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Abstract: It is difficult to fully utilize the parallelism of large-scale computing environments in alpha-beta search.
The naive parallel execution of subtrees would result in much less task pruning than may have been possible in se-
quential execution. This may even degrade total performance. To overcome this difficulty, we propose a two-level task
scheduling policy in which all tasks are classified into two priority levels based on the necessity for their results. Low
priority level tasks are only executed after all high priority level tasks currently executable have started. When new
high priority level tasks are generated, the execution of low priority level tasks is suspended so that high level tasks
can be executed. We suggest tasks be classified into the two levels based on the Young Brothers Wait Concept, which
is widely used in parallel alpha-beta search. The experimental results revealed that the scheduling policy suppresses
the degradation in performance caused by executing tasks whose results are eventually found to be unnecessary. We
found the new policy improved performance when task granularity was sufficiently large.
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1. Introduction

The alpha-beta algorithm is efficient for the sequential game
tree search that is used by many computer game players and it is
important to parallelize it to improve the efficiency of these play-
ers since they can be strengthened if game trees can be searched
deeper. However, it is difficult to parallelize alpha-beta search
because the algorithm conducts pruning to reduce the number of
calculations, i.e., a task requires the results from other tasks to
efficiently prune subtrees. Most processes will be idle due to the
lack of concurrently executable tasks in parallel algorithms that
wait for all required data to carry out the same strict pruning as
that in sequential algorithms. This means that the massive num-
ber of computational resources cannot be effectively exploited.
However, processes may execute many tasks that may turn out to
be unnecessary for the final result in naive parallelization where
the results from other tasks do not need to be waited for. This of-
ten causes degradation in performance because the computational
cost of wasteful tasks usually increases exponentially.

The Young Brothers Wait Concept (YBWC) [3] is widely used
in parallel alpha-beta search (e.g., Refs. [2], [5], [6], [8], [11]).
However, as has been pointed out [1], YBWC has a problem in
that processes frequently become idle in having to wait for results
from other tasks in large-scale computing environments. Several
methods that do not have to wait for all the results have been
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proposed to increase the number of concurrently executable tasks
(e.g., Refs. [1], [3], [6], [14]). However, the necessity of tasks for
the final result has not been fully considered. We have called the
additional tasks speculative tasks and the original tasks of YBWC
mandatory tasks. Once the execution of speculative tasks has
started, the execution diverts computing resources until it termi-
nates and this prevents new mandatory tasks from being executed.

We propose a two-level task scheduling policy that classifies
all tasks into either high or low priority levels to overcome this
problem with YBWC and its naive extensions. The low prior-
ity level tasks are executed when there are no high priority level
tasks currently available. Two-level prioritization has already
been used [12]. However, the execution of low level tasks is sus-
pended in our policy so that the execution of high level tasks is
not disrupted. Suspension is easy in game tree search by utiliz-
ing a transposition table, which records the state of computation
for each game position. Our target environment in this paper is
a distributed environment and all processes have their own trans-
position tables that are independent of other processes.

The contribution of this paper is three fold: (1) we explain how
speculative execution effectively accomplishes parallel speed-up
of YBWC, but excessively speculative execution degrades perfor-
mance, (2) we propose tasks be classified into two levels based
on YBWC, and (3) we explain how the two-level scheduling pol-
icy suppresses degradation and improves performance when task
granularity is sufficiently large.

The remainder of this paper is organized as follows. Section 2
explains the alpha-beta algorithm and introduces parallel alpha-
beta algorithms. Section 3 describes the two-level task schedul-
ing policy for parallel alpha-beta search. Section 4 explains our
implementation of parallel alpha-beta search in more detail. We
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experimentally evaluated the proposed scheduling policy using a
homogeneous distributed computing environment, which is dis-
cussed in Section 5. Finally, Section 6 summarizes the paper and
describes future work.

