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スタンダードモデルにおける順序検証型多重署名方式

矢内 直人 † 千田 栄幸 ‡ 満保 雅浩 †† 岡本 栄司 †

†筑波大学
システム情報工学研究科

‡一関工業高等専門学校
電気工学科

††金沢大学
自然科学研究科

あらまし 順序検証型多重署名は電子データの正当性とその処理順序の両方を検証可能な署名方式
であり, その既存方式の多くははランダムオラクルモデルにおいて提案されている. しかしながら,
ランダムオラクルの実装の困難性を考えた場合, 安全性証明はランダムオラクルを用いないスタン
ダードモデルにて行われることが望ましい. スタンダードモデルでの順序検証型多重署名方式を構
成する最も簡単な方式は, スタンダードモデルにおける既存のアグリゲート署名から構成すること
であり, 既存のアプローチとして Ahn らと Lu らの CDHベースアグリゲート署名方式があるが,
これらの方式はペアリングの演算回数と公開鍵のサイズがメッセージのハッシュ長に依存すると
いう非効率な面を持つ. それゆえに, 本論文ではペアリング演算回数と公開鍵のサイズがメッセー
ジのハッシュ長に独立した CDHベース順序検証型多重署名方式を提案する. また, Boldyreva ら
の方式の安全性の不備を指摘し, それに伴い設定される適度な攻撃モデルにおいて提案方式の安全
性を示す.
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Abstract Ordered multisignature scheme is a signature scheme to guarantee both validity of
an electronic document and its signing order. Although the security of most of such schemes
has been proven in the random oracle model, the difficulty of implementation of the random
oracle implies that the security should be proven without random oracles, i.e. in the standard
model. A straightforward way to construct such schemes in the standard model is to apply
an aggregate signature scheme by Ahn et al. and an aggregate signature scheme by Lu et al.,
both of which are based on CDH problem, but these schemes are inefficient in the sense that its
computational cost of pairing computation and the size of public keys depend upon the length
of (a hash value of) the message. Therefore, in this paper, we propose a CDH-based ordered
multisignature scheme whose computational cost for pairing computation and the size of public
key are independent of the length of (a hash value of) the message. We also point out a bug of
the scheme by Boldyreva et al., and analyze the security of our scheme under a moderate attack
model along with fixing the bug.

1 Introduction

1.1 Background

Multisignature is a digital signature gener-
ated by multiple signers on an electronic docu-
ment [8], and the data size of a multisignature
is designed to be smaller than that of a triv-
ial signature consisting of all individual signa-

tures generated by all the associated signers.
A multisignature scheme is called ordered mul-
tisignature scheme [6] if each signer signs in
turn and a verifier verifies both validity of the
message and its signing order. According to [3]
one may imagine that an ordered multisigna-
ture scheme can be simply constructed from
aggregate signature scheme [4]. Particularly,
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each signer sets concatenation of his/her docu-
ment and his/her position in the signing group
as a message and signs it. We call such an ap-
proach simple ordered multisignature scheme.
However, to the best of our knowledge, the se-
curity of simple ordered multisignature schemes
has never been proven while such a construc-
tion seems to be secure. Currently, many or-
dered multisignature schemes including simple
ordered multisignature schemes are proposed.
Although the security of the most ordered

multisignature schemes have been proven in
the random oracle model [2], Canetti et al.
showed a negative result [5] that there exist
signature and encryption schemes, which are
secure in the random oracle model but become
insecure by an implementation of the random
oracles. This result implies that the security
should be proven without random oracles, and
such a model is called standard model.
In this approach, Ahn et al. [1] and Lu et al.

[11] have respectively proposed aggregate sig-
nature schemes based on CDH problem, and
we can also construct simple ordered multisig-
nature schemes in the standard model by ap-
plying these schemes. They have a problem of
the efficiency; both the pairing computation in
the scheme by Ahn et al. and the size of the
public key in the scheme by Lu et al. increase
linearly in the length of the message. (Strictly
speaking, in the length of a hashed value of
the message because messages are hashed be-
fore signing. Hereafter, it is simply called the
length of the message). Additionally, the secu-
rity of simple ordered multisignature schemes
may be unclear as described above.
As described in section 1.2, according to Bol-

dyreva et al. [3] one of major applications of
ordered multisignature scheme is the improve-
ment of secure-BGP [10], and its main problem
is the limitation of computational power and
memories of routers. Thus, in this paper we
propose a CDH based ordered multisignature
scheme in the standard model, whose pairing
computation and the public key size are in-
dependent of the length of the message, and
rigorously analyze the security in comparison
to the simple ordered multisignature schemes.
We also point out a bug in [3], and revise an
attack model. This paper is a revised version
of the paper [16] proposed in SCIS 2011, and
we fix a bug of the security proof.

