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Abstract: An efficient and scalable numerical method for massively parallel computing of fluid-structure interaction
systems has been developed for biomedical applications. To facilitate the treatment of complex geometry, a full Eule-
rian method is employed to couple the incompressible motions of fluid and hyperelastic materials. Instead of implicitly
solving the pressure Poisson equation, a novel artificial compressibility method with adaptive parameters, which are
determined to guarantee the computed field to be nearly incompressible, is employed. In both weak and strong scaling
tests, the developed solver attains excellent scalability on the K computer. A sustained performance of 4.54 Pflops
(42.7% of peak) has been achieved for a microchannel flow involving more than 5 million deformable bodies with
663,552 compute cores. We study arteriole blood flows to gain insight into dynamic interactions among motions of
plasma and blood cells.
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1. Introduction
Fluid-Structure Interaction (FSI) phenomena appear in a num-

ber of biological systems. Thereamong, blood flow plays impor-
tant roles in several functions to sustain life. The interplay among
its multi-physics nature, the complex geometry, and the suspen-
sion of blood cells gives rise to phenomenologically rich behav-
ior. Recent advances in high-performance computing and nu-
merical methods have promoted interest in hemodynamic simu-
lations [1–3], and encouraged large-scale computations [4–6]. In
this paper, we shall focus on deformable body motions, of which
the improved understanding would gain insight into an initial
thrombus formation to arrest the bleeding in hemostasis mech-
anism, and an exaggerated platelet aggregation to cause throm-
bosic vessel occlusion leading to myocardial and cerebral infarc-
tions [7, 8]. In a microcirculation system with a sub-millimetric
scale vessel, a Red Blood Cell (RBC) subjected to a shearing or
squeezing fluid motion undergoes large deformation (Fig. 1(a)).
Such a distinctive deformability and a dense particulate flow na-
ture dictate rheological properties, which are relevant to trans-
port phenomena and hemostasis processes [9]. In particlar, on the
thrombus formation, the significance of the hydrodynamic effect
has become commonly recognized [10–13]. The related numer-
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Fig. 1 Schematic figures explaining the present simulations of the FSI prob-
lems. (a): typical simulation results revealing large deformation of
a RBC. (b) and (c): on the difference between the solid deforma-
tion descriptions of the Lagrangian and Eulerian approaches. In the
Lagrangian method (b), the relative displacement between adjacent
material points from the reference to current configurations quan-
tifies the deformation level. In the Eulerian method (c) [19], the
left Cauchy-Green deformation tensor B defined on fixed grid points
quantifies the deformation level.

ical studies include simulations of three-dimensional motions of
two platelets in a shear flow [14], and two-dimensional [15] and
three-dimensional [16] blood flows (in vessels of 50µm height
and 20µm diameter, respectively) with a number of platelets and
RBCs. In order to obtain practically important knowledge of
multi-scale dynamics, it is essential to perform large-scale com-
putation at the realistic scale since the system is hydrodynam-
ically and geometrically nonlinear in size. To tackle the chal-
lenging issue, our strategy in formulation and algorithm will be
outlined below.
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When addressing moving interface problems, one has prefer-
ably employed a Lagrangian method using a moving finite ele-
ment mesh (Fig. 1(b)). For relatively simple systems, the La-
grangian method is satisfactory and has been applied to a wide
variety of biological problems. However, in parallel computing,
one encounters a nontrivial issue how the respective quantities
on the Eulerian and Lagrangian meshes are adequately communi-
cated to keep the load balance of each compute node. The authors
have developed a full Eulerian (fixed-mesh) method using regu-
lar Cartesian grids (Fig. 1(c)), which facilitate FSI simulations
with complex geometry of solid and/or a large number of bod-
ies, and allows us to utilize computational techniques cultivated
for solving incompressible fluid flow problems [17–22]. The de-
veloped method has revealed practical advantages of geometrical
flexibility [16,21] since it can directly access voxel data and avoid
a breakdown in a large deformation owing to the absence of the
mesh distortion problem. In view of the efficiency in massively
parallel computing, it readily exploits vector processing and re-
duces a computational-load imbalance in a domain decomposi-
tion.

