
Porting MassiveThreads Thread Library to
FX10 Supercomputer System

Nan Dun1,a) Jun Nakashima1,b) Kenjiro Taura1,c)

Abstract: We ported MassiveThreads, a light-weight thread library, to FX10 supercomputer system. We illustrate the
technical challenges of implementing context switching for SPARC architecture, and identify the performance bottle-
necks in context switch implementations in current Linux kernel and GNU C library. The evaluation shows that our
user-level implementation in assembly is over 30x faster than using library context switch routines, e. g., ucontext se-
ries. Our implementation also enables the Chapel programming language to run more efficiently on FX10 when using
MassiveThreads than other tasking layers such as Pthreads, Nanos++, and Qthreads.

1. Introduction
Modern computers are equipped with CPUs having more and

more cores, which provides a promising future of next-generation
computer systems but also proposes significant challenges to soft-
ware systems to harness the power of such massive parallelism.

First, the number of cores for one CPU is increasing and each
core is usually assigned with 10∼100 threads during the execution
time. This requires fine-grained multithreading and approaches
to hide the latency from memory and network. Secondly, con-
nections between nodes are becoming faster thus I/O should be
efficiently performed to avoid its limit on overall performance.

To this end, we designed and developed the MassiveThreads, a
middleware for writing high performance applications [10], [11].
MassiveThreads is a light weight thread library designed for han-
dling I/O efficiently and scalable execution of multiple threads. It
is designed to achieve following goals: 1) efficient management
of a large number of threads, especially with small overhead to
create and destroy them; 2) efficient execution of I/O in many-
node/core environments; 3) interface that is compatible to exist-
ing programs without compilation.

The PRIMEHPC FX10 supercomputer system [8] located in
The University of Tokyo, manufactured by Fujitsu Limited, is
a massively parallel supercomputer with a peak performance of
1.13 PFLOPS. It consists of 4,800 computing nodes (16 cores per
node, i. e., 76800 cores in total) with SPARC64 IXfx processors
based on SPARC64 V9 architecture [14]. Computing nodes of
FX10 are connected via the 6-dimensional mesh/torus Tofu inter-
connect [1] to achieve high scalability and fault tolerance.

Therefore, FX10 is an ideal target platform of MassiveThreads
and we made an effort to enable MassiveThreads to run on FX10.
Accordingly, the contribution of this work is as follows:
1 The University of Tokyo, 7-3-1 Hongo, Tokyo 113–8656, Japan
a) dun@eidos.ic.i.u-tokyo.ac.jp
b) nakashima@eidos.ic.i.u-tokyo.ac.jp
c) tau@eidos.ic.i.u-tokyo.ac.jp

• We ported MassiveThreads thread library to FX10 by pro-
viding an efficient implementation in assembly of context
switching for SPARC V9 architecture. Evaluation shows
that our implementation is over 30x faster than the imple-
mentation using library context switch routines and achieves
good scalability up to 16 cores in one single node.

• We also identified the overheads of current context switch
implementation in GNU C library and Linux kernel, which
illustrates that our implementation is generic and applicable
to improve the implementation of existing library and kernel
implementation.

• We further extend our effort to enable Chapel program-
ming language [13] to efficiently run on FX10 with Mas-
siveThreads as a tasking layer. In addition, experimen-
tal comparisons show that MassiveThreads tasking layer
achieves better performance and scalability than other task-
ing layers such as Pthreads, Nanos++ [5], and Qthread [15].

The rest of this paper is organized as follows. In Section 2, we
briefly describe the SPARC architecture and corresponding chal-
lenges imposed to the implementation of context switching. The
details of our implementation and related analysis is presented
in Section 3. Section 4 shows the evaluation results of our im-
plementation comparing to several reference implementations on
FX10. We finally summarize our work in Section 5.

2. The SPARC Architecture
The SPARC is a RISC (Reduced Instruction Set Computing)

instruction set based architecture. Its most popular revisions in-
clude the 32-bit SPARC V8 and 64-bit SPARC V9. The details
of these architectures can be found in SPARC reference manu-
als [12], [14]. Besides instruction set, we briefly introduce two
SPARC major particularities related to context switching when
comparing to other architectures (e. g., x86 and AMD64): the
register windows and stack layout.

