di部 a

surrogate.

Thus， a clone of an ag~nt A is created and moves to
another server βs an agent. The agent A is just per-

formed on the object server Di and then is changed

to the surrogate. If the agent A leaves Di' lock.s on

objects held by the agent are released. Therefore，

an agent A stays on an object server Di without re-

leasing the objects. A clone of the agent leaves Di

for another object server Dj. Here， the clone of the
agent A pl町sa role of the agent A in the server D j .

If all the object servers are manipulated， an agent
makes a decision on commit or abort by communi-

cating with the surrogates as discussed in this paper.

If commit is decided， every surrogate Ai commits on
an object server Di・

Suppose an agent B comes to an object server Di・

-175-

ぷ〉一))己

後
@
臼
Di Dj Dk.

Figure 8: Surrogates.

If the agent B confiicts with the agent A， B negotト
ates with the surrogate Ai on Di' If B takes over Ai
by the negotiation， the surrogate Ai is aborted.

5 Concluding Remarks

This paper discussed a mobile agent model for pro-

cessing fault-tolerant transactions which manipulate

multiple object servers. An agent first moves to an

object server and then manipulates objects. The

agent autonomously moves around the object servers

to perform the computation. If the agent confiicts

with other agents in an object server， the agent nego-
tiates with the other agents. After leaving an object

server， a surrogate of an agent is left on the sel'ver.
If the agent A is faulty on a server， the surrogates
on servers which A visited recreate the agent A. In

addition， an agent is replicated and the replicas are
performed in parallel. In the mobile agent model， we
can increase reliability and availability since agents

do not suffer from faults.

References

[1] Aglets So伽 are Development Kit Home，

http:j jwww.trl.ibm.comjagletsj.

[2) American National Standards Institute，
“Database Language SQL，" Document ANSI
X3.135， 1986，

[3] Barrett， P. A.， Hilborne， A. 1¥1.， Bond， P. G.，
and Seaton， D. T.，“The Delta-4 Extra Perfor-
mance Architecture，" Proc. 20th Int'l Symp. on
FTCS， 1990， pp. 481-488.

[4] Bernstein， P.A.， Hadzilacos， V.， and Good-
man， N.，“Concurrency Control and Recovery
in Database Systems，" Addison Hl esley， 1987.

[5) Cl削 ldy，K. fvf. and Lamport， L.，“Distributed
Snapshots: Determining Global States of Dis-

tributed Systems，刊 ACMTOCS， Vol. 3， No. 1，
pp. 63-75， 1985.

[6J Date， C. J.，加roductionto Daぬb蹴 System，"
Prentice-Hαll， 1994.

[7] Garcia-~Iolina， H. and Barbara， D.，“How to
Assign Votes in a Distributed System，" Journal

of AC1¥tI， Vo1.32， No.4， 1985， pp.841・860.

[伊8]I¥IIa叫釧£此tt旬er口肌E

oぱfDistributed Sy戸st旬ems訂，"in Pαrallelαnd Dis-

t吋butedAlgorithms (Cosn町d，M. and Quinton，

P. eds.)， North・Holland， Amsterdam; 1989，
pp.215-226.

[9] ~1ehdi， J. and Wol危a時， L. "A Component-

based Mobile Agent System，" 1999.

[10] Nagi， K.，“Transactional Agents: Towards a
Rρbust ~Iulti-Agent System，" LNCS No. 2245，
Springer-Verlαg， 2001.

(11) Omici爪 A.，Zambonelli， F.， Klusch， M.
and Tolksdorf， R.，“Coordination of Internet
Agents，" Springer-V e1・lαg，2001.

[12] Orac1e Corporation，“Orac1e8i Concepts Vol. 1，"
Rele錨e8.1.5， 1999.

[13} Shimojo， 1.， Tachikawa， T.， and Takizawa， 1¥1.，
“M・aryCommitment Protocol with Partially
Ordered Domain，" Proc. of the 8th Int'l ConJ.
on Dαtabaseαnd Expe付 SystemsApplic.αtions

(DEXA '97)， 1997， pp.397-408.

[14] Skeen， D.，“Nonblocking Commitment Proto・
cols，" Proc. 01 ACM SIGMOD， 1982， pp.133・
147.

[1附1臼問5町]'D恥a釦na蜘ka，K. aωn凶1吋dτT百、'ak肱i包za叩，wa，川M.，'“w‘Q伽uωlωorum山叩um凹1m町m山a鎚紙s記e吋d
Locking Protocol in Nest町JInvocations of Meth-

ods，" Proc. of DEXA '2001，2001， pp.857-866.

[16} The Source おr J ava (TM) Technology，

http:j fjava.sun.comj.

(171 Wiesmann， ~1.， et al.，“Unde凶 andingRepH・
cation in Databases and Distributed Systems，"
Proc. of IEEE ICDCS-2000， 2000， pp.264-274.

-176-

