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Theoretical analysis of learning speed in gradient descent
algorithm replacing derivative with constant

Kazuyuki Hara1,a) Kentaro Katahira2,3,b)

Abstract: In on-line gradient descent learning, the local property of the derivative term of the output can slow con-
vergence. Improving the derivative term, such as by using the natural gradient, has been proposed for speeding up
the convergence. Beside this sophisticated method, we propose an algorithm that replace the derivative term with a
constant in this paper and showed that this greatly increases convergence speed under some conditions. The proposed
algorithm inspired by linear perceptron learning, and it can avoid locality of the derivative term. We derived the closed
deterministic differential equations by using a statistical mechanics method and show validity of analytical solutions
by comparing that of computer simulations.

1. Introduction
Learning in neural networks can be formulated as optimization

of an objective function that quantifies the system’s performance.
A important property of feed-forward network is their ability to
learn a rule from examples. A statistical mechanics have been
successfully used to study this property, mainly for the so-called
simple perceptron[1], [2], [3]. A compact description of the learn-
ing dynamics can be obtained by using the statistical mechanics,
which uses a large input dimension N and provides an accurate
model of mean behavior for realistic N[2], [3], [4].

In the learning using feed-forward network, on-line learning
and off-line learning (batch learning) are used. The correspond-
ing objective function is measures the performance of the learning
network (the student) on a given set of examples. This is called
off-line learning. It stores entire examples, so it to be efficient
in terms of the number of examples needed for good generaliza-
tion, however, it is costly. On-line learning is a popular method
for learning multi-layer feed-forward neural networks, especially
for large system and for problems requiring rapid and adaptive
data processing. Only the latest in a sequence of examples deter-
mines the update of student weights in an iterative learning pro-
cess. No explicit storage of a example set is required and the stu-
dent’s performance on earlier examples is not taken into account.
(For comparison between batch learning and on-line learning, see
Murata[5].)

There are amount of works that correspond to acceleration of
learning process[6], [7], [8]. The main problem of slow learning
is plateau which occurs in learning process using gradient descent
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algorithm. On the other hand, local property of derivative of the
output function is considered. In gradient descent learning, the
parameters are updated to the direction of the steepest descent
of the objective function. To calculate the direction, derivative
of the output function is used. When the output function is lin-
ear, derivative is 1 and is not a function of the inner potential of
output unit. However, the output function is non-linear, as like
a sigmoidal function, the derivative becomes Gaussian function,
and is a localized function of inner potential of the output unit.
Gaussian function has value around zero and has very small value
at the sides. So update of the parameter becomes very small for
large absolute value of inner potential and this causes slow con-
vergence. We scope accelerates the learning process on modify-
ing derivative of the output function while conventional methods
scope on the optimization of the learning step size[9], [10].

In this paper, we propose the gradient descent algorithm re-
placing the derivative of the output function with a constant value,
and then we analyze the learning dynamics of proposed method
by using statistical mechanics methods. The configuration of this
paper is as follows: We formulate the networks, the input, the
output function and the gradient descent algorithm in Sec. 2. We
employ teacher-student formulation, and is also introduced in the
section. In Sec. 3, we introduce some theoretical results of con-
ventional gradient descent method[2]. Then we propose an ac-
celerate method, and derive closed differential equations which
depict dynamical behavior of the system in Sec. 4. In Sec. 5, we
derive the generalization error of proposed method, and in Sec.
6, we compare the error with that of conventional method[2]. We
summarize the results and conclude in Sec. 7．

2. Formulations
In this section, we formulate the teacher and student networks,

and the gradient descent algorithm employing a teacher-student
formulation. We assume the teacher and student networks re-
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ceive N-dimensional input ξm = (ξm1 , . . . , ξ
m
N ) at the m-th learning

iteration as shown in Fig. 1. Here, we assume the existence of
a teacher network vector B that produces desired outputs, so the
teacher output τ is a target of the student output σ. This is called
teacher-student formulation.

B B1

1 N

N
J J1

1 N

N

Fig. 1 Network structure of teacher (left) and student (right) networks, both
with the same network structure

The teacher network shown in Fig. 1 has N inputs and an out-
put, and is identical to a linear perceptrons. The learning iteration
m is ignored in the figure. Student network has the same architec-
ture as the teacher. B denotes the weight matrix of a teacher net-
work with N elements. Jm denotes the weight matrix of a student
network with N elements at m-th the learning iteration, the same
as the teacher network. We also assume that the elements ξmi of
independently drawn input ξm are uncorrelated random variables
with zero mean and variance 1; that is, the i-th element of input is
drawn from a probability distribution P(ξi). In this paper, the ther-
modynamic limit of N → ∞ is assumed. In the thermodynamic
limit, the law of large numbers and the central limit theorem can
apply. We can then depict the system behavior by using a small
number of parameters. Statistics of the inputs at the thermody-
namic limit are as follows.

