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Characterizing Delaunay Graphs via Fixed Point Theorem
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Abstract: This paper discusses a problem for determining whether a given plane graph is a Delaunay graph, i.e.,
whether it is topologically equivalent to a Delaunay triangulation. There exists a theorem which characterizes Delau-
nay graphs and yields a polynomial time algorithm for the problem only by solving a certain linear inequality system.
The theorem was proved by Rivin based on arguments of hyperbolic geometry. Independently, Hiroshima, Miyamoto
and Sugihara gave another proof of the theorem based on primitive arguments on Euclidean geometry. Unfortunately,
the existing proofs of the theorem are rather difficult or long. In this paper, we give a simple proof of the theorem
characterizing Delaunay graphs, which is based on the fixed point theorem.

1. Introduction
The two-dimensional Delaunay triangulation and its dual, the

Voronoi diagram, are fundamental concepts in computational ge-
ometry, and have many practical applications such as interpola-
tion and mesh generation [1], [3], [8]. It is also important to rec-
ognize Delaunay triangulations. The recognition problem can be
divided into two types: geometric and combinatorial. The geo-
metric problem is to judge whether a given drawing is a Delaunay
triangulation. The combinatorial problem, which is discussed in
this paper, determines whether a given embedded graph is topo-
logically equivalent to a Delaunay triangulation. The combina-
torial problem is important not only theoretically but also practi-
cally because it is closely related to the design of a topologically
consistent algorithm for constructing the Delaunay/Voronoi dia-
gram in finite-precision arithmetic [7], [11], [12].

Hodgson et al. [6] characterized the convex polyhedra that can
be inscribed in a sphere, and constructed a polynomial time algo-
rithm for judging whether a given graph is realizable as a convex
polyhedron with all the vertices on a common sphere. On the ba-
sis of this characterization, Rivin [9], [10] reduced the recognition
problem on the Delaunay graph to a certain linear programming
problem, and thus gave a polynomial time algorithm. His proof
was based on sophisticated arguments about hyperbolic geome-
try, and hence is not easy to understand. Almost the same time
Hiroshima et al. independently found the same algorithm [5].
Their proof is simple in the sense that it is based on primitive
arguments on Euclidean geometry, but the proof is long and intri-
cate.

In this paper, we give a simple short proof of the theorem char-
acterizing Delaunay graphs by employing the fixed point theo-
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rem. After making preparations in Section 2, we give our main
result (a simple proof) in Section 3.

2. Preliminaries
2.1 Delaunay Graph

First, we briefly review the notion of a Delaunay triangulation.
Given a set of mutually distinct points P ⊆ R2, a Delaunay trian-
gulation of P is commonly defined as a triangulation of P satisfy-
ing the property that the circumcircle of each inner cell (triangle)
contains no point of P in its interior. A Delaunay triangulation of
P is also known as the planar dual of the Voronoi diagram of P.
A Delaunay triangulation is called non-degenerate if and only if
it satisfies the conditions that no three vertices on the outermost
cell are collinear, and no four vertices lie on a common circle that
circumscribes an inner cell.

Next, we give a definition of combinatorial triangulation. Let
G be an undirected graph with vertex set V and edge set E. We
assume that G is connected and plane graph (planar graph em-
bedded in the 2-dimensional plane) without selfloops and parallel
edges. The outermost cell is unbounded while the other cells,
called inner cells, are bounded. We also assume that all the inner
cells are bounded by exactly three edges. For each inner cell, we
associate a directed 3-cycle which is obtained from an undirected
3-cycle of G forming the boundary of the cell by directing edges
counterclockwise. Let C be the set of all the directed 3-cycles
corresponding to all the inner cells of G. A combinatorial trian-
gulation is defined by a triplet (V, E,C). In the rest of this paper,
we write G = (V, E,C) and concentrate our attention on the topo-
logical structure of G; we do not care about the actual positions
at which the vertices are placed. When a given undirected graph,
which is defined by vertex set V and edge set E, is 2-connected,
we say that a combinatorial triangulation (V, E,C) is 2-connected.