2. Alpha-beta Algorithm

The alpha-beta algorithm is widely used for game tree search.
Subtrees unnecessary for the final result are pruned based on re-
sults from preceding searches. There is a pseudo-code for the
alpha-beta algorithm listed in Fig. 1. The functions AlphaBeta()
and Evaluate() return an evaluation value, which is an integer rep-
resenting the advantage of a game position from the viewpoint of
a player who makes a move at that position. The alpha-beta pair
represents the search window. Beta is the threshold for pruning.
Alpha and beta are swapped on each recursive call because chil-
dren positions are evaluated from the opponent’s viewpoint. The
three main features of the alpha-beta algorithm are below.
• When a better result is found, the search window is nar-

rowed.
• The narrower the search window is, the more frequently

pruning occurs.
• If the best child of each node is always searched first, the

fewest nodes are visited.
Before the children of each position are searched, they are sorted
so that more promising children are searched earlier. Since elder
children are considered more promising, the children are sorted
from left to right according to their “age.” This sorting can be
done using many techniques such as internal iterative deepening.
Figure 1 includes this internal iterative deepening. As shallower
search is performed on line 4 and the children are sorted on line 5,
the best child of the shallower search is the eldest child.

Certain nodes in the alpha-beta algorithm other than those be-
low the eldest child must be searched even when all children are
perfectly sorted. A tree only consisting of those nodes is called a
minimal tree. There is an example of a minimal tree in Fig. 2. The
nodes are classified into three types [7]: PV*1, CUT, and ALL.
PV nodes are nodes for which exact evaluation is required. All of
their children have to be searched. The best child of each PV node
is classified as PV and the remaining children are considered to
be CUT nodes. CUT nodes are nodes for which search can be
completed by finding a child with an evaluation value higher than
or equal to the upper bound of the search window. This child is
classified as ALL. ALL nodes are nodes for which all children
have to be searched to make sure that all of them have evalua-
tion values lower than or equal to the lower bound of the search
window. These children are classified as CUT.

The computational complexity of the alpha-beta algorithm in
the best cases where the best children of all the PV and CUT
nodes are searched first is O(b

d
2 ) where b is the branch factor,

which is the number of children of a node, and d is the search
depth [7]. Because the complexity is O(bd) without pruning,
alpha-beta pruning is important for game tree search.

*1 PV stands for principal variation, which gives the sequence of the best
moves for both players.

1 int AlphaBeta(position, depth, alpha, beta){
2 if(depth == 0 || position is a terminal node) return Evaluate(

position);
3 //Do shallower search to decide the eldest

child.

4 AlphaBeta(position, depth−2, alpha, beta);
5 ...; //Sort the children using the shallower

search’s result.

6 foreach(child of position){
7 alpha = max(alpha, −AlphaBeta(child, depth−1, −beta, −

alpha));
8 if(beta <= alpha) return beta; //cutoff
9 }

10 return alpha;
11 }

Fig. 1 Pseudo-code for alpha-beta algorithm using internal iterative deep-
ening.

Fig. 2 Minimal tree.

2.1 Parallel Alpha-beta Algorithms
The Young Brothers Wait Concept (YBWC) [3] is a widely

used method of parallel alpha-beta search (e.g., Refs. [2], [5],
[6], [8], [11]). The eldest child of each node is searched first in
YBWC. The remaining children are not searched until the search
of the eldest child has terminated. After termination, the search
window is narrowed by the result for the eldest child and the re-
maining children are then searched in parallel with the narrowed
window. If the best child of each node is always searched first,
YBWC executes exactly the same tasks as the sequential search
does. YBWC executes as few unnecessary tasks as possible on
actual game trees because children can be sorted very accurately
so that the best child frequently becomes the eldest. That is why
many parallel implementations of the alpha-beta algorithm em-
ploy YBWC.

