
Supporting Context-Based Chats for Enterprise Use

Tanuj Shah, Joyce Ohgi

 Oracle Applications User Experience

[tanuj.s.shah, joyce.etsuko.ohgi]@oracle.com

Abstract

Personal chat has become immensely popular for

personal use, but chat is less popular in the workplace. At

work, chat is primarily used within teams and groups of

people who already know each other. Personal chat is

generally triggered from buddy lists between people who

know each other. The current design and feature set of

chat systems may be insufficient to support work-context

based and enterprisewide communication and

collaboration between members of an organization who

do not know one another. This study analyzes a regularly

appearing enterprise use case and proposes five design

extensions to the traditional chat systems that would

make these systems more useful in the enterprise

environment. The Oracle Applications User Experience

team’s attempt is to facilitate enterprisewide

collaboration between unknown members. We tested this

new proposed chat designs using an HTML and

JavaScript prototype with nine enterprise users and

report the findings in this paper.

1. Introduction

Geographically dispersed teams can engage in virtual

“corridor talk” by using a personal chat system [1,2].

Such chats are similar to the spontaneous, informal

“corridor talk” that spring up in hallways or lunch areas

[1, 2]. However, an important type of communication that

must be supported in a enterprise environment is the one-

time, spontaneous, work-related chat. This type of chat

generally happens between two employees who may or

may not know each other. Unlike personal chats that are

primarily triggered from a buddy list [4], these

spontaneous one-time, work-related chats are generally

triggered by a specific context such as a work-related

issue, document, or similar topic. In current situations

users are likely to send an email to the other team

members asking questions and requesting clarifications.

However, this method results in an asynchronous, back

and forth delayed information exchange. This process

does not take advantage of the rapid and synchronous

conversation aspect of a chat system [4].

2. Enterprise Use Case

After conducting user research that included

interviews and observations, we identified a use case that

occurs repeatedly in organizations. To explain this use

case we describe one particular scenario. A manager

views a technical document authored by a member of

another team and wants to incorporate some of the

document’s knowledge into his or her own product.

While reading the document the manager needs to clarify

some information with the author of the document.

Ideally, the manager needs his or her questions to be

instantly clarified because the answers inform the

manager’s further understanding of the document and

provide guidance to the next steps that the manager needs

to take. The manager and the document’s author work in

the same organization but have never met each other and

do not know each other formally. They have never

communicated earlier. They work at different offices and

in different time zones.

3. Extensions to Traditional Chat Systems

To support the previously described enterprise use

case we propose the following five extensions to the

traditional chat design that enables users to chat about

one-time, spontaneous, work-related, and context-based

conversations.

3.1. Embed Chat in the Context of Discussion

Chat conversations are generally initiated from buddy

lists in traditional systems [4]. Traditional chat systems

indirectly limit users to chat with colleagues that they

closely work with because these systems require the

authorization of both parties to begin a discussion.

Further, buddy lists show the user’s status to chat only to

authorized members. Therefore, users require that the

other member provide authorization to see their

availability status [3]. This process creates a barrier

between users who do not know each other but want to

chat. Unlike personal chats, as described in the previous

use case, enterprise chats are generally triggered when

users request quick questions and clarifications from

90

quine
テキストボックス
CollabTech 2012 , August 27-29, 2012, Hokkaido, Japan.
Copyright © 2012 by Information Processing Society of Japan.

colleagues in a work-related context[4]. For example, in

the previously described use case, the manager wanted to

obtain quick responses to questions about a work-related

technical document. To remedy this problem, we propose

adding an option as shown in Figure 1 to initiate a chat

directly with the persons associated with the document. In

our proposed design, the chat is initiated from the context

itself rather than from a buddy list. This method omits

the barrier of requiring users to authorize each other.

Further, once the conversation between the chat users is

complete, neither users are listed in each other’s buddy

lists.

Figure 1: A contextual menu providing the

ability to chat with a person listed in the

document being viewed.

3.2. Use a Chat Title

One of the major challenges of chat-based systems has

been to help users negotiate the availability of the person

with whom they want to chat [3, 4]. The early messages

in a conversation prior to discussing the main topic

mostly concerns the availability to chat [4]. To support

the negotiation of availability and because the chat could

be initiated between members who may or not know one

another, we propose adding a title to the chat. The title of

the chat instantly indicates the context of the conversation

and helps the chat receiver to decide whether to accept

the conversation request, delay the response, or decline

the conversation. We also propose adding a link to the

context along with the chat title. This link provides the

chat receiver with instant access to the document directly

from the chat window. The chat title and web link to the

document in conversation are automatically generated

from the context in which it is being initiated. Chat

initiators can further change the chat title to their liking.