In the following, we introduce some notions related to a prob-
lem for judging whether a given combinatorial triangulation is
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obtained from a Delaunay triangulation. Given a combinatorial
triangulation G = (V, E,C), we seek an injection ψ : V → R2

satisfying that the set of points {ψ(v) ∈ R2 | v ∈ V} and the set of
line segments between pairs in {{ψ(u), ψ(v)} | {u, v} ∈ E} define a
Delaunay triangulation. A map ψ satisfying the above conditions
is called a Delaunay realization, if it exists. When a combinato-
rial triangulation G has a Delaunay realization, we say that G is
a Delaunay graph. In particular, if a corresponding Delaunay tri-
angulation is non-degenerate, then G is called a non-degenerate
Delaunay graph.

2.2 Characterizing Delaunay Graphs
In this subsection, we briefly review an inequality system

which characterizes (non-degenerate) Delaunay graphs. Given
a combinatorial triangulation G = (V, E,C), we denote the ele-
ments of C by c0, c1, . . . , c|C|−1. For each cycle ci ∈ C, we intro-
duce three variables x3i+1, x3i+2, x3i+3 assigned to three vertices in
ci. In the rest of this paper, we interpret these variables as angles
in degrees at the corresponding corner of a triangle defined by
cycle ci. So, let us call these variables angle variables. There are
3|C| angle variables. We denotes the index set of angle variables
by J := {1, 2, . . . , 3|C|}. For example, a combinatorial triangu-
lation shown in Figure 1 has nine angle variables x1, x2, . . . , x9.
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Fig. 1 Combinatorial triangulation and angle variables

A vertex of a combinatorial triangulation G is called an outer
vertex if it is on the boundary of the outermost cell, and an inner
vertex otherwise. Similarly, an edge of G is called an outer edge if
it is on the boundary of the outermost cell, and an inner edge oth-
erwise. In the rest of this paper, we denote a set of outer vertices
and a set of inner vertices by Vouter and V inner respectively.

If a given combinatorial triangulation G = (V, E,C) is a Delau-
nay graph, a corresponding vector of angle variables, defined by
a Delaunay realization, satisfies the following conditions.
C1 For each cycle in C, the sum of the associated three angle

variables is equal to 180.
C2 For each inner vertex, the sum of all the associated angle

variables is equal to 360.
C3 For each outer vertex, the sum of all the associated angle

variables is at most 180.
C4 For each inner edge, the sum of the associated pair of the

facing angle variables (i.e., the angle variables correspond-
ing to the vertices that are on the same cycle as, but are not

incident to, the inner edge) is at most 180.
C5 Each angle variable is positive.

For example, if we consider the combinatorial triangulation in
Figure 1, the above conditions give the following linear inequality
system;

(C1) defined by c0 : x1 + x2 + x3 = 180,
(C1) defined by c1 : x4 + x5 + x6 = 180,
(C1) defined by c2 : x7 + x8 + x9 = 180,
(C2) defined by v1 : x1 + x4 + x7 = 360,
(C3) defined by v2 : x2 + x9 ≤ 180,
(C3) defined by v3 : x3 + x5 ≤ 180,
(C3) defined by v4 : x6 + x8 ≤ 180,
(C4) defined by {v1, v2} : x3 + x8 ≤ 180,
(C4) defined by {v1, v3} : x2 + x6 ≤ 180,
(C4) defined by {v1, v4} : x5 + x9 ≤ 180,
(C5) : x1, x2, . . . , x9 > 0.

Figure 2 gives an example of a Delaunay realization of the com-
binatorial triangulation in Figure 1.
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Fig. 2 Realized Delaunay triangulation.

Unfortunately, the values of the angle variables satisfying all
the conditions C1–C5 do not necessarily correspond to a Delau-
nay triangulation. For example, the combinatorial triangulation
in Figure 1 has a vector of angle variables defined by

x1 = x4 = x7 = 120, x2 = x5 = x8 = 32,

x3 = x6 = x9 = 28,

which satisfies C1–C5, but it does not correspond to any triangu-
lations. If we try to draw the diagram using these angle values, we
come across an inconsistency as shown in Figure 3. In order to
avoid this inconsistency, we still need other conditions described
below.