In general, state-of-the-art scalar-type supercomputers are de-
signed to attain high sustained performance (close to the peak
performance of the system) in solving dense matrix problems.
In stencil computations written in a sparse matrix form, if
computationally-intensive tasks are involved for each grid point,
one may exploit the system performance as demonstrated in a
landmark simulation of dendritic growth revealed over 1 Pflops
sustained performance using a GPGPU-based supercomputer
[23]. However, in solving simple sparse matrix problems such
as the Laplace, Poisson and Helmholtz equations and also fluid
dynamics equations in a finite-difference form, the performance
is considerably limited by a memory bandwidth since the Byte-
per-Flop ratio (B/F) required in the software is higher than that
equipped in the hardware (irrespective of using CPUs and/or
GPGPUs) even if a high parallel scalability is realized [24]. An
iterative procedure for solving the Poisson equation, which is
included in the standard approach for incompressible fluid flow
problems, requires a high B/F value. To drastically improve the
situation, we follow a revived Artificial Compressibility Method
(ACM) [25], which is unlike the original ACM [26] for the steady
flow problem or the implicit ACM [27] but explicitly solves a
pressure evolution equation. Further, we introduce a projection
step and an optimization procedure, where the model parameters
are adaptively determined to mathematically guarantee the com-
puted field to be nearly incompressible.

For given constitutive laws, our numerical scheme can faith-
fully capture the deformability of dispersed bodies, which is a
challenging issue in the computational dynamics research but a
non-negligible factor in blood flow simulations demonstrated in
§5. It should be emphasized that our solver is qualitatively differ-
ent from the solver treating blood cells as rigid in [5], and there-
fore a direct comparison with this earlier study is meaningless.
Our approach requires several times larger number of grid points
to resolve the deformable particle than those developed for rigid
particles [28–30]. We have confirmed that the energy exchange
between the continuous and dispersed phases via the particle de-

formation is reasonably guaranteed when 50 or more grid points
are used for the RBC diameter, indicating about 600 grid points
are needed for 100µm capillary diameter.

This paper is organized as follows. In §2, a system overview of
the K computer is presented. In §3, the basic equation set for the
full Eulerian FSI simulation and the novel ACM are explained.
Then, discretization, implementation and parallelization are de-
scribed. In §4, the performance in serial jobs, and the weak and
strong scaling analyses in parallel jobs are reported. In §5, the
application to the blood flow is demonstrated. In §6, some per-
spectives are provided to conclude the paper.

2. Overview of the K computer
All the numerical simulations in this paper have been per-

formed on the K computer. An overview of the system will be
presented below. For more detailed description, we refer the read-
ers to [31]. The K computer is a distributed-memory supercom-
puter system, which consists of more than 80,000 compute nodes.
Each node includes an eight-core CPU SPARC64TMVIIIfx [32]
operated at a clock frequency of 2 GHz, and a set of DDR3 mem-
ory modules of 16 GB. (No GPGPU is included therein.) The
cores in each node share a L2 cache of 6 MB. Each core has a L1
cache of 32 KB, and four floating-point multiply-and-add execu-
tion units. The peak performance is 128 Gflops for each compute
node. The system provides memory bandwidth compared with
the operation speed at B/F = 0.5. There is a three-level paral-
lelism to be well considered when one utilizes the system as effi-
ciently as possible. The first level is SIMD processing in instruc-
tion level on each core. The second one is thread programming
in a compute node, that is supported by OpenMP directives. The
third one is distributed-memory parallel programming with the
MPI over multiple compute nodes. Data communication among
the compute nodes is conducted through an interconnection net-
work named Tofu (a six-dimensional mesh/torus network) [33],
in which a barrier hardware facility makes collective communi-
cations such as Allreduce and Bcast efficient.

3. Simulation methods
3.1 Eulerian description for fluid-structure interaction

problems
The fluid and solid are assumed to be incompressible and

to possess the same density and viscosity, as in many analy-
ses for biological systems. We employ a full Eulerian finite-
difference scheme to discretize the fluid-structure system. The
validity of this method has been established in various manners
[16, 18, 19, 21, 22], including comparisons with analytical solu-
tions, experiments, and well-validated FSI simulations. The gov-
erning equations are the mass and momentum conservations:

∇ · v = 0, (1)

ρ

(

∂v

∂t
+ v · ∇v

)

= ∇ · σ, (2)

where v denotes the velocity vector, ρ the density, t the time, and
σ the Cauchy stress written in a mixture form of the Newtonian
fluid and the neo-Hookean material, namely
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σ(x) = −p(x)I − ∆P
Lx

xI + 2µ
(

D(x) − 1
3 tr(D(x))I

)

+Gφs(x)
(

B̃(x) − 1
3 tr(B̃(x))I

)

,

(3)

where p denotes the pressure deviation from the driving pressure,
I the unit tensor, −∆P the inlet-outlet pressure drop, Lx the inlet-
outlet length in the streamwise (x) direction of the computational
domain, µ the viscosity, G the modulus of transverse elasticity,
and D(= 1

2 (∇v +∇vT )) the strain rate tensor. The operator tr(...)
stands for the tensor trace. The kinematics of structure is rep-
resented by the quantities φs and B̃ (Fig. 1(c)), that denote the
local volume fraction of solid and the left Cauchy-Green defor-
mation tensor (modified to be I in the fluid region), respectively,
and obey the transport equations

∂tφs + v · ∇φs = 0, (4)

∂tB̃ + v · ∇B̃ = L · B̃ + B̃ ·LT , (5)

where L(= ∇vT ) denotes the velocity gradient tensor. We start
the FSI simulation with the initial solid volume fraction φs0 (here,
the subscript 0 stands for the initial quantity) converted from a set
of the voxel data.