1ⓒ 2012 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2012-ARC-202 No.8
Vol.2012-HPC-137 No.8

2012/12/13

Table 1 Integer Registers of SPARC Architecture

Registers Alias Descrptions

Global Registers
%r0 %g0 zero, no effect for writes
%r1 %g1 temporary value
%r2 %g2 reserved by libraries/compiler
%r3 %g3 reserved by libraries/compiler
%r4 %g4 reserved by libraries/compiler
%r5 %g5 reserved for SPARC ABI
%r6 %g6 reserved for SPARC ABI
%r7 %g7 Thread local storage

Output Registers
%r8 %o0 out parameter 0 / in return value
%r9 %o1 out parameter 1 / in return value
%r10 %o2 out parameter 2 / in return value
%r11 %o3 out parameter 3 / in return value
%r12 %o4 out parameter 4
%r13 %o5 out parameter 5
%r14 %o6 / %sp stack pointer
%r15 %o7 address of CALL instruction

Local Registers
%r16 %l0 local value 0
%r17 %l1 local value 1
%r18 %l2 local value 2
%r19 %l3 local value 3
%r20 %l4 local value 4
%r21 %l5 local value 5
%r22 %l6 lcoal value 6
%r23 %l7 local value 7

Input Registers
%r24 %i0 in parameter 0 / out return value
%r25 %i1 in parameter 1 / out return value
%r26 %i2 in parameter 2 / out return value
%r27 %i3 in parameter 3 / out return value
%r28 %i4 in parameter 4
%r29 %i5 in parameter 5
%r30 %i6 / %fp frame pointer
%r31 %i7 return address - 8

2.1 Register Windows
As shown in Table 1, there are four groups of integer registers

in SPARC architecture: global registers, in registers, local regis-
ters, and out registers. In a function call, the in registers have the
incoming arguments from caller, local registers are for callee’s
local usage. Thus in and local registers are callee-save registers.
The out registers are used to pass outgoing arguments to the func-
tion to be called. The contents of global registers do not change
during the function calls.

The save and restore instructions are used to pass arguments
and return values between caller and callee during a function call.
When a save is issued, caller’s in and local registers are saved,
and the out registers are mapped to callee’s in registers. When a
restore is issued during the function exit, callee’s in register are
remapped back to caller’s out registers.

However, the implementation of the save/restore mechanism
uses a technique called register window. The register windows
typically consists of 8 windows with 24 registers (in, local, and
out registers) per window. Then in and out registers are actually
slides (i. e., to be renamed) instead of copying during the func-
tion calls. Therefore, register windows acts as a cache of cur-
rent registers set and operates in parallel with the stack frame.
This technique is designed to reduce memory load/store instruc-
tions during the procedure calls, especially for large application
programs. In SPARC V8, the register windows is managed by

Table 2 Register Windows Related Changes from SPARC V8 to V9

SPARC V9 SPARC V8

Registers
Window invalid mask - WIM
Current window* ◦ CWP CWP
Processor state 4 PSTATE PSR
Savable windows + CANSAVE
Restorable windows + CANRESTORE
Other windows + OTHERWIN
Clean windows + CLEANWIN
Window state + WSTATE

Instructions
Save and restore 4 SAVE/RESTORE SAVE/RESTORE
State after RESTORE + RESTORED
State after SAVE + SAVED
Flush windows + FLUSHW
Read and write WIM - RDWIM/WRWIM
Read and write PSR - RDPSR/WRPSR
◦: unchanged, 4: changed, +: added, -: deleted, *: privileged

privileged instructions, and this limitation is relieved by SPARC
V9. Table 2 summarizes the changes of registers and instructions
related to the implementation of register windows.