Let c ∈ C be an inner cell with three vertices vα, vβ, vγ, and
xi, x j, xk be three angle variables corresponding to the three ver-
tices, respectively. We say that x j is cc-facing (meaning “facing
counterclockwise”) around vα and xk is c-facing (meaning “fac-
ing clockwise”) around vα. In Figure 4, for example, x2, x5, x8

are cc-facing around v1 while x3, x9, x6 are c-facing around v1.
For any inner vertex v ∈ V inner, let XCC

v ⊆ J be indices of cc-
facing angle variables around v, and XC

v ⊆ J be indices of c-facing
angle variables around v. Furthermore, we introduce a function
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Fig. 3 Angle variables satisfying C1–C5.
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Fig. 4 x3, x6, x9 are c-facing and x2, x5, x8 are cc-facing around v1.

Fv(x) :=

∏
j∈XCC

v

sin x j∏
j∈XC

v

sin x j

, (1)

where x ∈ RJ is a vector of angle variables (in degrees). We only
consider angle variables satisfying 0 < x j < 180 (∀ j ∈ J), and
hence we get 0 < Fv(x) < ∞.

Now we describe a necessary and sufficient condition that a
combinatorial triangulation becomes a Delaunay graph.

Theorem 1 ([5]) A 2-connected combinatorial triangulation
G = (V, E,C) is a Delaunay graph if and only if the set of condi-
tions C1–C6 is satisfiable, where
C6 Fv(x) = 1 for any inner vertex v ∈ V inner.
It is not so difficult to prove the above theorem. For example,
Hiroshima, Miyamoto and Sugihara gave a short and elementary
proof in their paper [5].

If we restrict the Delaunay triangulations to non-degenerate
ones, the conditions C3 and C4 are respectively changed in the
following way.
C3’ For each outer vertex, the sum of all the associated angle

variables is less than 180.
C4’ For each inner edge, the sum of the associated pair of the

angle values facing the edge is less than 180.
A non-degenerate version of Theorem 1 is as follows.
Theorem 2 ([5]) A 2-connected combinatorial triangulation

G = (V, E,C) is a non-degenerate Delaunay graph if and only if
the set of conditions C1, C2, C3’, C4’, C5 and C6 is satisfiable.

Thus, we get a necessary and sufficient condition for a com-
binatorial triangulation to be a (non-degenerate) Delaunay graph.
However, the conditions stated in Theorems 1 and 2 are not use-
ful for the recognition of a Delaunay graph, because we do not

know any finite-step algorithm for judging the satisfiability of
these conditions.

3. Main Result
Now we describe a theorem which yields an efficient method

for recognizing Delaunay graphs. The following theorem says
that when we only need to judge whether a given combinatorial
triangulation is a Delaunay graph (or not), we can drop condition
C6, surprisingly.

Theorem 3 ([5], [9], [10]) A 2-connected combinatorial tri-
angulation G = (V, E,C) is a Delaunay graph if and only if the set
of conditions C1–C5 is satisfiable.

We can judge the satisfiability of the set of conditions C1–C5 in
finite steps because the conditions C1 through C5 are linear in the
variables and the method for checking their satisfiability has been
established using linear programming (see [5] for detail). Espe-
cially, the obtained linear programming problem satisfies that all
the non-zero coefficients are +1 or −1, and thus it is solvable in
strongly polynomial time [4].

The following theorem deals with the non-degenerate case.
Theorem 4 ([5], [9], [10]) A 2-connected combinatorial tri-

angulation G = (V, E,C) is a non-degenerate Delaunay graph if
and only if the set of conditions C1, C2, C3’, C4’ and C5 is satis-
fiable.

We employ the fixed point theorem and give simple proofs of
Theorem 3 and Theorem 4.

Theorem 5 (Fixed Point Theorem [2])
Every continuous map f : Bm → Bm defined on an
m-dimensional closed ball Bm has a fixed point (a point x ∈ Bm

with f (x) = x).
It is well known that we can extend the above theorem to a con-
tinuous map defined on a convex compact set.