3.2 Artificial compressibility method with adaptive param-
eters

In the present study, the pressure p is given to satisfy a relation

〈p〉 = 0, (6)

where 〈...〉 stands for the volume average over the whole compu-
tational domain. The time-stepping algorithm to update the vari-
ables at the (N + 1)-th time level from the N-th time level follows
the unprojection step:

v
∗ = v

N + (∆t)ρ−1{−∇pN + F }, (7)

and the projection step:

pN+1 = pN + δp, (8)

v
N+1 = v

∗ − (∆t)ρ−1∇(δp), (9)

where the superscript ∗ represents the unprojected quantity, and
F is the summation of all the terms except for the pressure gradi-
ent term in the momentum equation (2). If one follows the SMAC
algorithm [34], the incremental pressure δp is given by the solu-
tion to the Poisson equation

∇2δp = (∆t)−1D∗, (10)

where D(= ρ∇ ·v) is the divergence of the mass flux. A memory-
access intensive procedure due to the iteration is usually required
to numerically solve Eq. (10). Instead, we follow the pressure
evolution of the revived ACM [25] written in an algebraic form

δp = −β2(∆t)(γpN + D∗), (11)

where β denotes the pseudo acoustic speed, and γ(≥ 0) the relax-
ation coefficient. Although the solenoidal condition Eq. (1) is not
perfectly satisfied in the ACM, we try to approximate Eq. (1) as

exactly as possible in a way that the parameters β and γ are de-
termined dynamically at each time step. With a constraint γ ≥ 0,
the mean-square of the mass flux divergence at the (N+1)-th time
level, 〈(DN+1)2〉 is minimized to identify the parameters

β =
1

(∆t)

√

A1

A2
, γ = 0 if

−(A1B2 + A2B1)
A2A3 − B2

2

< 0,

β =
1

(∆t)

√

A1A3 + B1B2

A2A3 − B2
2

, γ =
−(A1B2 + A2B1)

A1A3 + B1B2

otherwise,

(12)

where

A1 = − 〈D∗∇2D∗〉, A2 = 〈(∇2D∗)2〉,A3 = 〈(∇2 pN )2〉,

B1 =〈D∗∇2 pN〉, B2 = 〈(∇2D∗)(∇2 pN )〉.
(13)

Although the ACM-based solution inevitably has the pseudo
compressibility, its level is regulated through the above-
mentioned procedure. Among all possible distributions of D∗,
there exists a lower bound A1/A2 = (∆x)2/12 (here, (∆x) is the
side length of the cubic grid) when the second-order central fi-
nite difference is applied to evaluating ∇2D∗. Hence, the pseudo
Mach number Ma(= Umax/β) (here, Umax is the maximum ad-
vection speed in the system) has the upper limit 2

√
3η (here,

η = Umax(∆t)/(∆x) is the Courant-Friedrichs-Lewy (CFL) num-
ber). Since the velocity perturbation due to the pseudo compress-
ibility is proportional to Ma2, the computed velocity field is guar-
anteed to be nearly incompressible as long as the CFL number η
is sufficiently smaller than unity.

One may point out that the requirement of small η is unde-
sirable because large number of time steps, resulting in long
computational time, is needed. In the present study, a flexibly
deformable structure is treated, and the elastic transverse wave,
which is related to the shape oscillation corresponding to one of
the softness features, is considered. The wave propagation speed
is usually much higher than the advection speed characterized by
Umax. If the time increment ∆t is determined to resolve the wave
propagation, the requirement of η � 1 is consequently fulfilled.
Therefore, the present ACM is practically useful for the problem
considered in the present study.