YBWC has a drawback in that the number of tasks that can
be executed in parallel is limited even if many processors are
available because of data-flow synchronization [1]. Therefore,
several improvements to YBWC have been proposed. All chil-
dren of each ALL node in YBWC* are searched in parallel with-
out waiting for the result for the eldest child [3]. Kishimoto and
Schaeffer [6] also searched all children of the root node in paral-
lel. Nonetheless, they only introduced some exceptions to data-
flow synchronization, which did not solve the fundamental prob-
lem of the lack of executable tasks. Weill [14] suggested all the
children of each node be searched. Himstedt et al. [5] argued that
some computational resources should be assigned to expected
moves of the opponent in advance. Moreover, some algorithms
not using YBWC have been proposed (e.g., Refs. [1], [9], [12]).
However, these methods have not been evaluated using more than
100 processors and can lead to degradation in performance in
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larger-scale environments due to many unnecessary tasks being
executed.

3. Two-level Task Scheduling Policy

3.1 Two-level Prioritization for Game Tree Search
We present a two-level task scheduling policy for parallel

alpha-beta search. All nodes in game trees in the policy are
divided into high priority and low priority levels based on the
necessity for search. Two-level prioritization was also used by
Steinberg and Solomon [12], but their method was not based on
YBWC. We classify nodes into the two priority levels based on
YBWC because it visits a similar number of nodes as a sequen-
tial search. We propose two classification rules. The rules will be
discussed later (in Section 5). Here, one of them is introduced as
follows.
• The root node is a high level node.
• All children of each low level node are low level nodes.
• The eldest child of each high level node is a high level node.
• All younger children (except the eldest one) of each high

level node are high level nodes if the parent is PV or ALL.
If the parent is CUT, the children are low level nodes until
the search of the eldest child has terminated. They are pro-
moted to high level nodes if they are not pruned after the
eldest child has terminated.

Because all children of each PV or ALL node are expected to
be necessary and all younger children of each CUT node are ex-
pected to be unnecessary, we classify all younger children of CUT
nodes into the low level. Nodes are estimated as PV, CUT, or ALL
to apply the rule. For this, a minimal tree is estimated assuming
that the eldest child of each node is the best child. In addition
to the minimal-tree estimate, all younger children of each CUT
node are estimated to be CUT [3].

We must also introduce some prioritization over nodes on the
same priority level to determine the order for search. We employ
the priority used by Steenhuisen [11] for this purpose. Nodes on
the same level are searched in depth-first order.

3.2 Task Scheduling Algorithm
We regard subtrees in game trees as tasks and classify them

into the priority levels of the root nodes of the subtrees. High
level tasks are assigned to be processed first. After all high level
tasks currently executable have been assigned, low level tasks are
assigned to idle processes. Note that new high level tasks can be
generated and low level tasks can be promoted to high level tasks
as the search progresses. The newly-generated high level tasks
and the promoted tasks are also assigned in advance of any low
level tasks. When there are no idle processes, our method selects
a process executing a low level task at that moment. The pro-
cess suspends the low level task and begins to execute a new high
level task. The execution of the suspended task is resumed after
the high level task has finished.

The procedure for the two-level task scheduling is outlined us-
ing a simple example in Fig. 3. Assume that there are six tasks:
A, B, C, D, E, and F. A and D are high level tasks and the rest
are low level tasks. The result for A determines whether B and
C should be executed or not. Similarly, whether E and F should

Fig. 3 Scenario in two-level task scheduling policy.

be executed or not is determined after D is executed. Assume
that these tasks are executed by three processes: P1, P2, and P3.
First, A and D are assigned to different processes because they
are high level tasks. The processes are P1 and P2 in this example.
Furthermore, a low level task, B, is assigned to P3 because P3 is
still idle. The left of Fig. 3 shows this initial assignment of tasks.
Next, assume that D has finished execution. E and F may still be
found to be unnecessary at a later stage for real parallel game tree
searches, according to the results for A, B, and C. However, our
method considers E and F as high level tasks and assigns them
to processes. One of them is assigned to P2, which is now idle.
The other is assigned to P3, which is executing a low level task.
P3 suspends the execution of B and starts executing the new high
level task. This scenario is shown at the right of Fig. 3. After F

has finished and B is not pruned, P3 resumes the execution of B.
Even if B is also promoted to a high level task during the execu-
tion of F, P3 continues F and B is still on P3. Although this may
adversely influence performance, we believe that its influence is
negligible.