Before describing our proof, we give a sketch of an important
procedure, which transforms a feasible solution of the linear in-
equality system defined by C1–C5. Let us recall a vector of angle
variables shown in Figure 3, that satisfies conditions C1–C5, but
not C6. Now we construct a (new) vector by increasing angle
variables c-facing around the inner vertex v1 by α degree, and de-
creasing angle variables cc-facing around v1 by α degree. After
this procedure, conditions C1–C4 are preserved. When we set
α = 2, the obtained vector of angle variables, shown in Figure 2,
satisfies conditions C1–C6.

Now we describe the above procedure precisely. Given a non-
negative vector x ≥ 0 of angle variables satisfying C1–C4, an
inner vertex v and a real number α, we introduce a vector x(α)
defined by

x(α) j =


x j + α, j ∈ XCC

v ,

x j − α, j ∈ XC
v ,

x j, otherwise.
(2)

The following lemma shows some properties of x(α).
Lemma 1 Let x ≥ 0 be a non-negative vector of angle vari-

ables satisfying C1–C4 and x(α) be a vector defined by (2) w.r.t.
an inner vertex v ∈ V inner. For any α ∈ R, vector x(α) satisfies
conditions C1–C4. We define
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αmax =max{α ∈ R | x(α) ≥ 0},
αmin = min{α ∈ R | x(α) ≥ 0}.

If αmin < αmax, then Fv(x(α)) : (αmin, αmax) → R is a continuous
monotone increasing function w.r.t. α.

Proof 1 It is easy to show that x(α) satisfies conditions
C1–C4. The continuity of Fv(x(α)) with respect to α is obvi-
ous. Let C(v) ⊆ C be a set of cycles including v. For each cycle
c′ ∈ C(v), angle variable xCC

c′ (xC
c′ ) denotes associated cc-facing

(c-facing) angle variable around v. Condition C1, non-negativity
of x, and inequality αmin < αmax imply that 0 < xCC

c′ + xC
c′ ≤

180 (∀c′ ∈ C(v)). We transform the following differentiation and
obtain that

d log Fv(x(α))
dα

=
∑
j∈XCC

v

d log sin(x j + α)
dα

−
∑
j∈XC

v

d log sin(x j − α)
dα

=
∑
j∈XCC

v

cos(x j + α)
sin(x j + α)

+
∑
j∈XC

v

cos(x j − α)
sin(x j − α)

=
∑

c′∈C(v)

(
cos(xCC

c′ + α)

sin(xCC
c′ + α)

+
cos(xC

c′ − α)

sin(xC
c′ − α)

)

=
∑

c′∈C(v)

sin(xCC
c′ + xC

c′ )

sin(xCC
c′ + α) sin(xC

c′ − α)
> 0,

where the last inequality is derived from the facts that (1) ∀α ∈
(αmin, αmax), ∀c′ ∈ C(v), sin(xCC

c′ + α) sin(xC
c′ − α) > 0 (2) ∀c′ ∈

C(v), sin(xCC
c′ + xC

c′ ) ≥ 0, and (3) ∃c′ ∈ C(v), sin(xCC
c′ + xC

c′ ) > 0
(obtained from C2). Thus, both log Fv(x(α)) and Fv(x(α)) are
monotonically increasing.

In the following, we show that if there exists a vector of angle
variables satisfying C1–C5, then there also exists a vector of an-
gle variables satisfying C1–C6 which is obtained by adopting the
above procedure around all inner vertices simultaneously.

Proof 2 (Proof of Theorem 3.) From Theorem 1, we only
have to show that we once obtain angle variables satisfying C1–
C5 there is a vector of angle variables satisfying C1–C6.
Let b ∈ RJ be a vector of angle variables satisfying conditions
C1–C5, where J = {1, 2, . . . , 3|C|} is a set of indices of angle
variables. We define a matrix M whose rows are indexed by J,
columns are indexed by the vertex set V , and each entry miv is
defined as follows:

miv =


1, angle variable xi is cc-facing around v,
−1, angle variable xi is c-facing around v,

0, otherwise.