1.2 Application

One of main applications of ordered mul-
tisignature scheme is the improvement of S-
BGP (secure-border gateway protocol), which
is a border-gateway-protocol[12]. S-BGP en-
forces autonomous systems (ASes) to authen-
ticate paths and to send data packet via the
authenticated paths. Boldyreva et al.[3] pro-
posed that ASes can sign the data packets by
utilizing ordered multisignature scheme, and
this function is called data plane security in
contrast to the traditional S-BGP. Egress routers
of each AS sign the data packets, and the ingress
routers of the next AS verify the validity. This
application is different from the traditional S-
BGP in the sense that each AS router authen-
ticates the data packets instead of paths. Un-
fortunately, the size of signatures for the pack-
ets becomes larger than that of the signatures
for the paths.
Namely, the data size of S-BGP with the

scheme by Lu et al., including the public keys,
may become a few giga bytes, and this traf-
fic is much heavy. In addition, S-BGP with
the scheme by Ahn et al. may cause a long
delay because the number of pairing computa-
tion in the verification depends on the message
length. Thus, achieving data plane security by
utilizing the existing schemes may be imprac-
tical. Since the computational cost and the
size of public key in our proposed scheme are
fixed with respect to the length of the message,
we expect that the scheme can be applied to
a scheme achieving the data plane security.

2 Preliminaries

2.1 Notations

First, we introduce notations used in this
paper. Let the number of signers be n. For
simplicity, we denote by IDi the i-th signer if
the notation does not cause any confusion. We
also denote by V a verifier, by m a message to
be signed, bymi the i-th bit of the messagem,
by σi a signature generated by a signer IDi,
by pki his/her public key, by ski his/her secret
key and by a ∥ b a concatenation of elements a
and b, where the concatenation can be easily
divided into original elements a and b. We
define ψi := ID1 ∥ · · · ∥ IDi as the signing
order from the first signer ID1 to i-th signer
IDi and denote by |ψi| the number of signers
in ψi.
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2.2 Pairings

Let G and GT be groups. Then, we define
bilinear maps and bilinear groups as follows:

Definition 1 (bilinear maps). A bilinear map
e : G×G→ GT is a map such that the follow-
ing conditions hold: G and GT are groups of
the same prime order p; g is a generator of G;
(Bilinearity) For all u, v ∈ G and a, b ∈ Z∗

p,

e(ua, vb) = e(u, v)ab; (Non-degeneracy) For
any generator g ∈ G, e(g, g) ̸= 1GT

, 1GT
is

an identity element over GT ; (Computable)
There is an efficient algorithm to compute e(u, v)
for any u, v ∈ G.

In this paper, we say that G is a bilinear
group if all the conditions hold, and assume
that discrete logarithm problem (DLP) in bi-
linear groups is hard. We call such a parame-
ter (p,G,GT , e) pairing parameter.

2.3 Security Assumption

Computational Diffie-Hellman (CDH) assump-
tion is defined as follows.

Definition 2 (CDH problem). We define the
computational Diffie-Hellman (CDH) problem
in bilinear groups with a security parameter
1k as the problem of, for a given (g, ga, gb) ∈
G with uniformly random a, b ∈ Zp as input,

computing gab, where p is a prime order of G.

Definition 3 ((t, ϵ)-CDH assumption). We say
the (t, ϵ)-CDH assumption holds in G if and
only if there is no probabilistic polynomial-
time algorithm that can solve the CDH prob-
lem in G with probability greater than ϵ with
the execution time t.

2.4 Related Work

Among all the existing schemes, including
aggregate signature schemes, the schemes in
the standard model are proposed in [1, 7, 11,
13, 14]. Unfortunately among them, it seems
that the security proof in [7] is wrong. Hence,
the secure schemes are only in [1, 11, 13, 14].
To achieve the higher security, the scheme should
be based on more general problem such as CDH
problem. Among them, CDH-based schemes
are only in [1, 11]. However, the scheme in
[1] has the problem for the computational cost
and the scheme in [11] has the problem about
the storage of the public keys.

3 Ordered Multisignature

In this section, we explain a general con-
struction of ordered multisignature scheme, the
bug in [3], the security and a main idea.

