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Abstract: With developments in optical imaging over the past decade, statistical methods for estimating dendritic
membrane resistance from observed noisy signals have been proposed. In most of previous studies, membrane re-
sistance over a dendritic tree was assumed to be constant, or membrane resistance at a point rather than that over a
dendrite was investigated. Membrane resistance, however, is actually not constant over a dendrite. In a previous study,
a method was proposed in which membrane resistance value is expressed as a non-constant function of position on
dendrite, and parameters of the function are estimated. Although this method is effective, it is applicable only when
the appropriate function is known. We propose a statistical method, which does not express membrane resistance
as a function of position on dendrite, for estimating membrane resistance over a dendrite from observed membrane
potentials. We use the Markov random field (MRF) as a prior distribution of the membrane resistance. In the MRF,
membrane resistance is not expressed as a function of position on dendrite, but is assumed to be smoothly varying
along a dendrite. We apply our method to synthetic data to evaluate its efficacy, and show that even when we do not
know the appropriate function, our method can accurately estimate the membrane resistance.

Keywords: dendrite, membrane resistance, Markov random field, cable equation, membrane potential imaging

1. Introduction

Information processing in neural systems is suggested to be de-
pendent on how the membrane properties are varying along den-
dritic trees [1], [2], [3], [4], [5], [6], [7]. In hippocampal CA1
pyramidal neurons, for example, the membrane resistance varies
sigmoidally along a dendritic tree. A recent computational study
showed that this sigmoidicity improves the efficiency of informa-
tion propagation from the distal to proximal parts [6].

With developments in optical imaging over the past decade,
several statistical methods for estimating membrane properties,
especially membrane resistance, from fluorescence intensity have
been proposed [4], [5], [7], [8], [9]. Optical imaging, however,
has a low signal-to-noise ratio [10], [11], [12], [13], [14], [15],
[16], [17], so accurately estimating membrane resistance over
a dendritic tree is challenging. In previous studies, membrane
resistance over a dendritic tree was assumed to be constant, or
membrane resistance at a point rather than that over a dendrite
was investigated. We previously proposed a method in which
membrane resistance value is expressed as a non-constant func-
tion of position on dendrite, and parameters of the function are
estimated [4], [5], [7]. Although this method can accurately es-
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timate membrane resistance over a dendrite, it is applicable only
when we know the appropriate function. Thus, developing meth-
ods for estimating membrane resistance over a dendrite remains
a challenge.

For this study, we propose a statistical method, which does not
express membrane resistance as a function of position on den-
drite, for estimating membrane resistance over dendrite from ob-
served noisy signals. For this purpose, we use the Markov random
field (MRF) [18], [19] as a prior distribution of the membrane-
resistance. In the MRF, membrane resistance is not expressed as
a function of position on dendrite, but is assumed to be smoothly
varying along a dendrite. This smoothness prior expresses a phys-
iological premise that spatially adjacent membrane resistances
take similar values. Additionally, the dynamics of membrane po-
tential corresponding to a state in dendritic systems is expressed
using the cable equation [20], [21], and the observation process
is expressed using a Gaussian process. We estimate parame-
ters, namely, membrane-resistance over a dendrite by using the
expectation-maximization (EM) algorithm [22]. We applied our
method to synthetic data to evaluate its efficacy, and show that
even when we do not know the appropriate function, our method
can accurately estimate the membrane resistance over a dendrite.

2. Formulation

In this section, we describe the three probabilistic models that
we use in our method. Using these probabilistic models enables
us to estimate the membrane-resistance over a dendrite from ob-
served noisy membrane potential. In Section 2.1, we describe the
cable equation [20], which expresses the dynamics of the den-

c© 2012 Information Processing Society of Japan 89



IPSJ Transactions on Mathematical Modeling and Its Applications Vol.5 No.3 89–94 (Sep. 2012)

dritic membrane potential, and its spatially discrete approxima-
tion, the compartment model [21]. We then derive the stationary
distribution of the compartment model. In Section 2.2, we explain
the smoothness prior, based on the MRF [18], [19], of the mem-
brane resistance. The smoothness prior assumes that spatially
adjacent membrane resistances take similar values, to accurately
estimate membrane resistance over a dendrite, even when obser-
vation process is noisy. In Section 2.3, we describe the observa-
tion model, which expresses the noisy observation of membrane
potential.