Figure 5 shows a matrix M corresponding to Figure 1.
Let M̃ be a column submatrix of M corresponding to inner ver-
tices V inner. It is easy to see that the vector of angle variables
M̃y + b is obtained from b by increasing angle variables c-facing
around the inner vertex v by yv, and decrease angle variables cc-
facing around v by yv, for each inner vertex v ∈ V inner. Lemma 1
directly implies that for any vector y ∈ RV inner

, a vector of angle
variables M̃y + b also satisfies conditions C1–C4.
We introduce a subset Ω ⊆ RV inner

defined by

Ω :=
{
y ∈ RV inner ∣∣∣ M̃y + b ≥ 0

}
.

v1 v2 v3 v4
x1 0 −1 1 0
x2 1 0 −1 0
x3 −1 1 0 0
x4 0 0 −1 1
x5 1 0 0 −1
x6 −1 0 1 0
x7 0 1 0 −1
x8 1 −1 0 0
x9 −1 0 0 1

Fig. 5 A matrix M corresponding to Figure 1.

Here, we briefly prove the boundedness of Ω by showing that ev-
ery vector y ∈ Ω satisfies −180|V |1 ≤ y ≤ 180|V |1. Let {u, v}
be an inner edge of G. Since {u, v} is an inner edge, there exists
an angle b j (in the vector b) which is both c-facing around u and
cc-facing around v. There also exists an angle b j′ (in vector b)
which is both cc-facing around u and c-facing around v. When
both u and v are inner vertices, every vector y ∈ Ω satisfies

−180 ≤ −b j′ ≤ yu − yv ≤ b j ≤ 180. (3)

If (u, v) ∈ V inner × Vouter, then we have

−180 ≤ −b j′ ≤ yu ≤ b j ≤ 180. (4)

For any inner vertex u, there exists a minimal path Γu on G con-
necting u and an outer vertex. From the minimality, Γu consists
of inner edges. The telescoping sum of inequalities (3) and (4)
w.r.t. inner edges in Γu gives

−180|V | ≤ yu ≤ 180|V |.

From the above, Ω becomes a compact convex set.
For any pair (y, v) ∈ Ω × V inner, we define following two values:

αmax(y, v) := max{α ∈ R | y + αev ∈ Ω},
αmin(y, v) := min{α ∈ R | y + αev ∈ Ω},

where ev ∈ {0, 1}V
inner

is a unit vector whose entry is equal to 1
if and only if the corresponding index is equal to v. (Here we
note that both the maximum and the minimum always exist, be-
cause Ω is a bounded closed set and is nonempty; clearly b ∈ Ω.)
Since y ∈ Ω, inequalities αmin(y, v) ≤ 0 ≤ αmax(y, v) hold. When
αmin(y, v) < αmax(y, v), we have that

lim
α→αmax(y,v)

Fv(y + αev) = +∞,

lim
α→αmin(y,v)

Fv(y + αev) = +0,

and thus Lemma 1 and the intermediate value theorem im-
ply that there exists a unique value α∗ in the open interval
(αmin(y, v), αmax(y, v)) satisfying equality Fv(y+α∗ev) = 1. Now
we introduce a map fv : Ω→ Ω for each v ∈ V inner defined by

fv(y) =

 y, if αmin(y, v) = αmax(y, v) = 0,
y + α∗ev, if αmin(y, v) < αmax(y, v),

where α∗ is a unique value satisfying Fv(y + α∗ev) = 1. It is
obvious that for each inner vertex v, the corresponding map fv is
continuous.
Lastly, we define a map f : Ω→ Ω as:
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f (y) :=
1

|V inner|
∑

v∈V inner

fv(y),

where f (y) is the gravity center of vectors { fv(y) | v ∈ V inner}.
Since fv is continuous for each inner vertex v, f is also continu-
ous.
Now we apply the fixed point theorem to the continuous map f
and obtain a result that there exists a fixed point y∗ ∈ Ω, i.e., y∗

satisfies f (y∗) = y∗.
Every fixed point y∗ satisfies that

∀v ∈ V inner,

αmin(y∗, v) = αmax(y∗, v) = 0 or Fv(y∗) = 1.
(5)

Otherwise, there exists at least one inner vertex v′ satisfying
αmin(y∗, v′) < αmax(y∗, v′) and Fv′ (y∗) , 1. Then v′ also satis-
fies fv′ (y∗) , y∗, which implies f (y∗) , y∗. It is a contradiction.
We have shown that there exists a non-negative vector of an-
gle variables satisfying C1–C4. Next we discuss condition C5,
which also yields condition C6. In the following, we show that
M̃y∗ + b > 0 for any fixed point y∗.
When a vertex v satisfies Fv(y∗) = 1, it is obvious that
αmin(y∗, v) < 0 < αmax(y∗, v). Since y∗ is a fixed point, prop-
erty (5) implies that for any v ∈ V inner,

αmin(y∗, v) = 0 if and only if αmax(y∗, v) = 0.