〈
ξmi

〉
= 0,

〈
(ξmi )2

〉
= 1, ||ξm|| =

√
N, (1)

where 〈· · · 〉 denotes average and || · || denotes the norm of a vector.
A perceptron is used as the teacher network and is not subject

to training. Thus, the weight vectors {B} is fixed in the learning
process. The output of the teacher τm for N-dimensional input ξm

at the m-th learning iteration is

τm =g (ym) = g

 N∑
i=1

Biξ
m
i

 , (2)

g(x) =erf
(

x
√

2

)
=

1
√

2π

∫ x

−x
dt exp

(
− t2

2

)
(3)

where teacher weight vector B = (B1, . . . , BN) are N-
dimensional vectors, and each element Bi, i = 1 ∼ N of teacher
weight vectors B, is drawn from a probability distribution of
zero mean and 1/N variance. yµ = B · ξµ is internal potential
of the teacher. g is the sigmoid function commonly used in non-
linear perceptron. Assuming the thermodynamic limit of N → ∞,
statistics of the teacher weight vector are

〈Bi〉 = 0,
〈
(Bi)2

〉
=

1
N
, ||B || = 1. (4)

The distribution of the output of the teacher network follows a

Gaussian distribution of zero mean and unit variance in the ther-
modynamic limit.

The perceptron is used as a student network, and the student
network has the same architecture as the teacher network. For the
sake of analysis, we assume that each element of J0

i , which is the
initial value of the student vector J µ, is drawn from a probability
distribution of zero mean and 1/N variance. The norm of the ini-
tial student weight vector ||J 0

i || is 1 in the thermodynamic limit of
N → ∞. Statistics of the k-th student weight vector are

〈
J0

i

〉
= 0,

〈
(J0

i )2
〉
=

1
N
. (5)

The student output σ(m) for the N-dimensional input ξ(m) at the
m-th learning iteration is

σm =g(xm) = g

 N∑
i=1

Jm
i ξ

m
i

 , (6)

g(x) =erf
(

x
√

2

)
=

1
√

2π

∫ x

−x
dt exp

(
− t2

2

)
(7)

xm = Jm · ξm is internal potential of the student. The distribution
of the output of the teacher network follows a Gaussian distribu-
tion of zero mean and unit variance in the thermodynamic limit.

Next, we formulate the gradient descent algorithm. We follow
Biehl’s formulations of the learning[2]. For the possible inputs
{ξ}, we want to train the student network to produce desired out-
puts τ = σ. We employ the squared error as an error function.
The squared error is defined by

ε(J , ξ) =
1
2

[σ(J , ξ) − τ(ξ)]2 (8)

The generalization error of student J is defined as

εg = 〈ε(J , ξ)〉 . (9)

Blanket 〈·〉 denotes average over possible inputs. At each learn-
ing step m, a new uncorrelated input ξm is presented, the current
student weight vector Jm is updated by

Jm+1 =Jm − η
N

[
σ (Jm · ξm) − τ (ξm)

]∇Jσ(Jm, ξm)

= Jm +
η

N
[
g(ym) − g(xm)

]
g′(xm)ξm. (10)

Here, η is the so-called learning step size and g′(x) is derivative
of the output function g(x). g′(x) =

√
2/π exp(−x2/2).

3. Theoretical Results for conventional
method

In this section, we introduce some theoretical results given by
Biehl et. al.[2]. The same formulations as previous section are
used. The generalization error of true gradient descent is given
by
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Fig. 2 Generalization error of the perceptron using true gradient for differ-
ent learning rates.The analytical results are used.All curves are for
initial conditions R(0) = 0 and Q(0) = 1. η = 0.1, 0.5, 2.7, 3.0 or 5.0
is used.

εg =
1
π

sin−1
(

1
2

)
+

1
π

sin−1
(

Q2

1 + Q2

)
− 2
π

sin−1

 R√
2(1 + Q2)

 .
(11)

Here, Q2 = J · J is the norm of the student weight vector, and
R = B · J is the overlap of the teacher weight vector B and stu-
dent weight vector J . εg is function of continuous time t = m/N
in the thermodynamic limit of N → ∞. These parameters so-
called order parameters that depicts dynamics of the learning sys-
tem. The order parameters obey the following differential equa-
tions,

dR
dt
=

2
π

η

1 + Q2

 1 + Q2 − R2√
2(1 + Q2) − R2

− R√
1 + 2Q2

 (12)

dQ2

dt
=

4
π

η

1 + Q2

 R√
2(1 + Q2) − R2

− Q2√
1 + 2Q2


+

4
π2

η2√
1 + 2Q2

[
sin−1

(
Q2

1 + 3Q2

)
+ sin−1

(
1 + 2(Q2 − R2)

2(1 + 2Q2 − R2)