Figure 2 highlights the chat title and link generated by the

system. Users can change the chat title at the beginning of

the conversation or at any subsequent time during the

chat, and this change would instantly be reflected in the

chat windows of both the sender and receiver. While

conducting user tests we found that the chat title helped

chat receivers decide which chats to accept or reject.

Many users reported that the chat title will also help them

relocate the chat transcript for future reuse.

3.3. Ability to Respond Later

Users can determine the availability of other users to

chat by noting the presence indicators in the chat window

such as: Green for available, Yellow for not available and

Red for do not disturb or away for a long time [3].

However, in spite of the presence indicators. if users

receive a new chat at a unsuitable time, they can decline

or delay responding and wait for a more suitable time to

chat [4]. However, because the chat is context oriented

and may be initiated between members who do not know

each other, we propose an additional ability to convert

synchronous chat into asynchronous chat. This provides

users with the flexibility to determine whether to respond

to the chat or continue to focus on their current work.

During the chat conversation any side of the chat could

use this Respond Later feature.

As shown in Figure 2, using this feature instantly

sends a message to the intended chat responant stating

that “User A has saved the conversation for later. Any

new messages will be included when the saved chat is

opened.” The chat window instantly closes on User A’s

screen and the conversation becomes stacked into the

saved conversations list. User A can now respond to the

chat at a later time. User B in the meantime can continue

to add messages to this conversation. User A can respond

even if User B is offline. If User B is online, then User

A’s response is instantly seen on the screen, and if User B

is offline, then User A’s response is saved as a new

message as a part of the saved conversations that appear

after User B signs in. This feature extends chat

functionality beyond negotiating availability. It

encourages users to attempt for a synchronous

conversation, but if that attempt fails it immediately shifts

it to an asynchronous conversation similar to email.

Figure 2: A chat window along with a chat title

and a link to the context in discussion. The

91

Respond Later feature triggers an automated

message in the chat window.

3.4. Screen Sharing

Because chats are based on a context in discussion it

sometimes becomes important to share the screen and

point out the particular item being discussed. A drawback

of current chat systems is that they do not provide a

visual of the workspace in conversation, and it sometimes

becomes difficult to enter and explain everything [4]. For

this, we added the ability to share screens. The drawback

of other communication systems that allow screen sharing

is that the conversations are not inititated from a context.

The ability to have a shared view of the object in

discussion helps users avoid misunderstandings and

enhances clarity in chat conversations. The screen-

sharing window by default starts from a small predefined

size, and users can resize and reposition the window as

required. This feature helps chat users to achieve

common understanding quickly during a conversation by

inserting screen shots directly into a chat window.

Furthermore, some participants in the user tests

mentioned that this feature would be helpful while

conversing with the technical support teams when dealing

with installation or other system issues. Figure 3 shows

an example of the screen-sharing feature.

Figure 3: Screen Sharing and Add to Notes

Feature

3.5. Save to Notes

Chat transcripts are likely to be used in the future as a

reference tool because they contain valuable enterprise,

business, or product information. Hence, it may be a good

idea to support attaching the valuable part of the chat

transcript to the context in discussion. For this, we

propose a feature called Add to Notes that enables users

to attach chat transcripts to the notes section of the

context in discussion. The entire context-related chats in

this section are listed by their chat titles. This feature

extends the traditional “corridor conversation,” which is a

fleeting transaction by its nature [1, 2]. The Add to Notes

feature helps to build a repository of useful information

for reuse within the entire enterprise. Future users of this

content can take advantage of the information derived

from earlier chats regarding a particular topic.

4. The Embedded Chat Prototype

The Oracle Applications User Experience team

developed an interactive HTML and JavaScript chat

prototype called embedded chat. This prototype

enables users to enter free-form text into a chat

window and then the chat prototype would display a

canned response into the window as if the response

came from the user at the other end. This prototype

was built for the above-specified enterprise use case.

Using the prototype, users would request clarification

on a piece of information from the author of the

document in view. To gather the required information,

users are asked to follow four steps. First, initiate a

chat with the document author and check on the

author’s availability. Second, after negotiating

availability users ask their specific questions for

clarification. Third, users are required to share their

screen shots pointing to the context of an issue or

query the author with questions. to. Fourth, after

resolving queries users must save the chat transcript in

the notes section of the document using the Save to

Notes feature. In addition, six similar tasks were

created to test other features such as Repond Later,

Editing the Chat Title, Repositioning the Screen-

Sharing Window, and Sending a Screen Shot Using the

Screen-Share Feature. These other tasks also helped

users get accustomed to the entire new feature set.