Put x∗ = M̃y∗ + b. If an inner vertex v has a cc-facing an-
gle variable x j satisfying x∗j = 0, then αmin(y∗, v) = 0 and thus
αmax(y∗, v) = 0, which implies that v also has a c-facing angle
variable x j′ satisfying x∗j′ = 0. Similarly, when an inner ver-
tex v has a c-facing angle variable x j satisfying x∗j = 0, then
αmax(y∗, v) = 0 and thus αmin(y∗, v) = 0, which implies that v
also has a cc-facing angle variable x j′ satisfying x∗j′ = 0.
Let us consider a directed graph H whose incident matrix is M⊤:
i.e., a directed graph obtained from G by substituting a pair of
parallel arcs with opposite direction for each edge in E (see Fig-
ure 6). Digraph H has vertex set V and edge set J, which is an
index set of angle variables. Each angle variable x j corresponds
to an arc in H from u to v where x j is a c-facing variable around
u and cc-facing variable around v.
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Fig. 6 A directed graph (V, J) corresponding to Figure 1.

If an arc a of H satisfies that the corresponding angle variable,
denoted by xa, satisfies x∗a = 0, we say that a is a critical arc. In
the directed graph, if an inner vertex v has an incoming critical
arc, then v also has at least one outgoing critical arc.

Now we show x∗ > 0. Assume on the contrary that there exists
an angle variable x j satisfying x∗j = 0. Then, there exists a critical
arc in H. Let A0 be a set of critical arcs. From the above discus-
sion, a digraph defined by (V, A0) has either (Case 1) “a directed
elementary path Γ1 connecting a pair of outer vertices and pass-
ing only inner vertices” or (Case 2) “a directed elementary cycle
Γ2 consisting of inner vertices.”
Case 1. Let χ1 ∈ {0, 1}J be a characteristic vector of the set of
arcs in Γ1. Since Γ1 consists of critical edges, χ⊤1 x

∗ = 0 hold.
Every inner vertex v has an incoming arc in Γ1 if and only if v has
an outgoing arc in Γ1. Accordingly, the equality χ⊤1 M̃ = 0 hold.
Thus we have that

0 = χ⊤1 x
∗ = χ⊤1 (M̃y∗ + b) = χ⊤1 M̃y∗ + χ⊤1 b = χ

⊤
1 b > 0.

Contradiction.
Case 2. Let χ2 ∈ {0, 1}J be a characteristic vector of the set of
arcs in Γ2. Since Γ2 consists of inner vertices and critical edges,
both χ⊤2 M̃ = 0 and χ⊤2 x

∗ = 0 hold. Thus we have that

0 = χ⊤2 x
∗ = χ⊤2 (M̃y∗ + b) = χ⊤2 M̃y∗ + χ⊤2 b = χ

⊤
2 b > 0.

Contradiction.
Now we have shown that every fixed point y∗ satisfies condi-
tion C5 and thus every inner vertex v satisfies αmin(y∗, v) <

0 < αmax(y∗, v). From property (5), every inner vertex v satisfies
Fv(y∗) = 1. As a consequence, condition C6 is satisfied.

A proof of Theorem 4 is almost the same. Actually, we only
have to replace C3 and C4 with C3’ and C4’ respectively in our
proofs of Lemma 1 and Theorem 3.

Acknowledgements
We wish to express our thanks to Naoyuki Kamiyama and

Mizuyo Takamatsu for fruitful discussions.

References
[1] Aurenhammer, F.: Voronoi Diagrams - A Survey of a Fundamental

Geometric Data Structure, ACM Computing Surveys, Vol. 23, No. 3,
pp. 345–405 (1991).
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