As a result, the contents in register windows are differ-
ent for each thread context and they must be flushed to each
thread’s own save area respectively. While user must use a trap
ta ST_FLUSH_WINDOWS to flush the register windows in SPARC
V8, SPARC V9 provides a more efficient non-privileged instruc-
tion FLUSHW to perform this operation [14]a.

2.2 Stack Layout
Figure 1 shows the stack layout of SPARC V9 convention.

The SPARC V9 stack grows from high address to low address
and must be 8-byte aligned. It also requires a bias of 2047 to be
added to stack offset related to %sp, which is basically used as a
flag bit (since 2047 is odd, the low bit of an address is 1) to dis-
tinguish from SPARC V8 stack. Different from other machine ar-
chitectures, stack manipulation should no be operated on the top
of stack, because a reserved area from the stack top is required by
the kernel for its usage. For example, on SPARC V9, the top of
%sp+2047+120 bytes is reserved area, which must not be clob-
bered by users. Users can save thread context to the address from
%sp+2047+128.

The area from %sp+2047 to %sp+2047+120 is called kernel
save window that is used to save callee’s register window dur-
ing the flushing of register windows. Both local and in registers
are saved in this area, by which the frame pointer %fp or %i6
is chained via the kernel save area. Therefore, if a restore in-
struction cause an underflow trap, the frame pointer in the cur-
rent register window becomes the stack pointer and correspond-
ing contents in kernel save area can be reloaded. Accordingly,
the reloaded registers contains a frame pointer to next frame of
its caller and thus a series of historical registers sets are threaded
down to the stack.

3. Context Switching for SPARC
3.1 Generic Context Switching

Generally, a context switching is to save the state of old thread
and restore the state from new thread. David and Peter have de-
scribed the stacks, registers and the implementation of user-space

2ⓒ 2012 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2012-ARC-202 No.8
Vol.2012-HPC-137 No.8

2012/12/13

%sp+BIAS
%sp+BIAS+8

...
%sp+BIAS+120
%sp+BIAS+128

...
%sp+BIAS+168
%sp+BIAS+176

Callee’s'register'window'/''
Kernel'save'window
128Bytes'for'storing'

LOCAL'and'IN'registers Callee'function’s'stack'frame

Lower'addresses

Higher'addresses

48Bytes'for'callee'to'store'arguments,0.5
(Used'only'when'callee'function'

requires'its'arguments'to'be'in'memory)

...
%fp+BIAS

Arguments'6'~,

...Unspecified'variable'size

%sp
%sp+BIAS-1

Unspecified'variable'size

...
%fp+BIAS+128
%fp+BIAS+176Arguments'7'~,

Caller’s'register'window'/''
Kernel'save'window

Caller'function’s'stack'frame

Volatile'memory'(Do'not'use)
BIAS'='2047

Fig. 1 Stack Layout of SPARC V9 Architectures

threads on the SPARC V8 architecture [7], [9]. However, their
approaches cannot be straightforwardly applied to the SPARC V9
architecture because SPARC V9 has differnt registers, instruction
set, and stack layout than SPARC V8.

We implemented both context switching for both SPARC V8
and V9. In following sections, we illustrate our approaches by
using SPARC V9 version as an example.

3.2 Synthesising Thread Stack
To perform context switching, the first step is to make a con-

text for current thread by synthesising a thread stack. Figure 2
shows the implementation of making an empty thread stack for
SPARC V9, where stack and passed to makecontext() specifies
a piece of continuous memory that grows from high address to
low address with a given size of stacksize.
(1) The stack address is first aligned properly according to

SPARC V9 requirements (line 15).
(2) Create two continuous stack frames from bottom high ad-

dress and add up the stack bias required by SPARC V9 (line
16–17). The reason of using two frames is that, besides cur-
rent frame, in the end of context switching functions (i. e.,
setcontext() or swapcontext()), a restore instruction is
invoked to return back to an additional chained frame (see
Section 3.3).

(3) Specify the address of saved %fp in callee’s argument save
area and set its content to the address of next chained frame
(line 18–21, also see Fig. 1).