3.1 General Construction

Ordered multisignature scheme consists of
the following algorithms.
Setup: Given security parameter 1k, gener-

ate a public parameter para.
Key Generation: Given para and signer’s

ID information IDi, generate a secret key ski
and its corresponding public key pki.
Signing: Given a secret key ski, a pub-

lic key pki, a message m, a multisignature σ′

by the previous signer and the signing order
ψi−1, generate a signature σ. Finally, set ψi =
ψi−1 ∥ IDi and then output the signature σ
on m in ψi.
Verification: Givenm, σ, ψn and {pki}ni=1,

output accept or reject.

3.2 Bug of the Scheme in [3]

The signature equation in [3] can be written

as S = H(m)
∑i

j=1 αi

(∏i
j=1 T

j
j Vj

)r
for any i,

and the whole signature is given as a tuple of
(S,R = gr), where secret key of i-th signer
is αi and public key of him/her is (Ti, Vi).
In their proof, signers are allowed to attend
in multiple positions for one signature gen-
eration, e.g. Alice∥Bob∥Alice is allowed as
a signing order. However, such multiple ap-
pearance of signers induces the following at-
tack. In the case of ψ3 =Alice∥Bob∥Alice,
the signature equation for ψ3 becomes S =
H(m)2αa+αb

(
T 4
aV

2
a T

2
b Vb

)r
, where αa is a se-

cret key of Alice and αb is that of Bob. Then,
Bob who is a malicious signer can forge a sig-
nature for another signing order ψ2 =Bob∥Alice

as follows: He/She compute S
1
2H(m)

αb
2 (R)

vb
2 ,

where vb is his/her own secret key correspond-
ing to Vb. This value is equal to H(m)αa+αb

×
(
T 1
b VbT

2
aVa

)r
, which is accepted on m in ψ2.

This is the bug in [3].
The above attack indicates signers should

not attend multiple positions in the scheme by
Boldyreva et al. Likewise, we restrict signing
queries in this model in order to avoid that
the same signer attend at multiple times for
one signature generation. Actually, some ap-
plications such as S-BGP are performed under
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such restriction. S-BGP is designed in a way
such that a process loop does not occur and
the same router never signs again.

3.3 Security Model

There exists an adversary A and a chal-
lenger C in this model. C has a certified-key list
L to register users and their own secret keys
and public keys, and A can know all the keys
in L except for the target signer’s one given by
C. The advantage of A can be obtained with
the probability that C outputs accept in the
following game. Hereafter, we denote by x(i)

a value of i-th query for all x.
Initial Phase: The challenger C generates

a public parameter para by Setup and a pair
of challenge key, (sk∗, pk∗), of a target signer
ID∗ by Key Generation. Then, C initializes
L := ∅, and runs A with para, and pk∗ as
input.
Certification Query: A sends any IDi,

and then C generates ski and its corresponding
public key pki by Key Generation(IDi) as
IDi’s key. Then, he/she provides (ski, pki) to
A and registers pki in L.
Signing Query: For all i, A generates a

signing query (m(h), σ
′(h), ID∗, ψ

(h)
i−1) as h-th

query for the target signer ID∗, where the fol-
lowing conditions hold for the query and for
all h: Verification algorithm outputs accept;

ψ
(h)
i−1 does not include ID∗; For all IDj , IDj

in ψ
(h)
i−1 is included in L; Each IDj does not

appear more than once in ψ
(h)
i−1; |ψ

(h)
i−1| < n.

Given (m(h), σ
′(h), ID∗, ψ

(h)
i−1) byA, C runs Sign-

ing (ski, pki,m
(h), σ

′(h), ψ
(h)
i ), and obtains σ

and ψ
(j)
i = ψ

(j)
i−1 ∥ ID∗. Finally, C returns σ(j)

on m(j) in ψ
(j)
i .

Output: After iterations of the steps de-
scribed above, A outputs a forgery (m∗, σ∗, ψ∗

n).
Here, let the target signer be i∗-th signer in
ψ∗
n, and the following conditions hold for the

forgery: Verification(m,σ, ψn, {pki}ni=1) out-

puts accept; m∗ /∈ {m(h)}qsh=1∨ψ
∗
i∗ /∈ {ψ

(h)
i }

qs
h=1

holds, where ψ∗
i∗ is extracted from ψ∗

n as a
signer structure from 1st signer to the tar-
get signer and ψ∗

i∗ includes exactly one hon-
est signer; ψ∗

n includes ID∗; For all IDj , IDj

in ψ∗
n is included in L except for ID∗; Each

IDj does not appear more than once in ψ∗
n.

