WEKO3
アイテム
Massively Parallel Computing of Novel Fluid-Structure Interaction Solver on the K Computer
https://ipsj.ixsq.nii.ac.jp/records/87878
https://ipsj.ixsq.nii.ac.jp/records/87878f1cf0d50-9f84-47ba-93e7-eee3f576fb00
名前 / ファイル | ライセンス | アクション |
---|---|---|
![]() |
Copyright (c) 2013 by the Information Processing Society of Japan
|
|
オープンアクセス |
Item type | Symposium(1) | |||||||
---|---|---|---|---|---|---|---|---|
公開日 | 2013-01-08 | |||||||
タイトル | ||||||||
タイトル | Massively Parallel Computing of Novel Fluid-Structure Interaction Solver on the K Computer | |||||||
タイトル | ||||||||
言語 | en | |||||||
タイトル | Massively Parallel Computing of Novel Fluid-Structure Interaction Solver on the K Computer | |||||||
言語 | ||||||||
言語 | eng | |||||||
キーワード | ||||||||
主題Scheme | Other | |||||||
主題 | アプリケーション | |||||||
資源タイプ | ||||||||
資源タイプ識別子 | http://purl.org/coar/resource_type/c_5794 | |||||||
資源タイプ | conference paper | |||||||
著者所属 | ||||||||
Advanced Center for Computing and Communication, RIKEN/RIKEN Computational Science Research Program | ||||||||
著者所属 | ||||||||
CAE Solution Center, Fujitsu Systems East Ltd. | ||||||||
著者所属 | ||||||||
Advanced Center for Computing and Communication, RIKEN | ||||||||
著者所属 | ||||||||
Department of Mechanical Science and Bioengineering, Osaka University | ||||||||
著者所属 | ||||||||
Computational Materials Science Unit, National Institute for Materials Science | ||||||||
著者所属 | ||||||||
School of Engineering, The University of Tokyo/RIKEN Computational Science Research Program | ||||||||
著者所属 | ||||||||
School of Engineering, The University of Tokyo | ||||||||
著者所属 | ||||||||
RIKEN Computational Science Research Program | ||||||||
著者所属(英) | ||||||||
en | ||||||||
Advanced Center for Computing and Communication, RIKEN / RIKEN Computational Science Research Program | ||||||||
著者所属(英) | ||||||||
en | ||||||||
CAE Solution Center, Fujitsu Systems East Ltd. | ||||||||
著者所属(英) | ||||||||
en | ||||||||
Advanced Center for Computing and Communication, RIKEN | ||||||||
著者所属(英) | ||||||||
en | ||||||||
Department of Mechanical Science and Bioengineering, Osaka University | ||||||||
著者所属(英) | ||||||||
en | ||||||||
Computational Materials Science Unit, National Institute for Materials Science | ||||||||
著者所属(英) | ||||||||
en | ||||||||
School of Engineering, The University of Tokyo / RIKEN Computational Science Research Program | ||||||||
著者所属(英) | ||||||||
en | ||||||||
School of Engineering, The University of Tokyo | ||||||||
著者所属(英) | ||||||||
en | ||||||||
RIKEN Computational Science Research Program | ||||||||
著者名 |
Kazuyasu, Sugiyama
× Kazuyasu, Sugiyama
|
|||||||
著者名(英) |
Kazuyasu, Sugiyama
× Kazuyasu, Sugiyama
|
|||||||
論文抄録 | ||||||||
内容記述タイプ | Other | |||||||
内容記述 | An efficient and scalable numerical method for massively parallel computing of fluid-structure interaction systems has been developed for biomedical applications. To facilitate the treatment of complex geometry, a full Eulerian method is employed to couple the incompressible motions of fluid and hyperelastic materials. Instead of implicitly solving the pressure Poisson equation, a novel artificial compressibility method with adaptive parameters, which are determined to guarantee the computed field to be nearly incompressible, is employed. In both weak and strong scaling tests, the developed solver attains excellent scalability on the K computer. A sustained performance of 4.54 Pflops (42.7% of peak) has been achieved for a microchannel flow involving more than 5 million deformable bodies with 663,552 compute cores. We study arteriole blood flows to gain insight into dynamic interactions among motions of plasma and blood cells. | |||||||
論文抄録(英) | ||||||||
内容記述タイプ | Other | |||||||
内容記述 | An efficient and scalable numerical method for massively parallel computing of fluid-structure interaction systems has been developed for biomedical applications. To facilitate the treatment of complex geometry, a full Eulerian method is employed to couple the incompressible motions of fluid and hyperelastic materials. Instead of implicitly solving the pressure Poisson equation, a novel artificial compressibility method with adaptive parameters, which are determined to guarantee the computed field to be nearly incompressible, is employed. In both weak and strong scaling tests, the developed solver attains excellent scalability on the K computer. A sustained performance of 4.54 Pflops (42.7% of peak) has been achieved for a microchannel flow involving more than 5 million deformable bodies with 663,552 compute cores. We study arteriole blood flows to gain insight into dynamic interactions among motions of plasma and blood cells. | |||||||
書誌情報 |
ハイパフォーマンスコンピューティングと計算科学シンポジウム論文集 巻 2013, p. 137-145, 発行日 2013-01-08 |
|||||||
出版者 | ||||||||
言語 | ja | |||||||
出版者 | 情報処理学会 |