
POD-Based Parallel Compression for Visualizing Large-Scale Dataset

Chongke Bi Kenji Ono

Advanced Institute for Computational Science, RIKEN

ABSTRACT

Visualizing and analyzing large-scale dataset is an important task
for scientific research in various fields. However, the visualiza-
tion process is time-consuming, which is quite inconvenient for re-
searchers and engineers to analyze the time-varying dataset. In this
poster,we proposed an approach to generate a small-scale dataset
from the original large-scale one. The key idea is to divide the
large-scale dataset into small groups firstly, and then compress the
dataset in each group by using proper orthogonal decomposition
(POD) method in parallel. This process is recursively carried on
until the obtained dataset cannot be compressed any more. Here,
the parallel computing greatly decreases the computational cost of
the eigen resolving problem in the POD algorithm. Furthermore the
compressed dataset can be easily restored linearly.

1 INTRODUCTION

The most important thing for a new compression method is eval-
uation. Here the following four technical issues will be used to
evaluate the proposed approach: 1) compression ratio (Eq. (1)), 2)
errors of the compressed datasets (Eq. (2)), 3) computational cost,
and 4) efficiency of restoration.

c = sizecompressed/sizeoriginal ×100%. (1)

error = ∑
∣

∣voriginal − vcompressed

∣

∣/∑voriginal ×100%. (2)

2 PARALLEL-POD COMPRESSION AND RESTORATION

The basic idea of the proposed POD-based parallel algorithm is
to divide the large-scale datasets into small groups first, and then
the POD-based compression algorithm [1] is carried on in each
small group in parallel. After that the obtained POD-basements
should be collected, and be divided into new small groups. These
POD-basedments will be compressed in parallel agarin. This pro-
cess will be recursively repeated until the datasets cannot be further
compressed. Now the final POD-basements and all the coefficients
(very small size) are the final compressed datasets.

Figure 1 shows the detail of the proposed approach. The original
dataset in the layer 0 was divided into 3 small groups firstly. POD
algorithm is used to compressed the datasets of the 3 small groups
in parallel. However, if the compression process is stopped here,
the compression ratio is 4/11, which is still high. Therefore the
POD-basements in the layer 1 are compressed again as shown in
the second line of Figure 1. This process will be repeated until
the POD-basements cannot be compressed any more. Finally, the
compressed POD-basements in layer 2 are obtained.

Restoring the compressed datasets efficiently is as important as
compression process. A linear restoration method will be intro-
duced. As shown in Figure 1, the red arrows show the process of

Figure 1: The flow chart of POD-based parallel compression.

Original 6 7 8
0

10

20

30

40

50

60

70

80

90

100

110

100

0.7194 0.7194 0.7194

Number of parallel nodes

C
o

m
p

re
s
s
io

n
 ra

ti
o

 (%)

Compression Ratio

 

 

Original datasets

Compressed dataset (6 parallel nodes)

Compressed dataset (7 parallel nodes)

Compressed dataset (8 parallel nodes)

0 20 40 60 80 100 120 140
0

0.005

0.01

0.015

0.02

0.025

Time step

E
rr

o
r (%)

Error of The Compressed Datasets

 

 

6 parallel nodes

7 parallel nodes

8 parallel nodes

6 7 8
0

200

400

600

800

1000

1200

1058.01

993.046

890.315

Number of parallel nodes

T
im

e
 (s
)

Compression Time

 

 

6 nodes

7 nodes

8 nodes

Figure 2: The result of compressing the large-scale time-varying
dataset of a flow simulation in the air jet mixer of a machinery.

restoring the dataset in the 6th timesteps t0 6. In the restoring pro-
cess, it is unnecessary to calculate the POD-basements in the mid-
dle layers. The original datasets can be linearly restored using the
POD-basements in the deepest layer and the related coefficients.

3 RESULTS AND DISCUSSIONS

Our prototype system is implemented on the supercomputer of
FX10 in the University of Tokyo. FX10 has 4800 nodes, 6 dimen-
sional network, Each node has 16 cores, 32GB memory, 1.848GHz,
and 14.78GFlops. The source code has been written in C++.

Figure 2 shows the result to compress a large-scale dataset
(500×200×125×139 [x×y×z×timesteps]) obtained from a flow
simulation in the air jet mixer of a machinery, which is rendered by
the magnitude of velocity (Figure 2(a)). The colors of red, green,
magenta, and blue represent original dataset, the compression re-
sults with 6 nodes, 7 nodes, and 8 nodes in parallel, respectively.

Figure 2(b) is the compression ratio calculated by using Eq. (1).
The result shows that our approach can successfully compress such
kind of large-scale dataset in a quite low compression ratio. Mean-
while, the precision of the compressed dataset can also be preserved
in such low compression ratio, as shown in Figure 2(c). The errors
of the compressed dataset are calculated by using Eq. (2). In Fig-
ure 2(c), the number of parabola shape is the same with the numbers
of nodes. These parabola shapes can be used to prove the correct-
ness of our algorithm. This is because the mean velocity for the
neighbour time steps is nearly equal to that of the middle time step
in a small size group. Furthermore, the computational cost is also
investigated in temporal space, as shown in Figure 2(d). It becomes
smaller as the numbers of parallel nodes are increased. This also
described one of the merits of our parallel algorithm.

ACKNOWLEDGEMENT

Part of the results is obtained by early access to the K computer at
the RIKEN Advanced Institute for Computational Science.

REFERENCES

[1] K. Taira. Proper orthogonal decomposition in fluid flow analysis: 1.

introduction. Nagare-Journal of Japan Society of Fluid Mechanics,

30:263–271, 2011.

2013年ハイパフォーマンスコンピューティングと計算科学シンポジウム 
High Performance Computing Symposium 2013

ⓒ 2013 Information Processing Society of Japan 83

HPCS2013
2013/1/15