If all conditions hold, then C outputs accept.
Otherwise, C outputs reject.

Note: We should discuss (m∗, ψ∗
i ) /∈ {(m(h),

ψ
(h)
i )}qsh=1 as a natural security requirement.

However, to the best of our knowledge, there
is no scheme achieving the requirement in the
standard model, and constructing such a scheme
is an open problem. In this paper, we discuss

m∗ /∈ {(m(h)}qsh=1 ∨ ψ
∗
i /∈ {ψ(h)

i )}qsh=1. Even
such a moderate model is not discussed in the
standard model signature schemes [1, 11]. Th-
rough a discussion under this model, we prove
that a proposed scheme guarantees that the
validity of messages signed by an honest signer
and his/her positions in the signing order.
We do not also consider switching among

malicious signers. Suppose malicious signers
ID1 and ID3 colludes against an honest singer
ID2. ID1 and ID3 may be able to compute
some signature σ on m in ψ = (ID1 ∥ ID2) ∥
ID3 after obtaining σ′ on m in other signing
order ψ′ = (ID3 ∥ ID2) ∥ ID1. To the best of
our knowledge, there is no DLP-based scheme
preventing such a forgery of the signing or-
der and constructing such a scheme remains
an open problem.

Definition 4. We say that an adversary A
breaks an ordered multisignature scheme with
(t, qc, qs, l, n, ϵ) if and only if a challenger C
outputs accept, in the security game described
above, with the probability greater than ϵ within
the execution time t. Here, A can generate at
most qc certification queries and at most qs
signing queries, l is an upper bound on the
length of the message output by A, and n is
an upper bound on the number of signers in-
cluded in the forgery.

3.4 Our Approach

We construct a signature equation of an or-
dered multisignature scheme as S =

∏n
i=1 g

αi

×
(
u′
∏l

j=1 u
mj

j

)r
(R)

∑n
i=1 iti+vi . As a main mod-

ification, we add new secret keys ti and vi,
which are used by Boldyreva et al. [3], with
an index representing signer’s position i and
the random number R as the third term, while
the main formation in the scheme by Lu et
al. [11] is kept. Hence, by classifying the fol-
lowing cases, the security of both the message
and the signing order in our scheme can be
proven: (case 1) m∗ /∈ {m(h)}qsh=1; (case 2)

m∗ ∈ {m(h)}qsh=1 ∧ ψ
∗
i /∈ {ψ(h)

i }
qs
h=1. As de-

scribed in section 4.2, (u′
∏l

j=1 u
mj

j )r(R)
∑n

i=1 iti+vi
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can be written as (gF (m))r(gr)
∑n

i=1(iti+vi) by
embedding polynomials F (m). Here, we can
embed a challenge of the CDH problem either

in (u′
∏l

j=1 u
mj

j ) (case 1: the technique by Lu

et al. [11]) or T i
i Vi (case 2: the technique by

Boldyreva et al.), where Ti and Vi are public
keys corresponding to ti and vi. Particularly,
for case 2, we set a secret key vi such that
T i
i Vi = gvi for any i, and by using this setting

we can remove the random number from the
A’s output whenA forges the signing order. In
paper [16], we set a secret key (ti, vi) such that
T i
i Vi = 1 for some i, and hence the simulation

is stopped with non-negligible probability and
the adversary can detect a difference with the
original game. In addition, one can also use
the technique by Lu et al. which breaks the
Waters signature scheme when A forges the
message (case 1).

4 Proposed Scheme

We assume that a trusted center to generate
a public parameter exists. A messagem in this
scheme will be dealt as a bit-string of the form
{0, 1}l for all l.

4.1 Construction of the Scheme

The scheme consists of the following algo-
rithms.
Setup: The trusted center generates a pair-

ing parameter (p,G,GT ,e) described in sec-
tion 2.2. Then, the center generates random
generators g ∈ G and l+1 generators u′, u1, · · · ,
ul ∈ G. Finally, the center publishes the pa-
rameters (p,G,GT , e, g, u

′, u1, · · · , ul) as pub-
lic parameter.
Key Generation: Given (p,G,GT , e, g, u