For the validity of the present ACM in view of the accuracy
and conservation, we refer the readers to [35]. Here, to recall
the appropriateness of the algorithm and to facilitate explanation
of the simulation target in §4, particulate channel flow simula-
tions are demonstrated. The particle shape is discoid biconcave
with 8µm diameter, replicating the geometry of Red Blood Cell
(RBC) [36]. The system including 16 particles is bounded by the
bottom (y = 0) and top (y = Ly) plates and periodic in x (stream-
wise) and z (spanwise) directions with the periodicity of Lx and
Lz, respectively. The system is supposed in stationary equilibrium
(i.e. v0 = p0 = 0 and B̃0 = I) before the driving pressure is im-
posed. For comparison, two kinds of simulations are performed:
one is based on the SMAC algorithm, in which the Fast Fourier
Transform (FFT) in x and z directions and the Tri-Diagonal Ma-
trix Algorithm (TDMA) in wall-normal (y) direction are applied
to exactly solving the pressure Poisson equation (10) in a finite
difference form, while the other is based on the present ACM.
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Fig. 2 The snapshots of hyperelastic particles in a three-dimensional
Poiseuille flow. The computational extent is Lx×Ly×Lz = 21.12µm×
21.12µm×21.12µm, and the number of grid points is Mx×My×Mz =

128 × 128 × 128. The material properties and the driving pressure
gradient are scaled using the density ρ, and set to µ/ρ = 1 (µm)2/µs,
G/ρ = 2×10−2 (µm)2/(µs)2 and −∆P/(ρLx) = 2×10−4 µm/(µs)2. The
top and bottom panels show the results based on the SMAC method
using FFT-TDMA and those on the present ACM, respectively. The
left, middle, and right panels show the results at t = 0, t = 0.64ms,
and t = 6.4ms, respectively. The colors on the walls indicate the
magnitude of the shear stress.

The particle position and orientation are shown in Fig. 2. There
are no significant discrepancies in the particle position and shape
between the results based on the accurate SMAC algorithm and
the present ACM.

3.3 Discretization, implementation and parallelization
The basic equations are numerically solved by means of a

finite-difference method. We follow a conventional staggered
grid arrangement. The spatial derivatives are approximated by
the second-order central differences except for those of the ad-
vection terms, to which the fifth-order Weighted Essentially Non-
Oscillating scheme [37,38] is applied in order to avoid numerical
instability and to suppress the dissipative error [19]. To integrate
the equations in time, we employ the first-order Euler scheme.

We adopt an OpenMP-MPI hybrid programming model, and
carry out all the computations in a double precision. The kernel
code is written in Fortran and C with OpenMP directives, and
implemented into an object-oriented framework V-Sphere [39],
which includes class libraries to facilitate the software develop-
ment especially for MPI parallel programs. We employ a do-
main decomposition over the whole computational domain given
as a set of regularly-divided rectangular domains, that minimizes
the computational-load imbalance, and is suited to the network
topology of the Tofu system. The schedule of the MPI communi-
cations together with the computational procedures in each com-
putational time step is schematically illustrated in Fig. 3. Since
the spatial derivative of any quantity is discretized in the finite
difference manner, an adjacent communication at six boundary
surfaces of each decomposed domain is essential for referring to
data at the contiguous compute node. The sleeve width in the
adjacent communication for each boundary surface corresponds
to three grid points for 10 quantities (φN+1

s (×1), B̃
N+1 (×6) and

v
N+1 (×3)) and to one grid point for five quantities (v∗ (×3), D∗

(×1) and pN (×1)). To reduce the time and frequency of the adja-
cent communication, we allocate buffer arrays, and pack/unpack
the data to/from the contiguous buffer. The number of Allreduce
operations is six, corresponding to the number of the volume av-
eraged quantities in Eqs. (6) and (13).

#%$'&)(�*,+.-/+10 $32 46587�9�$'&:&)*�2'0 9,-/+10 $;2
< <= > ?6@�A�B CD DEFHG GI J

K%L M6N O�P QR

SUTVSWX Y[Z \�] ^
_` ab b

cW X Y6Z�\�] ^
d Y�efZ�g,\�Y�e d�h X i,j

_akal m

n8o p6q�r�s tu vw

xzy {6|�}�~ �6��{��
|��,}�{�� ����y��/�
� ��

< <���
������� ?���� = �D DEF�G GI J

����
�����������3� �¢¡£¤¦¥

§©¨�ª/«�¬�¨� ®°¯�¯ ±³²�´�µ©¶�²

·¸�¹
º�¸�»�¼�½�¾�¿ ÀÁ ÂÃ

Ä%Å Æ6Ç�È�É ÊË
ÌÍ�Î
Ï�Í�Ð�Ñ�Ò Ó�ÔÖÕ×

Ø 0 &6Ù

Ú�Û Ü Ý Þß Ý à/á�âäã�åÝ æ�Ú

ç à�è©é�Û�ê�á�æ�åÝ Û�à

è©é�Û�ê�á æ�å�Ý Û à

ë ì âfÝ í�å ç é á
Ú�å�é á©Ú�Ú

Fig. 3 Schematic diagram of computational procedures and MPI communi-
cations

4. Performance analyses
4.1 Performance in a serial job

Using a compute node (8 cores) without MPI communication,
we here perform FSI simulations in a channel as demonstrated
in Fig. 2, and examine the dependence of the performance upon
the problem size M = Mx × My × Mz up to M = 8, 388, 608. A
performance profiler of the K computer provides the performance
data accurately by means of a hardware counter measurement. A
three-dimensional loop operation in the code is written in a form:

do k=1 ,Mz
do j =1 ,My

do i =1 ,Mx
( o p e r a t i o n s )

enddo
enddo

enddo

To demonstrate the efficiency in vector processing at the instruc-
tion level, Fig. 4(a) shows a plot of the number ratio of SIMD
instructions to total instructions for the overall computation ver-
sus the innermost loop size Mx for various outer loop sizes My
and Mz. Since the plotted symbols collapse onto a single curve,
the SIMD ratio is dependent solely upon Mx irrespective of My or
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Mz. As shown in Fig. 4(b) that reports the ratio of the sustained
performance to the peak performance of the K computer, the ra-
tio is dependent mainly upon Mx, indicating the relevance of the
SIMDization to the performance enhancement. Inspecting Fig.
4(b) carefully, we find weak but obvious My dependence. (The
level of the Mz dependence was confirmed to be comparable to
that of the My dependence). We confirmed that the performance
for fixed Mx was positively correlated with My and Mz in cases
of Mx ≤ 128, whereas it did not always increase with increasing
My or Mz in cases of Mx ≥ 256. Note that the highest sustained
performance was achieved with a 512 × 128 × 128 mesh.
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Fig. 4 (a) the number ratio of SIMD instructions to total instructions versus
the innermost loop size Mx . (b) the performance ratio versus Mx .

To further clarify the code feature in view of the performance,
some statistical data for the overall computation and for four of
the most time-consuming procedures are listed in Table 1. As
in Table 1(b), 65% or more time is spent for evaluating the ad-
vection terms, and the ratio to the peak performance is as high
as 45.8%, 51.9% and 57.9% for 64 × 64 × 64, 128 × 128 × 128
and 512 × 128 × 128 meshes, respectively. Such a high perfor-
mance dominates the overall performance in Table 1(a). As in
Table 1(c), the performance for evaluating the Oldroyd rate term
is strongly dependent upon the problem size, and that reaches
23.4% for the 512 × 128 × 128 mesh. As in Table 1(d),(e), the
performance in evaluating the stress tensor and the stress diver-
gence is much lower than that for the advection terms since it is
limited by the memory bandwidth (that is in fact confirmed by the
memory throughput values close to the effective peak (≈ 46GB/s)
of the K computer). Nevertheless, these procedures do not much
impact on the overall performance since each process is not much
expensive.

It should be emphasized that the algorithm based on the present
ACM makes it possible to achieve such a high performance in Ta-
ble 1(a) and high parallel performance as will be demonstrated in
§4.2 and §4.3. When one uses the SMAC method, corresponding
to a standard approach for incompressible fluid flow problems,
most of the computational time is spent for solving the pressure
Poisson equation (instead of Eqs. (11), (12) and (13)) in mas-
sively parallel computing. The Poisson equation solvers include

Table 1 Computational time, performance, memory throughput and SIMD
ratio in a serial job (using 8 cores) for various number M of
grid points: M1 = 64 × 64 × 64, M2 = 128 × 128 × 128 and
M3 = 512 × 128 × 128

(a) overall
M1 M2 M3

time/step 0.031 s 0.21 s 0.73 s
Gflops (/peak (%)) 39.9 (31.2) 52.4 (40.9) 59.6 (46.6)
Mem. Thr (GB/s) 16.2 18.5 20.9
SIMD/total (%) 87.0 91.4 95.0

(b) advection terms (v · ∇) f in Eqs. (2), (4) and (5)
M1 M2 M3

time/total (%) 65.5 71.6 73.1
Gflops (/peak (%)) 58.7 (45.8) 66.5 (51.9) 74.1 (57.9)
Mem. Thr (GB/s) 12.5 14.1 16.1
SIMD/total (%) 90.8 94.4 97.3

(c) Oldroyd rate term L · B̃ + B̃ ·LT in Eq. (5)
M1 M2 M3

time/total (%) 15.2 13.4 11.2
Gflops (/peak (%)) 17.0 (13.3) 22.6 (17.6) 30.7 (23.4)
Mem. Thr (GB/s) 11.4 15.5 21.8
SIMD/total (%) 76.5 82.3 87.3