4. Implementation

4.1 Construction of Search Tree and Task Generation
We implemented a parallel game tree search program on

Gekisashi*2, which is one of the strongest shogi programs avail-
able. It was implemented with the master-worker model shown in
Fig. 4. We denote the total search depth by d and the task granu-
larity by g. The master searches a game tree with a depth of d− g
and stores the tree in memory. A leaf of the tree is regarded as a
subtree with a depth of g. The subtree corresponds to a task and
the master sends it to a worker. The worker searches the subtree
and returns the result to the master. The master updates the tree
with the result and sends another task to the worker.

The master executes a simple alpha-beta search with a trans-
position table and internal iterative deepening for move order-
ing, and uses realization probability for selective deepening [13].
Many sophisticated techniques used in strong programs were
omitted from the master to simplify implementation. We use the
term “search depth” instead of “realization probability” in this
paper because negative logarithms of realization probabilities can
be regarded as the search depths.

Internal iterative deepening does a shallower search to deter-
mine the eldest child at every node. Child nodes are searched af-
ter the shallower search in the sequential alpha-beta search. Our
parallel program executes the child search concurrently with the
shallower search and gives the highest priority to the shallower
search. The children are searched with the depths calculated from

*2 Gekisashi, http://www.logos.t.u-tokyo.ac.jp/˜gekisashi/
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Fig. 4 Overview of our parallel game tree search program.

1 void TreeConstructionLoop(){
2 while(1){
3 node = NodeQueue.dequeue();
4 if(node.position is a terminal node){
5 ResultQueue.enqueue(Result(node.parent, Evaluate(

node.position)));
6 }
7 else if(node.depth <= granularity){
8 ...; //Send the task to a worker.
9 }

10 else{
11 //Do shallower search to decide the eldest

child.

12 NodeQueue.enqueue(Node(node.position, node.depth
−2, node.alpha, node.beta));

13 foreach(child of node.position){
14 //Cost(child) returns a real number more

than 1.

15 NodeQueue.enqueue(Node(child, node.depth−Cost(
child), −node.beta, −node.alpha));

16 }
17 }
18 }
19 }

Fig. 5 Pseudo-code to construct master’s search tree.

the realization probabilities. After the shallower search, only the
eldest child is re-searched deeper than when using the realization
probability. However, the younger children are not re-searched
deeper even if the results update alpha in our current implemen-
tation. The best child should be searched deeper than when using
the realization probability to confirm that it is truly the best. This
re-search will be part of our future work. We have shown the
pseudo-code to construct the search tree in Fig. 5 and the pseudo-
code to process received results in Fig. 6. NodeQueue is a prior-
ity queue in the code, which contains frontier nodes of the mas-
ter’s search tree. Function Node() generates a node corresponding
to AlphaBeta() in Fig. 1. The search depth using the realization
probability is calculated using function Cost() on line 15.

When the master receives the results of tasks, it enqueues the
results into ResultQueue. Each result includes the node and the
value. The master updates the information for the node using the
value shown in Fig. 6. The update includes pruning subtrees that
have turned out to be unnecessary, narrowing the search windows
of nodes, and promoting low level nodes. When the master needs
to update such information for tasks that have already been sent
to workers, it sends messages to the workers to update the infor-
mation. The master for these operations remembers the workers
that it sent the tasks to.

4.2 Master Process
The master consists of seven threads for the following tasks.

1 void ProcessResultsLoop(){
2 while(1){
3 result = ResultQueue.dequeue();
4 ProcessResult(result);
5 }
6 }
7

8 //Update the information of result.node using

result.value.

9 void ProcessResult(result){
10 node = result.node;
11 value = result.value;
12 if(result is received from the shallower search){
13 ...; //Abort the task corresponding to the

eldest child.