′,
u1, · · · , ul), a signer IDi chooses random num-
bers αi, ti, vi ← Z∗

p, and setsAi = e(g, g)αi , Ti =

gti and Vi = gvi . His/Her secret key ski is
(αi, ti, vi) and the public key pki is (Ai, Ti, Vi).
Signing: Given m, a multisignature σ′ by

the previous signer and ψi−1, IDi parses m as
a bit-string (m1, · · · ,ml) ∈ {0, 1}l and the sig-
nature σ′ as (S′, R′). First, IDi verifies that
the received signature σ′ is a valid signature
on m in ψi−1 by using verification algorithm
for n = i′ where i′ = i − 1. If the verification
algorithm outputs reject, IDi aborts the pro-
cess. If IDi is the first signer in the signing
group, then he/she sets (S′, R′) = (1, 1) and∏i−1

j=1 T
j
j Vj = 1, and skips the verification step

described above. Otherwise, IDi generates a

random number ri ← Z∗
p and computes S =

S′ · gαi

(
u′
∏l

j=1 u
mj

j

)ri
Riti+vi

(∏i−1
j=1 T

j
j Vj

)ri

and R = R′ · gri . Finally, IDi sets ψi = ψi−1 ∥
IDi, then sends m, σ = (S,R) and ψi to the
next signer.
VerificationGivenm,σ, ψn, and {pki}ni=1 a

verifier V parsesm as a bit-string (m1, · · · ,ml)
∈ {0, 1}l and σ as (S,R). V extracts each
signer’s public key (Ai, Ti, Vi) from {pki}ni=1

and verifies that e(S,g)

e
(
R,u′ ∏l

j=1 u
mj
j

)
·e(R,

∏n
i=1 T

i
i Vi)

?
=

∏n
i=1Ai holds. If not, V outputs reject.

Otherwise, V outputs accept.

4.2 Security Analysis

We prove the following theorem holds. The
proof is similar as the Theorem 1 in [11] and
the Theorem 3.3 in [3].

Theorem 5. The proposed ordered multisig-
nature scheme is (t, qc, qs, l, n, ϵ)-secure if and
only if (tCDH , ϵCDH)-CDH assumption holds,
where ϵCDH = ϵ

16(l+1)qs+ϵ(qs−1) and tCDH =

t+O(qc) +O(nqs) +Ψ. Here, Ψ is depending
on the number of signers n and the length of
the message l.

Proof. We describe a proof sketch. We con-
struct an algorithm B, given a challenge of the
CDH problem, to solve the CDH problem. We
assume that an adversary A who breaks the
proposed scheme with (t, qc, qs, l, n, ϵ) exists.
From the definition of the forgery, without the
loss of generality, the output by A can be clas-
sified as follows: (case 1): m∗ /∈ {m(h)}qsh=1;

(case 2): m∗ ∈ {m(h)}qsh=1 ∧ ψ
∗
i /∈ {ψ(h)

i }
qs
h=1.

For case 1, B generates a challenge in the Wa-
ters signature scheme by using the challenge
in the problem and then generates a challenge
in the proposed scheme from the Waters chal-
lenge. On the other hand, for case 2, he/she
directly generates a challenge in the proposed
scheme from the CDH challenge without gen-
erating the Waters challenge. Then B runs A
with the challenge in either case. We also an-
alyze the probabilities and the execution time
that B successes to solve the problem, (ϵ′, t′)
for case 1 and (ϵ′′, t′′) for case 2. Then, we
compute the whole probability ϵCDH and the
whole computational time tCDH .
In this proof, We assume that there exists

exactly one signer whose secret key A does not
know, and we call the signer a target ID∗. B
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has a certified-key list L and we denote by x(j)

a value of j-th query for all x.
case 1: We construct an algorithm B which

breaks the Waters signature scheme using A.
This step is almost same as the proof in [11].

Lemma 6. The proposed scheme is (t, qc, qs, l,
n, ϵ)-secure if and only if the Waters signature
scheme is (tW , qWs , ϵW ) where qWs is the num-
ber of queries to the Waters signature scheme
and qs = qWs , ϵW = ϵ, and tW = t + O(qc) +
O(nqs) + Ψ1, where Ψ1 is the computational
times for the final steps and is depending on
the number of signers n.