3.3 Saving and Restoring Registers
For synchronous (non-preemptive) context switching, only

stack pointer (%sp), frame pointer (%fp), and return address
(%i7) need to be saved. In most cases, floating-pointer
(%f0∼%f31) registers and global registers (%g0∼%g7) are caller
save registers. In, local, out registers (%i0∼%i7, %l0∼%i7,
%o0∼%o7) are cached in register windows and thus must be
flushed to chained stack frames.

We use Fig. 3, the assembly implementation of swapcontext()
for SPARC V9, to illustrate saving and restoring operations in
context switching.

1 #define FRAMESIZE 176 /* must > 136 */

2 #define STACKBIAS 2047 /* SPARC V9 ABI */

3 #define SAVE_FP 128

4

5 typedef struct context

6 {

7 uint64_t sp;

8 } context_t;

9

10 void makecontext(context_t ctx,

11 void *stack, size_t stacksize)

12 {

13 uint64_t stack_tail = (uint64_t) stack;

14 uint64_t *fp;

15 stack_tail &= 0xFFFFFFFFFFFFFFF0;

16 ctx->sp = stack_tail - FRAMESIZE * 2

17 - STACKBIAS;

18 fp = (uint64_t *)

19 (ctx->sp + STACKBIAS + SAVE_FP);

20 *fp = (uint64_t)

21 (stack_tail - FRAMESIZE - STACKBIAS);

22 }

Fig. 2 C Code of makecontext() for Assembly Implementation

(1) By function calling convention [14], a save instruction ro-
tates the register window to a new one and make a new frame
on the stack at the same time (line 12).

(2) Save current/old %sp, %fp, and %i7 to the address specified
by %i0, where %i0 corresponds to the from argument passed
from caller (line 13–15). Note that the save offsets of %fp
and %i7 are in callee’s arguments saving area (see Fig. 1).

(3) Now it is safe to flush register windows to current stack
by the SPARC V9 non-privileged instruction FLUSHW (line
16). For SPARC V8, this instruction should be replaced with
ta ST_FLUSH_WINDOWS.

(4) Load new %sp, %fp, and %i7 from the address specified by
%i1, where %i1 corresponds to the to argument passed from
caller (line 17–19).

(5) Restore from the new stack and rotates the register window
back to the caller’s one by restore instruction (line 20).
Note that after this point %i7 is remapped to %o7 in caller’s
context.

(6) Jump to the return address specified by %o7 and continue
execution on new stack (line 21).

3.4 Using Library Context Switching Routines
Context switching can be also implemented by interfaces pro-

vided by C library, such as ucontext series (see man ucon-
text(3)). Figure 4 shows the implementation of makecontext()
and swapcontext() by using C library functions denoted as
libc_makecontext() and libc_swapcontext(), which simply
follows the usage convention of ucontext series.
3.4.1 Thread Local Storage

On SPARC architecture, the %g7 register is used as the pointer
of thread local storage [3]. As a result, %g7 must not be clob-
bered during the context switch.

Unfortunately, the Linux kernel currently installed on FX10
(i. e., Linux 2.6.25) includes a bug of clobbering the thread local

3ⓒ 2012 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2012-ARC-202 No.8
Vol.2012-HPC-137 No.8

2012/12/13

1 #define FRAMESIZE 176

2 #define BIAS 2047

3 #define SP 128

4 #define I7 136

5

6 //swapcontext(context_t from, context_t to);

7

8 .p2align 4

9 .global swapcontext

10 .type swapcontext , @function

11 swapcontext:

12 save %sp, -FRAMESIZE , %sp

13 stx %sp, [%i0]

14 stx %fp, [%sp+BIAS+SP]

15 stx %i7, [%sp+BIAS+I7]

16 flushw

17 ldx [%i1], %sp

18 ldx [%sp+BIAS+SP], %fp

19 ldx [%sp+BIAS+I7], %i7

20 restore

21 jmpl %o7+8, %g0

22 .size swapcontext , .-swapcontext

Fig. 3 Assembly Implementation of swapcontext()

1 typedef struct context

2 {

3 ucontext_t uc;

4 } context_t;