14 //The eldest child is re-searched deeper.

15 NodeQueue.enqueue(Node(eldestChild, node.depth−1, −
node.beta, −node.alpha));

16 }
17 else{ //The result is received from a child.
18 if(node.alpha < −value){
19 node.alpha = −value;
20 ...; //Update the windows of all the

descendants.

21 if(node.beta <= node.alpha){ //cutoff
22 ...; //Abort all the children.
23 ProcessResult(Result(node.parent, node.beta));
24 }
25 }
26 }
27 if(all chidlren have finished){
28 ProcessResult(Result(node.parent, node.alpha));
29 }
30 }

Fig. 6 Pseudo-code to process received results.

• Expanding nodes in the order of priority and generating tasks
• Sending tasks to workers
• Receiving results of tasks from workers
• Updating the search tree using the results of tasks
• Sending messages to workers for aborting pruned tasks
• Sending messages to workers for updating search windows
• Sending messages to workers for task promotion
The master expands*3 nodes step by step in best-first order.

However, expanding all nodes down to the depth of d−g is ineffi-
cient because the tree can become too large. Handling a huge tree
is time-consuming and storing it in memory may be impossible.
For this reason, low level nodes are not expanded first. When the
master has expanded all the high level nodes currently available
and has no tasks that can be sent, low level nodes are expanded.
If low level nodes are promoted to high level nodes, they are also
expanded before any low level nodes are. Tasks are sent to work-
ers selected in a round-robin fashion. Note that high level tasks
are not only sent to idle workers but also to workers executing
low level tasks.

4.3 Worker Process
Each worker receives a task from the master and executes it

by calling the search function of Gekisashi. After a worker has
sent the result of the task to the master, the worker receives the
next task. The worker has its own transposition table indepen-

*3 Expanding a node means appending the children of the node to the tree.
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Fig. 7 Classification of scheduling policies.

dent of other workers and does not clear its transposition table
until the master has completed the search. When the worker re-
ceives a high level task during the execution of a low level task,
it suspends the low level task and executes the high level task.
The suspended task remains with the worker and execution is re-
sumed after the high level task has finished. Workers simply abort
the execution of a low level task in the actual implementation and
restart it from the top to resume it. As the transposition table
is retained during suspension, the degradation in performance is
minor while implementation is easy. Each worker only commu-
nicates with the master and there is no communication between
workers. Apart from executing tasks, workers abort their tasks
and update information for their tasks when they receive mes-
sages from the master.

5. Experimental Evaluation

We evaluated the two-level task scheduling policy by measur-
ing its execution time and strength as a shogi program. We will
first explain the execution time and then the strength as a shogi
program.

All experiments were carried out on a cluster where each node
had two quad core Xeon E5530 processors at 2.40 GHz with
24 GB of memory. The nodes were interconnected through a 10-
Gbps Ethernet and ran 64-bit Linux. Workers for a node ran on
each of eight cores. The master ran on another node on which no
workers were executed. Our implementation used basic TCP/IP
sockets for communication between the master and workers.

We compared the five scheduling policies shown in Fig. 7.
These scheduling policies are separated into two large groups,
i.e., one-level and two-level scheduling. In contrast to two-
level scheduling policies, one-level scheduling policies classify
all nodes into the same priority level. In addition to the number
of levels, it is also important to consider which of the speculative
tasks are executed. From this standpoint, three one-level schedul-
ing policies are presented in the upper row of Fig. 7. YBWC is
a one-level scheduling policy which waits for the eldest child of
each node to be terminated. One-level PAC (one-level PV, ALL,