)

− 2 sin−1

 R√
2(1 + 2Q2 − R2)

√
1 + 3Q2

 (13)

Here, t = m/N is continuous time in the limit of N → ∞.
Figure2 shows the generalization error εg. In the figure, hori-

zontal axis is time t and the vertical axis is the generalization error
εg. This figure obtained by solving Eqs. (12) and (13) at each time
step, then substituting into Eq.(11). Initial values are R(0) = 0
and Q(0) = 1. Learning step size is set to 0.1, 0.5, 2.7, 3.0 or
5.0. From the figure, the generalization error approaches to zero
with increasing t for small learning rate. Biehl et al. shows that if
large η is selected, the learning process slows down until a critical
learning step size ηc ≈ 4.06 is reached[2]. For η > ηc, the gener-
alization error does not decay to zero any longer but approaches
a value εg > 0. He also show that there is the optimum learning
step size ηopt ≈ 2.704. Therefore, the fastest asymptotic decay of
εg is achived for ηopt.

4. Proposed method and Theory
In this section, we introduce derivative of the output function,

and show why local property of derivative of the output causes
slow convergence. Then, we propose acceleration method.

Figure 3 shows shape of g′(x) ( derivative of output function
g(x) ) respect to x where x is inner potential of the student. We
briefly explain the relation between convergence speed and g′(x).
As shown in Fig. 3, g′(x) decays quickly along x. As we ex-
plained in the previous section. the distribution of inner potential
P(x) follows Gaussian distribution of mean zero and unit variance
in thermodynamic limit of N → ∞. Then, g′(x) for non-zero x
are very small. Therefore, from Eq. (10), update of the student
weight is very small and the convergence speed becomes slow.
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Fig. 3 Shape of g′(x) as a function of inner potential of student.We used
g(x) = erf(x/

√
2).

We expand g′(x) = exp(−x2/
√

2) ∼ 1 − x2/2 + x4/8 · · · and
use the first term. When the first term is constant, the update for
non-zero x becomes larger. A better approach might be to use a
constant value, ”a”, instead of ”1” (the first term). We thus mod-
ify the learning equation to include a constant term:

Jm+1 =Jm +
ηa
N

(
erf

(
ym√

2

)
− erf

(
xm√

2

)
− n

)
ξm

= Jm +
ηa
N
δξ. (14)

We replace η′ with ηa for simplicity.
The squared error is defined as follows:

ε =
1
2

(
g(ym) − g(xm)

)2 , (15)

and the generalization error is obtained by average over possible
inputs ξ. The generalization error is as the same as Eq. (11).

The differential equations depict behavior of order parameters
are given by next equations. (For derivations, see appendix.)

dR
dt
=
η′
√
π

1 − 2R√
2(1 + Q2)

 (16)

dQ2

dt
=

2η′
√
π

R − 2Q2√
2(1 + Q2)


+

2η′2

π

sin−1
(

1
2

)
+ sin−1

(
Q2

1 + Q2

)
− 2 sin−1

 R√
2(1 + Q2)


=

2η′
√
π

R − 2Q2√
2(1 + Q2)

 + 2η′2εg (17)
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These equations form the closed differential equations.

5. Computer Calculation of Analytical Results
In the previous section, we derived closed differential equa-

tions of the order parameters of the proposed method. In this
section, we compare the analytical solutions of proposed method
with that of computer simulations. Figure 4 shows the results.
The learning step size η′ is 0.1, 0.5, 2.7 or 5.0. In computer sim-
ulations, N = 1000, ||B || = 1/

√
N, ||J 0|| = 1/

√
N and ||x|| = 1.

Lines show analytical solutions. Symbols show computer simu-
lations: ”+” is for η = 0.1, ”×” is for η′ = 0.5, ”∗” is for η′ = 2.7,
”□” is for η′ = 3.0, and ”©” is for η′ = 5.0. As shown, analyti-
cal results and computer simulations are agreed, so validity of the
analytical results is shown.
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Fig. 4 Comparison of analytical solutions and that of computer simulations.
η′ = 0.1, 0.5, 2.7, 3.0 or 5.0 is used.

6. Comparison of True Gradient Descent and
Proposed Method

In this section, we compare true gradient descent and proposed
method. We used analytical solutions for this purpose. As we in-
troduced, critical learning step size is ηc ≈ 4.06, maximum learn-
ing step size is ηd ≈ 9.2 and the optimum learning step size is
ηopt ≈ 2.7. We keep these in mind, we compared the generaliza-
tions for the learning step size η = 0.1, 0.5, 3.0, and 5.0. Figure
5 shows the results. In these figures, ”(P)” is for the proposed
method, and ”(T)” is for true gradient descent.
From these figures, in the cases of η′ = 0.1 and 0.5, the gener-
alization error of proposed method decays faster than that of true
gradient descent. However, the generalization error of true gradi-
ent descent decays faster than that of proposed method when the
learning step size is η′ = 3.0. In this case, the generalization error
decrease to zero for large t. When η′ = 5.0, the resident error
of proposed method is larger than that of true gradient descent
method.