(d) stress tensor components in Eq. (3)
M1 M2 M3

time/total (%) 4.9 4.8 5.4
Gflops (/peak (%)) 12.7 (9.9) 14.4 (11.3) 14.6 (11.4)
Mem. Thr (GB/s) 40.6 42.9 42.1
SIMD/total (%) 68.1 70.2 71.8

(e) divergence of stress tensor ∇ · σ in Eq. (2)
M1 M2 M3

time/total (%) 2.2 2.3 2.6
Gflops (/peak (%)) 12.4 (9.7) 13.7 (10.7) 14.3 (11.2)
Mem. Thr (GB/s) 43.2 45.1 45.1
SIMD/total (%) 70.3 77.0 82.3

iterative methods such as the Jacobi, Gauss-Seidel, successive
over-relaxation, and multi-grid ones, and a direct method using
Fast Fourier Transform (FFT) and tridiagonal matrix algorithm.
Although each iterative method has advantage or disadvantage in
terms of efficiency in operation, convergence rate, parallel scala-
bility and so on, the performance in whichever method is limited
by the memory bandwidth. In consideration of the B/F value of
the K computer and the Himeno benchmark tests [40] thereon, the
ratio to the peak performance in each iterative procedure would be
no more than 10%, and hence the overall performance approaches
such a low value. Further, the performance of the FFT is degraded
considerably with increasing the number of compute nodes due to
the expensive global communication traversing all the compute
nodes even though it is efficient in a serial job.

4.2 Weak scaling
To analyze the impact of the number N of compute nodes

on the parallel performance, we conduct weak scaling tests in
a range between N = 1 and N = 82, 944 (i.e., 8 and 663, 552
cores) of the K computer. We perform FSI simulations in the
channel for three different problem sizes per each compute node:
M/N = 64×64×64, 128×128×128 and 512×128×128 (here, M
denotes the total number of grid points). The system includes one
RBC per 32×64×64 mesh domain. In the maximum size problem
(M = 24, 576×6, 912×4, 096 ≈ 7×1011), the number of RBCs is
5, 308, 416. The sustained performance in flops and its ratio to the
peak performance are reported in Fig. 5(a) and Fig. 5(b), respec-
tively. Likewise the single node performance in §4.1, the parallel

ⓒ 2013 Information Processing Society of Japan

2013年ハイパフォーマンスコンピューティングと計算科学シンポジウム 
High Performance Computing Symposium 2013

141

HPCS2013
2013/1/16



 0

10

20

30

40

50

100 101 102 103 104 105

fl
op

s/
Pe

ak
 (%

)

Number of nodes N

(b)

10G

100G

1T

10T

100T

1P

10P
fl

op
s

(a)

M/N = 512×128×128
M/N = 128×128×128
M/N = 64×64×64

Fig. 5 Weak scaling performance as a function of the number N of compute
nodes. The circles, triangles and crosses indicate the measured re-
sults with 512× 128× 128, 128× 128× 128 and 64× 64× 64 meshes
per compute node, respectively. (a) sustained performance in flops.
The solid line indicates the peak performance of the K computer. (b)
ratio of the sustained performance to the peak performance.

performance is dependent mainly upon M/N. In Fig. 5(a), all
the plots for respective M/N exhibit excellent scalability as com-
pared with the slope of the peak performance. Notably, for the
maximum problem size per each node (M/N = 512 × 128 × 128)
in Fig. 5(b), the performance ratio is 45.6%, 43.7% and 42.7%
for N = 2, N = 12, 288 and N = 82, 944, respectively, and hence
the parallel efficiency (based on the single node performance ra-
tio 46.6% in Table 1(a)) is more than 91.6%. For this size per
node, the sustained performance of 4.54 Pflops is achieved at
N = 82, 944. Even for the smaller size per node, the sustained
performance is found to be high enough: the performance ratio
at N = 3, 840 is 18.1% and 34.8% for M/N = 64 × 64 × 64
and M/N = 128 × 128 × 128 meshes, respectively. Both the
efficiency and scalability shown in Fig. 5 are unprecedentedly
high among numerical simulations of incompressible fluid and/or
structure dynamics performed on state-of-the-art scalar-type su-
percomputers owing to the novel scheme and algorithm described
in §3.