Proof. B can access an oracle for the Waters
signature scheme, OW , and interacts with A
for case 1 as follows:
Initial Phase: Given a public parameter

g, u′, u1, · · · , ul, p,G,GT , e and a challenge key
Aw as a challenge of the Waters signature, B
generates random numbers t∗, v∗ ← Zp and

then sets T ∗ = gt∗ , V ∗ = gv
∗
, A∗ = AW as a

target signer’s public key. Here, let its corre-
sponding secret key be αW . Then, B runs A
with (p,G, GT , e, g, u

′, u1, · · · , ul, A∗, T ∗, V ∗).
Certification Query: This step is almost

same in [11].
Signing Query: This step is almost same

in [11], but the following condition holds in
the given query: Each IDj does not appear

more than once in ψ
(h)
i−1. Ffter obtaining a

signature from OW , he/she computes S = S′

×(R′)
∑i

j=1 jtj+vj ·g
∑i−1

j=1 αj and sets (S,R = R′)
as a ordered multisignature. This computa-
tion uses the re-randomization technique sim-
ilarly with the paper [11].
Output: Also this step is almost same as

the paper in [11], except that the following
condition holds: Each IDj does not appear
more than once in ψ∗

n. After A outputs a
forgery σ∗ = (S∗, R∗), B can extract a forgery
σ∗W = (S∗

W , R
∗
W ) of the Waters signature from

the A’s output. Let the target signer be i∗-
th signer in ψ∗

i∗ . Then, B can output σ∗W as
the Waters signature scheme by setting S∗

W =
S∗

g

∑n
j=1∧j ̸=i∗ αj (R)

∑n
j=1

(jtj+vj)
and R∗

W = R∗.

Finally, we evaluate the success probability
ϵW and an execution time tW of B. Intu-
itively, this proof method is almost same as
the method in [11] and there is no new event
in which B aborts the simulation. Therefore,
ϵW = ϵ and qWs = qs hold. Similarly, the exe-
cution time is tW = t+O(qc) +O(nqs) + Ψ1,

where Ψ1 is the computational time for the fi-
nal step and this value depends on the number
of signers n.
Here, We note following theorem [15].

Theorem 7. The Waters signature scheme
is (t, q, ϵ)-secure if and only if (t′, ϵ′)-CDH as-
sumption holds, where ϵ′ = ϵ

16(l+1)q and t′ = t.

Proof (Sketch). The proof is given in [15].
This theorem implies that, when the pro-

posed scheme is broken, we can construct an
algorithm to solve the CDH problem with (ϵ′, t′),
where ϵ′ = ϵ

16(l+1)qs
and t′ = t + O(qc) +

O(nqs) + Ψ1.
case 2: Next, we prove the security for case

2. This proof is based on the proof in [3].

Lemma 8. The proposed ordered multisig-
nature scheme is (t, qc, qs, l, n, ϵ)-secure if and
only if (t′′, ϵ′′)-CDH assumption holds, where
ϵ′′ = ϵ

e(qs−1) and t
′′ = t+O(qc)+O(nqs)+Ψ2.

Here, Ψ2 is the computational times for the
final steps, and is depending on the number of
signers n and the length of the message l.

Proof. In order to solve the CDH problem, B
interacts with A as follows:
Initial Phase: Given a challenge value (g, ga,

gb) for CDH problem and a pairing parameter
(p,G, GT , e), B sets L = ∅, and generates l-
length vectors xi ← Zl

p and x′ ← Zp. For
a message m, we define polynomials F (m) =

x′ +
∑l

i=1 ximi, where mi corresponds to i-th

bit in m. B also sets u′ = gx
′
and ui = gxi

as each generator for public parameter, i.e.

(u′
∏l

j=1 u
mj

j ) = gF (m). Finally, B generates

random numbers k∗ ← [1, n], t∗, v∗ ← Zp, and

then sets T ∗ = (ga)t
∗
, V ∗ = (ga)−t∗k∗gv

∗
and

A∗ = e(ga, gb). This means that B sets implic-
itly values including ab as the target signer’s
secret key. Then, B runsA with (p,G,GT , e, g,
u′, u1, · · · , ul, A∗, T ∗, V ∗).
Certification Query: This step is almost

same in [3].
Signing Query: This step is almost same

in [3], but the following conditions holds: Each

IDj does not appear more than once in ψ
(h)
i−1.

He/She generates a random number r ← Zp

and computes S = (gb)
− v∗

t(i−k∗) ((ga)it
∗
(ga)−t∗k∗

×gv∗)r · (R′)F (m(h))+
∑i−1

j=1(jtj+vj) g
∑i−1

j=1 αj and

R = gr(gb)
− 1

t∗(i−k∗) as a ordered multisigna-
ture. This computation uses the re-randomiza-
tion technique similarly in [3].
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Output: A outputs a forgery σ∗ = (S∗, R∗)
on a message m∗ in ψ∗

n, and let the target
signer be i∗-th signer in ψ∗

n. This step is al-
most same in [3], but the following condition
holds for this forgery; Each IDj does not ap-
pear more than once in ψ∗

i , where ψ∗
i is ex-

tracted from ψ∗
n. If i∗ = k∗, B can solve the

CDH problem since the forgery can be written
as S∗ = gab

∏n
i=1∧i̸=i∗ g

αi (gX)r and R∗ = gr,

where X = F (m) +
∑n

j=1∧j ̸=k∗(jtj + vj) + v∗.