5. User Test Findings

The Embedded Chat prototype was tested with nine

participants. All nine participants fit the employee

technical background user role, And all of the nine

participants worked in organizations. In the preliminary

questions we found that all of the users used chat on a

92

daily basis within their organization. However, they chat

only with the coworkers they know. During the test

session, participants attempted the seven tasks using the

embedded chat prototype. All of the seven tasks were

similar to the use case discussed in the previously

mentioned Enterprise Use Case section. Seven tasks were

formulated to test a different feature in each task and also

to enable users to get accustomed to the new feature set.

Overall, we found that embedding a chat in context,

providing the ability to respond later, and making screen

sharing available contributed the most to the participants

liking. Users felt that these three features could lead to

enterprise user adoption of chat. These users liked that

the chat was integrated into acontext and all the required

information and tools were now available on the same

screen. They approved of the screen capture feature

because it eliminated the steps of launching a new screen

capture application and then going in to email to send the

visual depiction of the problem. Furthermore,

particiapants mentioned that in situations such as

requiring technical assistance the screen share feature

possibly performed better than a phone conversation.

Four of the users responded that the screen capture

feature would be handy for discussing troubleshooting

use-cases. Screen sharing would be a powerful tool for

supporting clarity and quality in knowledge transfer. The

Respond Later feature provided the ability to think about

a topic and respond later. In addition the Resond Later

feature also worked as a reminder list to complete quick,

small tasks at the end of the day. Two users mentioned

that this feature made them feel like a chat is being

converted into an email instantly as required. A few users

also mentioned that though it created a lesser barrier in

initiating the conversation, they would not continue to

enter messages if the other user decided to respond later.

We feel that it would take time for users to get

accustomed to new feature. Furthermore, we found that it

would take time for users to feel comfortable using all

these new features. Finally, six of the users stated that

with the possibility of such contextual chats they would

chat with a coworker they’ve never met, even though

none of them do that currently.

5. Conclusion

It is important to design enterprise chat systems that

enable cross-enterprise collaboration over work-related

contexts, leading to wide knowledge transfer and

productivity at the same time. Apart from collaboration

between members who know one another, it is equally

important that collaboration is supported between

members who do not know one another. Corporation can

form policies to enable chat communications that are

open across the organization. The chat feature embedded

within context could show the availability status to

anyone in the organization who has access to the

contextual document pertaining to the other user. These

systems may not require to authorize each other to initiate

work-related discussions on chat. Further, chat

conversations become more collaborative, interactive,

and engaging because of the instant presence of context

[4]. This leads to increased collaboration and knowledge

sharing between users who normally would not

communicate. Our embedded chat prototype received

positive feedback from the nine user test participants and

demonstrated the potential in allowing context-based

conversations along with the powerful use of additional

features. In future studies we hope to develop a working

model of the proposed chat embedded into the work

applications of an organization. Over time we could

collect real data about its impact on enterprisewide

collaborations, collaborations between unknown

members, clarity in conversations with the use of the

screen-sharing feature, and the Respond Later feature’s

ability to support the continuation of a conversation even

if one of the user’s has decided to respond later and the

potential of the Save to Notes feature in creating an

information repository for future reuse. Lastly, these

proposed chat extentions are limited to a one-to-one chat

and we hope to extend the chat design for use cases

requiring group chat and multi-user collaborations.

9. Acknowledgement

The authors wish to thank John Cartan and Thao

Nguyen of the Oracle Applications User Experience team

for their help in developing these ideas.

10. References

[1] M.J. Handel, J.B Herbsleb, “What is Chat Doing in the

Workplace”, CSCW '02 Proceedings of the 2002 ACM

conference on Computer supported cooperative work, ACM,

New York, 2002, pp.1-10.

[2] D.G. Boyer, M. Cortes, M.J. Handel, “Presence Awareness

Tools for Virtual Enterprises”, Proceedings of Object-Oriented

Programming Systems, Language and Applications, OOPSLA,

Vancouver BC, 1998, pp. 1-6.

[3] J.D. Herbsleb, D.L. Atkins, D.G. Boyer, M. Handel, T.A.

Finholt, “Introducing Instant Messaging and Chat in the

Workplace”, In Proceedings of CHI 2002, ACM Press,

Minneapolis, 2002, pp. 171-178.

[4] B.A. Nardi, S. Whittaker, E. Bradner, “Interaction and

Outeraction: Instant Messaging in Action”, CSCW '00

Proceedings of the 2000 ACM conference on Computer

supported cooperative work, ACM Press, New York, 2000, pp.

79-88.

93