and CUT) searches all children of each node in parallel. All nodes
in one-level PAC are regarded as low level nodes in the sense that
nodes are only expanded when there is a shortage of tasks. One-
level PA (one-level PV and ALL) waits for the result of the eldest
child of each CUT node because all younger children of CUT
nodes are likely to be unnecessary due to pruning. One-level PA
can be positioned between YBWC and one-level PAC from the
viewpoint of speculative execution. Additionally, Fig. 7 shows
where YBWC* [3], the work of Kishimoto and Schaeffer [6], and
Weill’s work [14] are positioned. Next, let us consider chang-
ing one-level PA and one-level PAC into two-level policies. To
achieve this, we need to determine how to classify tasks into two
priority levels. Two-level PAC, which is one of our proposals
described in Section 3, classifies all younger children of each
CUT node into the low level until the eldest child terminates. All
younger children of each PV or ALL node in two-level PA are
classified into the low level until the eldest child terminates. We
not only propose two-level PAC but also two-level PA. The lower
row in Fig. 7 outlines the two-level scheduling policies.

5.1 Evaluation by Measuring Execution Time
We prepared the six game positions shown in Fig. 8 to measure

the execution time. We made Gekisashi play games against itself
with a search depth of 14 and extracted the six positions from six
different game records. A and D are positions after 30 moves.
B and E are positions after 60 moves. C and F are positions af-
ter 90 moves. D, E, and F can be considered to be large tasks,
as they (especially E) take much longer to search than the oth-
ers with a sequential program. The difference in the search times
arises largely from whether the children of the root node are cor-
rectly sorted or not. The sequential program does the same search
as the parallel program using one worker. It carries out a depth-
first alpha-beta search with a depth of d − g and calls Gekisashi’s
search function with a depth of g at leaf nodes. We did not use
the original Gekisashi as the sequential program because it per-
forms deeper re-search for younger children while our parallel
program does not. We wanted to compare the parallel and se-
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Fig. 8 Six shogi positions for evaluation.

Table 1 Execution time for sequential program.

g = 9 g = 10 g = 11 g = 12 g = 13 g = 14 g = 15
d = 18 124s 108s 87.7s 83.9s 82.8s
d = 22 2,800s 2,460s 2,410s 2,160s 2,480s

quential programs under the same conditions. We conducted ex-
periments varying the search depth, task granularity, and number
of workers. Search depth d was set to 18 and 22. Task granularity
varied from 9 to 13 with the search depth of 18 and from 11 to
15 with the search depth of 22 so that the execution time for the
parallel program was reasonably short. The number of workers,
denoted by N, varied from 16 to 512. The search times for the
sequential program are summarized in Table 1. The values are
geometric means of the six positions. The execution time varies
with granularity because the search trees varied with granularity
due to the differences in the search methods of the master and the
workers.

The execution time using 512 workers with the search depth
of 18 is shown in Fig. 9 and that with the search depth of 22
is shown in Fig. 10. Five trials of a parallel search in each po-
sition were conducted. We computed arithmetic average values
and standard deviations of the execution time between the trials,
and then geometric mean values of those average values and the
standard deviations between the six shogi positions. That is, we
calculated the averaged execution time μ and the standard devia-
tion σ for each method as

μi =
1
5

5∑

j=1

ti j (1)

σ2
i =

⎛⎜⎜⎜⎜⎜⎜⎝
1
5

5∑

j=1

t2
i j

⎞⎟⎟⎟⎟⎟⎟⎠ − μ2
i (2)

μ =

⎛⎜⎜⎜⎜⎜⎜⎝
6∏

i=1

μi

⎞⎟⎟⎟⎟⎟⎟⎠

1
6

(3)

σ =

⎛⎜⎜⎜⎜⎜⎜⎝
6∏

i=1

σi

⎞⎟⎟⎟⎟⎟⎟⎠

1
6

, (4)

where ti j is the execution time of the j-th trial for the i-th position.
The deviations are indicated by the error bars. Some points have
not been plotted because the program was unable to run due to
memory limitations.

First, we noted the difference between the three one-level
scheduling policies to investigate the impact of speculative execu-
tion without two-level task scheduling. One-level PA performed
the best out of the three policies. We discovered that more spec-
ulative execution than YBWC is appropriate and that excessive
speculative execution degrades performance.