Then, B computes gab = S∗

(R∗)X
∏n

j=1∧j ̸=k∗ gαj .

Let i(h) be the position of the target signer
for h-th query, and then the success probabil-
ity of B is ϵ′′ = ϵPr[(

∧qs
j=1 i

(j) ̸= k∗)∧i∗ = k∗)]

= ϵ
(
1− 1

n

)qs · 1n . Here, we analyze (1− 1
n

)qs 1
n

similarly as the proof in [3]. Then, ϵ′′ ≥ ϵ ·
1

e(qs−1) holds. The B’s execution time t′ is

t′′ = t+O(qc)+O(nqs)+Ψ2, where Ψ2 means
the computational time for the final step and
this value is depending on the number of sign-
ers n and the length of the message l.
Analysis of Whole Probability: In order

to success for each case, B needs that either
one of the following events occurs: B chooses
case 1 and A’ s output is for case 1; B chooses
case 2 and A’ s output is for case 2. Here, let
the probability that B chooses case 1 be β and
the probability that A’s output is for case 1
be α. From the lemma 6, the theorem 7 and
the lemma 8, ϵCDH = α · β · ϵ

16(l+1)qs
+ (1 −

α) · (1−β) e
qs−1 · ϵ holds. In order to be a com-

plete proof, we analysis values of α and β. Let
f(α, β) denote α·β · ϵa+(1−α)·(1−β) 1

e(qs−1) ·ϵ,
where a = 16(l+1)qs and b = e(qs−1) as con-
stants shortly. and then, its derived function

with respect to α is computed as ∂f(α,β)
∂α =

β · ϵa + (−1)(1− β) ϵb . The function has an ex-
tremum at β = a

a+b . Therefore, when B sets
β = a

a+b , the probability can be obtained as
ϵCDH = ϵ

16(l+1)qs+e(qs−1) . The computational

time tCDH can be obtained as the larger value
for t′ and t′′. Therefore, tCDH = max{t′, t′′} =
t′′ = t+O(qc) +O(nqs) + Ψ2 holds.

5 Evaluation of the Scheme

We compare the performance of the pro-
posed scheme with simple ordered multisig-
nature schemes, given by aggregate signature
schemes, in the standard model [1, 11] with re-
spect to the signing cost, the verification cost,
the signature size, the public key size and the

type of the scheme. Here, we note that a mul-
tiplication between the pairing computation,
i.e. a multiplication over GT , is higher than a
multiplication over G.
As shown table. 1, in compared with [1, 11],

the signature size of the proposed scheme is the
same as them, and the number of the pairing
computation in the verification cost and the
size of the public keys are independent of the
length of the message. Although our proposed
scheme has the linear computational cost for
the multiplication of the pairing with respect
to the number of signers, generally speaking
the number of signers is much fewer than the
number of bits in the message. For instance,
according to Kanaoka et al. [9] a distance be-
tween two routers on the Internet can be cov-
erall for 20 hops. In other words, we consider
that in S-BGP the number of signers, that are
routers, is at most 20. This value is obviously
smaller than the parameter size.
Therefore, our proposed scheme is the most

practical for an implementation on several de-
vices such as router which processes many pack-
ets with a small amount of memory.

6 Conclusion

In this paper, we proposed an ordered mul-
tisignature scheme which is a signature scheme
verifying both the validity of the message and
the signing order. Most of the existing ordered
multisignature schemes adopt the random or-
acle model to analyze the security. We also
pointed out a bug in [3] and revised the se-
curity model toward being moderate. To the
best of our knowledge, our scheme is the first
CDH-based scheme achieving all the following
conditions: the rigorous security analysis in
the standard model under the moderate attack
model, the fixed number of pairing computa-
tion and the fixed size public key with respect
to the length of the message. Here, we note
that the security without the switching in the
standard model is proven, and proving the se-
curity with the switching described in section
3.3 is still an open problem. Therefore, we
consider that we will discuss an ordered mul-
tisignature scheme secure against the switch-
ing and also a scheme not requiring the mod-
erate attack model in a future. We also plan to
extend the our proposed scheme for aggregate
signature scheme and to implement the data-
plane security with the proposed scheme.
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Table 1: Evaluation of the Proposed Scheme