5

6 void makecontext(context_t ctx,

7 void (func*) void,

8 void *stack, size_t size)

9 {

10 uintptr_t stack_start =

11 ((uintptr_t) stack) -

12 (size - sizeof(void*));

13 libc_getcontext(&ctx->uc);

14 ctx->uc.uc_stack.ss_sp = stack_start;

15 ctx->uc.uc_stack.ss_size = size;

16 ctx->uc.uc_link = NULL;

17 int fn_ints[2];

18 memset(fn_ints, 0, sizeof(fn_ints));

19 memcpy(fn_ints, &func, sizeof(void*));

20 libc_makecontext(&ctx->uc,

21 (void(*)())voidcall_context_ep ,

22 2, fn_ints[0], fn_ints[1]);

23 }

24

25 void swapcontext(context_t from, context_t to)

26 {

27 PRESERVE_TLSREG(to);

28 libc_swapcontext(&from->uc, &to->uc);

29 }

Fig. 4 ucontext Implementation of makecontext() and swapcontext()

storage register *1 , which has been fixed since Linux 2.6.26 [4].
Accordingly, we applied a user-level patch by reverting the effect
of kernel saved %g7, as shown in Fig. 5. This preserving opera-
tion is then put right before each invoked context switch routine
(i. e., setcontext() and swapcontext()) to take effect, as shown
in line 27 in Fig. 4.
3.4.2 Using setjmp()/longjmp()

According to the source code of Glibc-2.7*2, setjmp() and

*1 Line 50 of linux-2.6.25/arch/sparc64/kernel/signal.c
*2 Glibc-2.7/sysdeps/unix/sysv/linux/sparc/sparc64/[set,long]jmp.S

1 #ifdef __sparc_v8

2 #define PRESERVE_TLSREG(ctx) \

3 asm volatile("st %%g7,[%0]" \

4 ::"r"(&ctx->uc.uc_mcontext.gregs[REG_G7]) \

5 : "memory")

6 #elif __sparc_v9

7 #define PRESERVE_TLSREG(ctx) \

8 asm volatile("stx %%g7,[%0]" \

9 ::"r"(&ctx->uc.uc_mcontext.mc_gregs[MC_G7]) \

10 : "memory")

11 #endif

Fig. 5 User-Level Patch of TLS Bug for Linux 2.6.25

Table 3 Configuration of PRIMEHPC FX10 System

Compute Node: FUJITSU PRIMEHPC FX10
CPU SPARC64 IXfx 1.848GHz, 16 cores, L1 32KB, L2 12MB
Memory SDRAM DDR3-1333ECC, 32GB/node, 85GB/sec
OS XTCOS (Linux 2.6.25.8 based)
Build GLIBC 2.7, GCC 4.2.4, GDB 6.6

Log-in Node: FUJITSU PRIMERGY RX300 S6
CPU Intel Xeon L5640 2.27GHz, 24 cores, 12MB cache
Memory SDRAM DDR3-1333ECC, 48GB/node
OS Red Hat Enterprise Linux 2.6.32
Build GLIBC 2.12, GCC 4.4.5, GDB 7.2

longjmp() are essentially implemented by getcontext() and
setcontext(). Therefore, using setjmp()/longjmp() to imple-
ment context switch should expect equivalent performance as us-
ing ucontext functions.

4. Evaluation
4.1 Experimental Environments

Table 3 shows the hardware and software configurations of the
FX10 system we used, up to date November 2012 [8]. Note that
the versions of OS kernels and libraries do matter because the
bugs and performance considerations we discuss in this paper are
highly implementation-specific problems.

We conduct the experiments on only one single computing
node or one log-in node, because the measure of context switch-
ing is sufficient within one node for shared memory. The evalu-
ation of implementation and execution performance on multiple
nodes will be included in our future work.

4.2 Context Switch Performance
Figure 6 presents the comparison of execution time of Fi-

bonacci(30) on one single compute node, scaling from 1 to 16
threads. The implementation using ucontext functions (denoted
as uctx) is over 30x slower than the implementation in assembly
(denoted as asm). Furthermore, using ta ST_FLUSH_WINDOWS to
flush register windows has over 4x overhead than using one single
non-privileged FLUSHW instruction.