Second, we focused attention on the execution time for the two
two-level scheduling policies. While two-level PA performed
similarly to one-level PA, two-level PAC outperformed one-
level PAC. These results demonstrated that two-level scheduling
avoids the degradation in performance caused by executing many
meaningless tasks. Degradation does not occur in one-level PA.
Moreover, two-level PAC is the best at large granularity. How-
ever, it is worse than one-level PA and two-level PA at small gran-
ularity.

Third, we will discuss CPU utilization by workers. CPU uti-
lization is defined as the time spent on executing tasks divided by
the total execution time including idle time. We computed arith-
metic average values for CPU utilization over the six shogi posi-
tions. Figure 11 and Fig. 12 show the averaged CPU utilization
of 512 workers at large granularity for the former and at small
granularity for the latter. YBWC has the lowest CPU utilization
of the policies. We can say that speculative execution shortens the
execution time because the idle time of workers shortens. How-
ever, the difference in the execution time at large granularity be-
tween two-level PA (or one-level PA) and two-level PAC is small
despite the large difference in CPU utilization. This is because
most of the low level tasks in two-level PAC are actually unnec-
essary. Although the number of concurrently executable tasks in-
creases at small granularity, the difference in the CPU utilization
between policies is smaller than at large granularity. This phe-
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Fig. 9 Execution time in the scheduling policies (d = 18, N = 512).

Fig. 10 Execution time in the scheduling policies (d = 22, N = 512).

Fig. 11 CPU utilization of workers at large granularity (N = 512).

Fig. 12 CPU utilization of workers at small granularity (N = 512).

nomenon is caused by a bottleneck in the master process. While
the master takes a constant time to handle a task regardless of
task granularity, workers only need a few moments to execute a
task with small granularity. As a result, the master cannot deal
with many workers. This explains why two-level PAC is worse
than two-level PA at small granularity. Even though the differ-
ence in CPU utilization between two-level PAC and two-level PA
is small, two-level PAC needs more time to maintain larger game
trees than two-level PA.

Fourth, we measured the execution time using 16 workers. We
focused on situations in this research where massive computa-
tional resources were available. It was, however, also important
to verify our results in situations where only tens of processes

Fig. 13 Execution time using 16 workers (d = 22).

Fig. 14 Speedups using from 16 to 512 workers (d = 22, g = 13).

were available. The execution time with the search depth of 22 is
shown in Fig. 13. When the search depth was 18, we observed the
same tendency as that in Fig. 13. The relative difference between
the policies is smaller than that using 512 workers. This is be-
cause the CPU utilization of workers is high even in YBWC and
therefore the difference in CPU utilization between the policies is
small.

Last, Fig. 14 plots speedups compared to the sequential pro-
gram used for Table 1. A speedup is defined as the execution
time for the sequential program divided by that for the parallel
program. This result was acquired with a search depth of 22 at
a granularity of 13. The performance of YBWC saturates when
N is greater than 32 and does not seem to improve if the number
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of workers increases. This is mostly because the CPU utiliza-
tion of YBWC diminishes more rapidly with the increase in N

than that of other methods when N is larger than 32. One-level
PA, two-level PA, and two-level PAC are expected to lead to fur-
ther improvements in performance if more workers are available.
However, we did not observe large difference in performance be-
tween the policies.

5.2 Evaluation by Measuring Strength as a Shogi Program
We measured the execution time for only six positions in the

preceding experiments. This was insufficient to evaluate the per-
formance of a game tree search. Therefore, we also examined the
strength of our parallel program as a shogi program. We mea-
sured the rate of winning our parallel program had to the original
multithreaded Gekisashi that consisted of eight threads. We pre-
pared 50 distinct game positions by randomly choosing the first
20 moves from Gekisashi’s opening book. We performed two
games from every position. Our parallel program was black in
one of the two games and was white in the other. The rate of win-
ning was calculated from 100 games in which each player had 10
seconds of thinking time per move. Fixing granularity was not a
good strategy to measure strength in these experiments because
of the time limit for making moves. For this reason, we grad-
ually enlarged granularity as the search progressed. We chose
granularity based on the root’s search depth because our program
performs iterative deepening and searches the root concurrently
with shallower searches using different depths. We examined the
three patterns of increasing granularity shown in Table 2, small,
medium, and large. The search depth was set to 24, where our
program did not finish searches in 10 seconds.