4.3 Strong scaling
Here, we conduct strong scaling tests. We perform FSI sim-

ulations for three different meshes: M = 1, 024 × 256 × 256,
2, 048×512×512 and 4, 096×1, 024×1, 024, with which the sys-
tems involve 512, 4, 096 and 32, 768 RBCs, respectively. The sus-
tained performance in flops is reported in Fig. 6(a). The plots for
the respective problem sizes exhibit good scalability even though

the communication-to-computation time ratio is likely to be large
using an efficient code. The adjacent and global communication
time ratios to the total elapsed time are reported in Fig. 6(b) and
Fig. 6(c), respectively. More than 20% of the elapsed time is
spent for communication when N is increased by a factor of 16
or more. Even in such a situation, nevertheless, the sustained
performance is found to be high enough: the performance ra-
tios are larger than 28% and 20% when N is increased by factors
of 16 and 32, respectively (see Fig. 5(b), and the inset of Fig.
6(a) showing the parallel efficiency). The drop in the parallel effi-
ciency (the inset of Fig. 6(a)) with increasing N/Nbase is not much
dependent upon the overall problem size M owing to the excellent
weak scaling as demonstrated in §4.2. Thus, not only the change
in the communication time but also the efficiency in vector pro-
cessing dependent upon the problem size per compute node (as
examined in §4.1) are considerably reflected on the strong scala-
bility in Fig. 6(a).

5. Blood flow simulation
We apply the developed code to blood flow simulations with

RBCs and platelets in a capillary vessel. The diameter of the cap-
illary vessel is set to D = 104µm, which is comparable to that
of a cerebral arteriole. The initial RBC shape is discoid bicon-
cave with 8µm diameter, and the initial platelet shape is spheroid
with diameters of 2µm × 2µm × 1.6µm [16, 36]. We shall shed
light on the role of the RBC on the fluctuation of the platelet,
which would afford insight into the dynamic interaction in an ini-
tial process of thrombus formation. To clarify this point, we vary
the RBC volume fraction (i.e., the hematocrit Ht) from 0% (no
RBC) to 20%. In the present study, the driving pressure gradient
is fixed at −∆P/(ρLx) = 4 × 10−5 µm/(µs)2. The blood vessel and
the platelet are treated as hyperelastic. Thus, not only the fluid-
RBC-platelet motion but also the deformable motion of the blood
vessel are computed to be coupled.

Figure 7 visualizes the shape of the RBCs, platelets and ves-
sel wall at Ht = 20% for three time instants. At t = 0 (Fig.
7(a)), the RBCs and platelets are seeded almost regularly in space
but with a small random perturbation to promote the symmetry
breaking. The RBCs are mixed over time. The RBC subjected
to a high shear rate near the vessel wall highly deforms and gen-
erates the velocity disturbance around it when translating in the
downstream. To demonstrate the relevance of such an agitated
fluid flow to the platelet motion, Fig. 8 reports radial positions
of some platelets in time. Even in the absence of the RBCs (Fig.
8(a)), the radial position is slightly fluctuated due to the hydrody-
namic interactions among the platelets and wall. More remark-
ably, however, the platelet in the presence of the RBCs is much
more dispersed (Fig. 8(b)), since it moves in a flow undergo-
ing a larger fluctuation induced by the RBCs. It should be noted
that the present results are consistent with the experimental re-
sult of the enhanced thrombus formation in the presence of the
RBCs [42] presumably because the platelets get increased chance
to approach to the vessel wall.

Figure 9 shows the radial profiles of the root-mean-square ve-
locity 〈v2r 〉

1/2
p . It is also seen the enhancement of the platelet fluc-

tuation due to the presence of the RBCs. For 0% ≤ Ht ≤ 15%, the
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Fig. 6 Strong scaling performance and communication time as a function of
the number N of compute nodes. The crosses, triangles and circles
indicate the measured results with the number M of total grid points,
corresponding to M = 1, 024 × 256 × 256, M = 2, 048 × 512 × 512
and M = 4, 096 × 1, 024 × 1, 024, respectively. (a) sustained per-
formance in flops. The solid line indicates the peak performance
of the K computer. The dashed lines with different colors indicate
the theoretical performance based on the sustained performance with
Nbase(= the smallest N) nodes (with a 512×128×128 mesh per com-
pute node) for respective M conditions. The inset shows the parallel
efficiency, i.e. plots of the sustained performance normalized by that
with Nbase nodes versus N/Nbase. (b) ratio of the adjacent communi-
cation to the total elapsed time. (c) ratio of the global communication
to the total elapsed time.