The source-level analysis shows that the overheads of using
ucontext mainly come from following places,
• Using kernel trap ta ST_FLUSH_WINDOWS to flush register

windows instead of a more efficient FLUSHW instruction.
• The library functions use kernel traps (trap 0x6e and 0x6f)

instead of user-level code to manipulate thread context,
which cross the kernel/user boundaries and introduce addi-

4ⓒ 2012 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2012-ARC-202 No.8
Vol.2012-HPC-137 No.8

2012/12/13

2 4 6 8 10 12 14 16
10−1

100

101

102

of Threads

E
xe

cu
tio

n
Ti

m
e

(s
ec

)
uctx
asm w/ ”flushw”
asm w/ ”ta 0x3”

Fig. 6 Comparison of Execution Time of Fibonacci(30)

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

of Threads

Sp
ee

du
p

fib(30) w/ ”ta 0x3”
fib(30) w/ ”ucontext”
fib(30)
fib(40)

Fig. 7 Comparison of Scalability of Fibonacci

tional overhead. *3.
• The kernel functions sparc64_set_context() and
sparc64_get_context() always get and put (i. e., copying)
registers contents from and to userland, which are heavy
operations. *4.

• The sparc64_set_context() function invokes a function
flush_user_windows() that walks and saves each window
respectively to flush register windows, instead of using one
single assembly instruction to conduct register windows
flushing job*5.

As shown in Fig. 7, ucontext implementation and using
ta ST_FLUSH_WINDOWS scales better than assembly implementa-
tion using FLUSHW instruction when the number of cores is large
than 8. This is because they spend more CPU cycles on context
switching. Figure 7 also shows that when the number of tasks
increases such as in Fibonacci(40), the scalability improves.

To compare with the implementation for x86 architecture. We
run the same benchmark on FX10 log-in node for up to 16 cores.
Figure 8 and Figure 9 show that the ucontext implementation
of x86 has a poor performance and only scales up to 5 threads.
The assembly implementation of x86 has best performance but
saturated when the number of threads reaches 12. Note that the

*3 Glibc-2.7/sysdeps/unix/sysv/linux/sparc/sparc64/[get, set]context.S
*4 Linux-2.6.25/arch/sparc64/kernel/signal.c
*5 Line 14 of linux-2.6.25/arch/sparc64/kernel/signal.c

2 4 6 8 10 12 14 16
10−2

10−1

100

101

102

103

of Threads

E
xe

cu
tio

n
Ti

m
e

(s
ec

)

uctx on x86
asm on x86
uctx on SPARC
asm on SPARC

Fig. 8 Comparison of Fibonacci(30) on x86 and SPARC

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

of Threads

Sp
ee

du
p

uctx on x86
asm on x86
uctx on SPARC
asm on SPARC

Fig. 9 Comparison of Scalability of Fibonacci(30) on x86 and SPARC

CPU frequencies of computing node and login node are differ-
ent (1.8GHz vs. 2.27GHz), we can conclude that the assembly
implementation for SPARC is as efficient as the assembly imple-
mentation for x86.

To verify the analysis in Section 3.4.2, we use a simple thread
library [6] that includes both a ucontext and a setjmp/longjmp
implementation, to compare the performance of using different
context switch routines with a Fibonacci-like micorobenchmark.
Figure 10 shows that the context switch overhead is almost the
same for the SPARC implementation of ucontext and setjmp/-
longjmp. However, on x86, the implementation of ucontext and
setjmp/longjmp is different and thus their execution time varies
significantly.

4.3 Performance as Chapel Tasking Layer
The Chapel language is an object-oriented parallel program-

ming language that is designed to improve programmability for
modern HPC systems with significant parallelism [2], [13]. The
Chapel project was started by Cray as part of DARPA’s HPCS
programme. Chapel adopts the global view model rather than
conventional the fragmented model (which is derived from the
SIMD model). It supports the abstractions of task parallelism,
data parallelism, and nested parallelism. The parallelism is de-
scribed using an implicit multithreading scheme, in which in-
dependent computations are mapped to a collection of threads.