Figure 6 shows the results for η′ = ηopt = 2.7. Analytical so-
lutions and computer simulations are used. In the figure, ”True”
means the results obtained by true gradient descent, and ”Pro-
posed” shows the results obtained by proposed method. ”(th)”
means theoretical results, and ”(sim)” means computer simula-
tion results. Lines show analytical solutions. ”×” shows results
obtained by computer simulation using true gradient descent. ”
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Fig. 5 Comparison of generalization error between true gradient descent
and proposed method. Learning step size η′ is 0.1(left top), 0.5 (right
top), 3.0 (left bottom) or 5.0 (right bottom). ”(P)” is for the proposed
method, and ”(T)” is for true gradient descent. Solid line is proposed
method, and break line is true gradient descent. Analytical solutions
are used.

□” shows the results obtained by computer simulation using pro-
posed methods. From the figure, analytical solutions agreed with
computer simulations. The generalization error decays the same
speed for both methods using ηopt.
Consequently, when the learning step size is η′ < ηopt, the gen-
eralization of proposed method decays faster than true gradient
descent, and the generalization error of true gradient descent de-
cays faster than that of proposed method when η′ > ηopt is hold.
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Fig. 6 Comparison of asymptotic property between proposed method and
true gradient descent. Analytical solutions and computer simulation
results are used. N = 1000 for computer simulations.

7. Conclusions
In this paper, we have proposed simple gradient descent

method using a constant value ”a” instead of derivative g′(x) of
output function g(x). The idea of replacing g′(x) with the constant
value ”a” inspired by learning equation of the linear perceptron.
The derivative of linear output function g(x) = x is g′(x) = 1. We
have derived closed order parameter differential equations which
depicts dynamic behavior of the learning system, and solved the
generalization error by using analytical solutions. Analytical so-
lutions have confirmed by computer simulations. From the re-
sults, proposed method can decay faster than true gradient de-
scent method [2] when learning step size holds η′ < ηopt. For the
case η′ > ηopt, proposed method decays slower and resident error
becomes larger than those of true gradient descent method.

Appendix

A.1 Derivation of Differential equations
The learning equation of the proposed method is

Jm+1 = Jm +
η

N
[
g(ym) − g(xm)

]
ξ (A.1)

δm =
1
N

[
g(ym) − g(xm)

]
. (A.2)

By using these equations, the differential equations of the order
parameters Q2 = J · J and R = J ·B are given by[2]

dQ2

dt
= 2η 〈δx〉 + η2

〈
δ2

〉
, (A.3)

dR
dt
= η 〈δy〉 . (A.4)

Here, 〈·〉 denotes average over possible input ξ. We define g(x)

as g(x) = erf
(

x√
2

)
= 1√

2π

∫ x
−x dt exp

(
− t2

2

)
, then three averages

appears in above equations are

〈δx〉 =
〈
erf

(
y
√

2

)
x
〉
−

〈
erf

(
x
√

2

)
x
〉
, (A.5)

〈δy〉 =
〈
erf

(
y
√

2

)
y

〉
−

〈
erf

(
x
√

2

)
y

〉
, (A.6)

〈
δ2

〉
=

〈
erf

(
y
√

2

)2〉
+

〈
erf

(
x
√

2

)2〉
+2

〈
erf

(
y
√

2

)
erf

(
x
√

2

)〉
. (A.7)

Next, we calculate these averages. We use Williams’s result in
[12] for the above calculations.

1

(2π)
d+1

2 |Σ| 12

∫
erf(uT z̃)erf(uT z̃′)

× exp
(
−1

2
uTΣ−1u

)
du

=
2
π

sin−1 2z̃TΣz̃′√
(1 + 2z̃TΣz̃)

√
(1 + 2z̃′TΣz̃′)

(A.8)

In calculation of
〈
erf

(
y√
2

)
erf

(
x√
2

)〉
, we put u = (x, y)T ,

z̃ = (0, 1/
√

2), z̃′ = (1/
√

2, 0), Σ =
 Q2 R

R 1

, then we get

〈
erf

(
y
√

2

)
erf

(
x
√

2

)〉
=

2
π

sin−1

 R√
2(1 + Q2)

 . (A.9)

As the same way, we get

〈
erf

(
y
√

2

)2〉
=

2
π

sin−1
(

1
2

)
, (A.10)〈

erf
(

x
√

2

)2〉
=

2
π

sin−1
(

Q2

1 + Q2

)
. (A.11)

〈δx〉 and 〈δy〉 can be calculated similar way to the above. Then
we get Eqs. (16) and (17).
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