The rates of winning using 128 workers and using 512 workers
are listed in Table 3 for the former and in Table 4 for the lat-
ter. The experiment using 512 workers was only carried out with
parameter setups that exhibited a high rate of winning with 128
workers. We can see from Table 3 that YBWC is weaker than the
others with the medium and large granularity patterns. However,
two-level PAC is weaker than YBWC with the small granular-
ity pattern. The reason for these observations is the same as that
described in the evaluation of execution time.

Table 2 Three patterns of increasing granularity.

the root’s search depth ≤14 16 18 20 22 24
granularity of the small pattern 9 9 10 11 12 13

granularity of the medium pattern 9 10 11 12 13 14
granularity of the large pattern 10 11 12 13 14 15

Table 3 Rate of winning our parallel program consisting of 128 workers
had to multithreaded Gekisashi consisting of eight threads.

small medium large
YBWC 41.0% 53.1% 40.4%

one-level PA 60.8% 68.8% 61.1%
two-level PA 53.1% 69.8% 61.6%

two-level PAC 40.2% 60.8% 69.5%

Table 4 Rate of winning our parallel program consisting of 512 workers
had to multithreaded Gekisashi consisting of eight threads.

medium large
two-level PA 76.3%

two-level PAC 53.7%

Two-level PAC using 512 workers is weaker than that using
128 workers. The reason for this can be explained as follows.
Shallower search of the root node is executed concurrently while
its children are searched. Deeper search is wasted unless shal-
lower search finishes within the time limit. When many workers
are available, deeper search is started concurrently with shallower
search and the high level tasks of deeper search may prevent the
low level tasks of shallower search from being executed. This
should be solved through introducing more sophisticated priority
control.

6. Conclusion

We proposed a two-level task scheduling policy for parallel
alpha-beta search to avoid both depletion of tasks and degrada-
tion of performance caused by the execution of many unneces-
sary tasks. The policy only assigns low level tasks to processes
when there are no unassigned high level tasks remaining. Tasks
expected to be pruned are classified as low level. We explained
that the policy suppresses the degradation in performance result-
ing from the execution of many unnecessary tasks. Moreover,
the policy improves performance at large granularity. We believe
speculative execution becomes important to achieve high levels of
performance in large-scale distributed computing environments.

However, our experiments revealed that the improvements in
performance were not as high as expected given that CPU uti-
lization became quite high at large granularity through the exe-
cution of speculative tasks. This is clearly because most of the
speculative tasks were unnecessary. Speculative tasks that are
more likely to be necessary for the final result must be selected to
achieve further improvements in performance. Therefore, more
than two levels should be introduced for task scheduling. For ex-
ample, it should be considered to estimate the probabilities that
tasks are necessary for the final result and to utilize the proba-
bilities as task priorities. If more than two levels are introduced,
however, we must more carefully consider the necessity for sus-
pending tasks. For example, we must assess whether medium
level tasks should be suspended to execute high level tasks or not
when there are three levels (high, medium, and low).

Furthermore, we should parallelize the master process to pre-
vent it from becoming a bottleneck. Our experiments indicated
that only one master could deal with up to tens of workers when
granularity was rather small. We plan to use work-stealing [4]
or Transposition-table Driven work Scheduling (TDS) [10], in
which all processes run as masters and as workers. Idle processes
steal tasks from other processes in work-stealing. Each task in
TDS is assigned to a certain process based on the hash value for
the task [6], [11]. In either case, communication between masters
is needed to abort tasks and to update information for tasks when
we employ more than one master. Because frequent communi-
cation can degrade performance, we have to find an appropriate
communication policy.
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