5ⓒ 2012 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2012-ARC-202 No.8
Vol.2012-HPC-137 No.8

2012/12/13

SPARC x86

1

2

3

R
el

at
iv

e
Pe

rf
or

m
an

ce
ucontext
setjmp/longjmp

Fig. 10 Comparison of Performance of Library ucontext and setjmp

MassiveThreads FIFO Nanos++ Qthreads

103

104

O
ve

rh
ea

d
(n

se
c)

Fig. 11 Comparison of Overhead to Create and Join a Task

Low-level thread management (e. g., create and join) is imple-
mented by the compiler and runtime system instead of users. The
unit of physical computation resources, i. e., CPU plus memory,
is abstracted as the locale type in Chapel.

Chapel integrated several thread libraries as its low-level task-
ing layer, including Pthreads, Nanos++ [5], Qthreads [15], and
MassiveThreads. To compare with these tasking layers, we use
several benchmarks to measure their performance. In following
experiments, we uses Chapel 1.6.0 release but replaces the default
MassiveThreads with our current version with SPARC assembly
support. The configuration of Chapel is set to use one single lo-
cale without communication channel, i. e., CHPL_COMM=none.

Figure 11 shows the overhead to create one task and wait for
termination. In this experiment, the number of actual worker
thread is set to one but assigned with many tasks, which allows
us to exclude the overhead from thread scheduling when multiple
worker threads are enabled. MassiveThreads is the fastest out of
four tasking layers.

To further investigate the overhead of thread library itself, we
measure the same overhead but using a C benchmark program
linked with native thread libraries. Figure 12 shows the results.

We used three recursive task-parallel applications to conduct
the comparison: Fibonacci(30) calculation, quicksort of 2M ele-
ments array, and cache-oblivious matrix multiplication for 1000×
1000 matrix. Figure 13, Figure 14, and Figure 15 show the re-
sults, respectively. In Fig. 13 and Fig. 14, the performance results

MassiveThreads Nanos++ Qthreads

103

104

105

O
ve

rh
ea

d
(n

se
c)

Fig. 12 Overhead to Create and Join a Task of Thread Library

2 4 6 8 10 12 14 16

0

2

4

6

·10−2

of Threads

R
el

at
iv

e
Pe

rf
or

m
an

ce

MassiveThreads
FIFO

Fig. 13 Comparison of Fibonacci(30)

2 4 6 8 10 12 14 16

0

2

4

of Threads

R
el

at
iv

e
Pe

rf
or

m
an

ce

MassiveThreads
FIFO
Nanos++

Qthreads

Fig. 14 Comparison of Quicksort(2M)

are relative to the performance with tasking layer none, i. e., task-
ing layer by sequential function calls. Results omitted are exper-
iments that took too long time to finish.

For all benchmarks, MassiveThreads shows best performance
and scalability among these four tasking layers. For other tasking
layer, they do not include an assembly implementation of context
switching but use library functions, which can be one important
cause for their significant overhead.

6ⓒ 2012 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2012-ARC-202 No.8
Vol.2012-HPC-137 No.8

2012/12/13

2 4 6 8 10 12 14 16
0

2

4

of Threads

G
FL

O
Ps

MassiveThreads
FIFO
Nanos++

Qthreads

Fig. 15 Comparison of Matrix Multiplication (103 × 103)

5. Conclusions and Future Work
We ported MassiveThreads thread library to FX10 supercom-

puter system by implementing an efficient context switching in
assembly. On the SPARC architecture, register windows man-
agement has significant performance impact on context switch-
ing. Implementation should take advantage of the non-privilege
instruction FLUSHW provided by SPARC V9 to boost the perfor-
mance. Programmers should also be aware of the kernel save
area in the stack and thread local register %g7 to keep context
switch safe.