fluctuating intensity 〈v2r 〉
1/2
p becomes higher with increasing Ht,

whereas for Ht = 20%, the intensity 〈v2r 〉
1/2
p is lower than those

for Ht = 5, 10 and 15 (%). Such a non-monotonous change in
〈v2r 〉

1/2
p implies that there exist competitive effects on the platelet

fluctuation with increasing Ht. The effects may include not only a
positive contribution, corresponding to the increase in the number
of agitation sources, but also negative ones such as the reduction
in the fluid volume, in which the platelet can freely move, and
the reduction in the flow rate. Interestingly, in the presence of
the RBCs (Ht ≥ 5%), the fluctuating intensities of the platelets
increase from r/(D/2) ≈ 0.4 to ≈ 0.75, and then they steeply
decrease near the wall. Such a peaky profile is consistent with
the finding in [15] that the radial drifts of the laterally-located

î�ïñð³ò©ó ôöõf÷

î�ïùø©ó ú%õf÷

î/ïùû

Fig. 7 Snapshots of the blood flow in a capillary vessel at Ht = 20% with a
3, 072 × 640 × 640 mesh. The numerical simulation was performed
using 4,800 compute nodes (38,400 cores) of the K computer. The
red and white surfaces indicate the interface of the RBC and that of
the platelet, respectively, which are visualized using a distributed-
parallel large-data visualization system LSV [41]. Top (a), middle
(b) and bottom (c) panels show the results at t = 0, t = 7.8ms and
t = 16.3ms, respectively.
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Fig. 8 Temporal evolution of trajectories of part of platelets, which are ini-
tially located at rp/(D/2) ≈ 0.8. Here, rp denotes the distance be-
tween the particle centroid and the axis. (a) Ht = 0% (no RBC); (b)
Ht = 20%.

platelets are restricted by the RBCs performing the tank-treading
motion near the wall.

6. Conclusion and perspectives
We have developed the efficient and scalable numerical method

for fluid-structure interaction problems, which is useful for a wide
variety of biomedical applications. We focused on microchan-
nel and capillary flows including a large number of flexibly de-
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Fig. 9 Radial profiles of the radial root-mean-square velocity component
sampled over the platelets and in a range between t = 4ms and
t = 17.5ms for various hematocrit of Ht = 0, 5, 10, 15 and 20 (%).

formable bodies such as blood flows. We have put our primary
effort into redesigning the basic equation set for facility in the
solution and the algorithm for a significant boost in performance
on state-of-the-art scalar-type supercomputers. The full Eulerian
method [19] facilitates treatment of a time-dependent complex
geometry in practical applications. Furthermore, it was confirmed
to exploit the system performance owing to the promotion of
SIMDization and the minimization of the computational-load im-
balance. The novel artificial compressibility method avoids itera-
tive procedures for implicitly solving the pressure Poisson equa-
tion, and thus to considerably reduce the amount of the memory
access and adjacent communication. This algorithm would pave a
new way for a wide range of applications of incompressible fluid
and structure dynamics because it has a potential to provide the
best trade-off in terms of computational efficiency, accuracy and
time steps in massively parallel computing.

Both the weak and strong scaling tests showed good scalabil-
ity on the K computer. In particular, the weak scaling test us-
ing a 512 × 128 × 128 mesh per compute node demonstrated
the parallel efficiency of 91.6% for 82, 944 compute nodes based
on the single node performance (46.6% of peak). Both the ef-
ficiency and scalability were unprecedentedly high among nu-
merical simulations of fluid/structure dynamics performed on the
recent scalar-type supercomputers. Notably, the sustained per-
formance of 4.54 Pflops (42.7% of peak) was achieved for a
microchannel flow simulation with 5,308,416 deformable bodies
using 24, 576 × 6, 912 × 4, 096 grids on 82,944 compute nodes.
We applied the developed method to large-scale computations of
blood flows including Red Blood Cells (RBCs) and platelets in
a capillary vessel of about 100µm diameter, which is compara-
ble to the arteriole size in a brain, using 4,800 compute nodes.
The usefulness of the method was confirmed by demonstrating
the relevance of the RBC to the platelet dispersion.

In order to extend the applicability of the code to more practi-
cal problems in thrombus formation, it is important to incorporate
ligand-receptor interactions between the von Willebrand factor
on the injured wall and the glycoprotein on the platelet surface,
corresponding to molecular scale phenomena. It is a challeng-
ing task to overcome the multi-scale/physics difficulty irrespec-

tive of the further increase in computational performance toward
Exascale computing. A stochastic modeling based on a kinetic
Monte Carlo method and the implementation of a robust time ad-
vancement during the coupling are the ongoing subjects of the
authors. To be compared with the experiment in a microchannel
with 100µm height [42], the simulation may require several times
larger number of compute nodes than the present simulations of
the blood flow in the capillary vessel because of the wider extent
in the streamwise and spanwise directions.
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