Related Signing Cost Verification Time Signature Public Type of
Work for i-th Signer for n Signers Size Key Scheme

Ahn et al.[1] E(1 + l) + E(3) (3 + l)P + (3 + l)MP 2L(p) L(p) Simple
+E(2) + E(1) +2E(n) + E(3) + nR Ordered

Lu et al.[11] E((i+ 1)l + 1) 2P + nMP 2L(p) (l + 2)L(p) Simple
+5 + lR nl + I Ordered

Our Scheme E((i+ 1)l + 2) 3P + (1 + n)MP 2L(p) 3L(p) Ordered
+5 + lR+ (2i) +E(2n) + E(n+ 1) + I

We denote by l the message length, by P the computational cost of bilinear map, byMP the multipli-
cation cost between bilinear map, i.e. the multiplication over GT , and by E(n) := (n2 + 1)L(p) − 1 the
required number of modulo-p multiplication for computing ga1

1 · · · gan
n with gi ∈ Z∗

p and ai ∈ Zq, where
L(p) denotes the binary length of p. We denote by R the ratio of the computational cost of multiplication
in Z∗

p to that of multiplication modulo p in Fp and by I the computational cost for inversion in Fp. For
the type of the scheme, Simple Ordered means simple ordered multisignature scheme and Ordered means
truly ordered multisignature scheme which is not simple one.

Acknowledgements

Part of this research is supported by JSPS
A3 Foresight Program. The first author is also
supported by Support Center for Advanced
Telecommunications Technology Research. We
would like to appreciate their great supports.

Reference
[1] Ahn, J. H., Green, M. and Hohenberger, S.

(2010) Synchronized Aggregate Signatures:
New Definitions, Constructions and Appli-
cations. Cryptology ePrint Archive, pp.1-26,
http://eprint.iacr.org/2010/422.

[2] Bellare, M. and Rogaway, M. (1993) Random
Oracle are Practical: A Paradigm for Design-
ing Efficient Protocols. Proc. of CCS 1993,
USA, pp.62-73, ACM Press.

[3] Boldyreva, A., Gentry, C., O’Neill, A. and
Yum, D. H. (2007) Ordered Multisignatures
and Identity-Based Sequential Aggregate Sig-
natures, with Applications to Secure Routing.
Proc. of CCS 2007, USA, pp.276-285, ACM
Press. Also in available in http://www.cc.
gatech.edu/~aboldyre/papers/bgoy.pdf.

[4] Boneh, D., Gentry, C., Lynn, B. and
Shacham, H. (2003) Aggregate and Verifiabil-
ity Encrypted Signatures from Bilinear Maps.
Proc. of EUROCRYPT 2003, Poland, pp.416-
432, LNCS 2656.

[5] Canetti, R., Goldreich, O. and Halevi, S.
(2004) The Random Oracle Methodology, Re-
visited. JACM, Vol.51, No.4, pp.557-594.

[6] Doi, H., Mambo, M. and Okamoto, E.
(1998) Multisignature Schemes Using Struc-
tured Group ID. TECHNICAL REPORT OF
IEICE, ISEC98-53, pp.43-48, IEICE.

[7] Hou, W. (2010) An Ordered Multisignature
without Random Oracles. Proc. of CMC 2010,
China, pp.21-25, IEEE.

[8] Itakura, K. and Nakamura, K. (1983) A
Public-key Cryptosystem Suitable for Dig-
ital Multi-signatures. TIPSJ, Vol.24, No.4,
pp.474-480.

[9] Kanaoka, A., Masayuki, O., Katsuno, Y.,
and Okamoto, E. (2011) Probabilistic Packet
Marking Method Considering Topology Prop-
erty for Efficiency Re-building DoS Attack
Paths. TIPSJ, Vol.52, No.3, pp.929-939.

[10] Kent, S., Lynn, C., and Seo, Ke. (2000) Se-
cure Border Gateway Protocol. IEEE Journal
of Selected Areas in Communications, Vol.18,
No.4, pp.582-592.

[11] Lu, S., Ostrovsky, R., Sahai, A., Shacham, H.
and Waters, B. (2006) Sequential Aggregate
Signatures and Multisignatures Without Ran-
dom Oracle. Proc. of EUROCRYPT 2006,
Russia, pp.465-485, LNCS 4004.

[12] Rekhter, Y., and Li, T. (1995) A Border Gate-
way Protocol 4 (BGP-4). RFC 1771, http:
//www.ietf.org/rfc1771.txt.

[13] Rückert, M., and Schröder, D. (2009), Aggre-
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