Current Linux kernel implementation (i. e., Kernel 2.6.34 and
3.6.2) of ucontext functions for SPARC V9 is out-of-date . This
implementation includes significant overheads of context switch.
Other thread libraries and user applications, whatever use ucon-
text to perform context switch, will inherit these overheads ac-
cordingly.

In the future, our goal is to enable MassiveThreads to run on
multiple nodes (i. e., in distributed memory settings) of FX10
with the support from other middleware or just as the tasking
layer of Chapel language.

Finally, the source code of our implementation is public
online available as a part of MassiveThreads repository at
http://code.google.com/p/massivethreads/.

Acknowledgments This work is partially supported by JST,
CREST through its research project: “Highly Productive, High
Performance Application Frameworks for Post Petascale Com-
puting.”

References
[1] Ajima, Y., Sumimoto, S. and Shimizu, T.: Tofu: A 6D Mesh/Torus

Interconnect for Exascale Computers, Computer, Vol. 42, pp. 36–40
(2009).

[2] Chamberlain, B. L., Callahan, D. and Zima, H. P.: Parallel Pro-
grammability and the Chapel Language, International Journal of High
Performance Computing Applications, Vol. 21, pp. 291–312 (2007).

[3] Drepper, U.: ELF Handling for Thread-Local Storage, Red Hat Inc.
(online), available from 〈http://people.freebsd.org/ alfred/tls.pdf〉 (ac-
cessed 2012-11-14).

[4] Filardo, N.: SPARC64 get/setcontext
smashes TLS, Todo (online), available from
〈http://sourceware.org/bugzilla/show bug.cgi?id=6577〉 (accessed
2012-11-14).

[5] Group, B. P. M.: Nanos++ Runtime Library, Barcelona Supercomput-

ing Center (online), available from 〈https://pm.bsc.es/projects/nanox〉
(accessed 2012-11-14).

[6] Jones, E.: Implementing a Thread Library on Linux, Todo (online),
available from 〈http://www.evanjones.ca/software/threading.html〉
(accessed 2012-11-14).

[7] Keppel, D.: Register Window and User-Space Threads on the SPARC,
Technical report, Department of Computer Science and Engineering,
University of Washington, Seattle, Washington (1991).

[8] Limited, F.: FX10 Supercomputer System, The University of Tokyo
(online), available from 〈http://www.cc.u-tokyo.ac.jp/system/fx10/〉
(accessed 2012-11-14).

[9] Magnusson, P. S.: Understanding Stacks and Registers in the SPARC
Architecture, Swedish Institute of Computer Science (online), avail-
able from 〈http://www.sics.se/ psm/sparcstack.html〉 (accessed 2012-
11-14).

[10] Nakashima, J., Dun, N. and Taura, K.: MassiveThreads
Thread Library, The University of Tokyo (online), available from
〈http://massivethreads.googlecode.com/〉 (accessed 2012-11-14).

[11] Nakashima, J. and Taura, K.: Multithread Framework that Manages
both Efficient I/O and Lightweight Thread Management, Information
Processing Society of Japan Transactions on Programming, Vol. 4,
No. 1, pp. 13–26 (2011).

[12] SPARC Internationl, I.: The SPARC Architecture Manual
Version 8, SPARC Internationl, Inc. (online), available from
〈http://www.sparc.com/standards/V8.pdf〉 (accessed 2012-11-14).

[13] Team, C. D.: Chapel Programming Language, Cray Inc. (online),
available from 〈http://chapel.cray.com/〉 (accessed 2012-11-14).

[14] Weaver, D. L. and Germond, T.: The SPARC Architecture Man-
ual Version 9, SPARC Internationl, Inc. (online), available from
〈http://sparc.org/standards/SPARCV9.pdf〉 (accessed 2012-11-14).

[15] Wheeler, K., Murphy, R. and Thain, D.: The Qthread Li-
brary, Sandia National Laboratories (online), available from
〈http://www.cs.sandia.gov/qthreads/〉 (accessed 2012-11-14).

7ⓒ 2012 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2012-ARC-202 No.8
Vol.2012-HPC-137 No.8

2012/12/13