2.1 Cable Equation and Stationary Distribution for Com-
partment Model

In the cable equation [20], the dynamics of the membrane po-
tential is given as

C
∂v(x, t)
∂t

= −ax (v(x, t) − vrev) + D
∂2v(x, t)
∂x2

+ u(x, t) + σξ(x, t),

(1)

where v(x, t) is the membrane potential at position x at time t. In
this paper, we consider a one-dimensional dendrite for the sake
of simplicity. The right-hand side of Eq. (1) consists of four
terms. The first term −ax (v(x, t) − vrev) expresses a passive lin-
ear membrane current, where ax is the membrane conductance
(inverse of membrane resistance) at position x and vrev expresses
reversal potential. The objective of our study was to estimate
membrane conductance ax from the observed membrane poten-
tial. The second term D ∂

2v(x,t)
∂x2 expresses a current along the den-

drite, where D is the intercompartmental conductance. The third
term u(x, t) expresses an external input, and the last term σξ(x, t)
expresses the internal noise of the neuron that is assumed to be
white Gaussian with average 〈ξ(x, t)〉 = 0 and correlation func-
tion 〈ξ(x, t)ξ(x′, t′)〉 = δ(x − x′)δ(t − t′). Parameter C on the
left-hand side of Eq. (1) is the membrane capacitance. We can
assume C = 1 without loss of generality. Next, we introduce a
spatially discrete approximation to the cable equation: the com-
partment model [21]. A schematic of the compartment model is
shown in Fig. 1. In this model, a dendrite is segmented into small
compartments and the cable Eq. (1) is approximated as follows:

vx,t+1 − vx,t =
Δt

{−ax(vx,t − vrev) + D(vx−1,t − 2vx,t + vx+1,t) + ux,t
}
+
√
Δtεx,t,

(2)

where vx,t and ux,t are the membrane potential and the external
input, respectively. The last term

√
Δtεx,t is the internal noise

assumed to be Gaussian with mean 0 and variance Δtσ2 at com-
partment x at time t, and is derived by discretizing Langevin noise
term σξ(x, t) in the cable Eq. (1). Note that the factor

√
Δt is im-

portant so that the noise variance grows linearly with time t.
We derive the stationary distribution of Eq. (2) for compu-

tational simplicity. Let ũt = ut − urev in Eq. (2), where ut
and urev are M-dimensional column vectors (v1,t, · · · , vM,t)T and
(vrev, · · · , vrev)T , respectively. M is the number of compartments.
We then obtain

Fig. 1 Schematic of compartment model. Compartment model is a spatially
discrete approximation of the cable equation. Membrane current
Imemb

x,t and current along dendrite Iinter
x+1→x,t are given as −ax(vx,t − vrev)

and D(vx+1,t − vx,t), respectively. v(x, t) is membrane potential at po-
sition x at time t, which expresses electrical state of dendrite. ax, D,
and C are membrane conductance at position x, intercompartmental
conductance, and membrane capacitance, respectively. These three
parameters define electrical property of dendrite. Stationary distri-
bution of this compartment model is expressed as a Gaussian distri-
bution. In our method, membrane conductance ax is estimated using
Markov Random Field (MRF). Unlike the previous studies, in our
method membrane conductance ax is not expressed as a function of
position on dendrite, but is assumed to be smoothly varying along
dendrite by using MRF.

ũt+1 = Φũt + Δt

(
ut +

1√
Δt
ε t

)
, (3)

Φ = I − ΔtΨ, (4)

Ψ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
a1

. . .

aM

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ + D

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (5)

where ut = (u1,t, · · · , uM,t)T , ε t = (ε1,t, · · · , εM,t)T , and I is
the identity matrix. This equation is a first-order autoregressive
model with Gaussian noise. If we keep the external input ut con-
stant (ut = u), the probability density function of the true mem-
brane potential converges to the stationary distribution as t → ∞.
Since Eq. (3) is a Gaussian process, the stationary distribution is
a Gaussian distribution. Therefore, we just need to determine
the mean and covariance of the distribution. First, we derive the
mean of the stationary distribution E [ũ∞]. By iteratively solving
Eq. (3), we obtain

ũt = Φ
t ũ0 + Δt

t−1∑
s=0

Φs

(
u +

1√
Δt
ε t−1−s

)
. (6)

Since E [ε t] = 0,

E [ũ∞] = Δt (I − Φ)−1 u ≈ Ψ−1u, (7)

where we used limt→∞ Φt = 0 and
∑∞

s=0 Φ
s = (I −Φ)−1. Next, we

derive the covariance matrix Cov [ũ∞]. From Eq. (6),

Cov [ũt] = Cov

⎡⎢⎢⎢⎢⎢⎢⎣Φt ũ0 + Δt
t−1∑
s=0

Φs

(
u +

1√
Δt
ε t−1−s

)⎤⎥⎥⎥⎥⎥⎥⎦

= Δtσ2
t−1∑
s=0

Φ2s.

(8)

By taking the limit t → ∞,

Cov [ũ∞] = Δtσ2
(
I − Φ2

)−1 ≈ σ
2

2
Ψ−1. (9)
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Thus, the stationary distribution is given as a Gaussian distribu-
tion:

p (u|a) = N
(
u

∣∣∣∣∣∣urev + Ψ
−1u,
σ2

2
Ψ−1

)
. (10)

We omit the subscript∞ for the sake of notational simplicity. We
can rewrite Eq. (10) using an energy function E(u|a):

p(u|a) =
1

Z(a)
exp

(
− 1
σ2

E(u|a)

)
, (11)

E(u|a) =
M∑

x=1

ax(vx − v̄x)2 + D
M−1∑
x=1

(vx+1 − vx)2, (12)

Z(a) = (πσ2)
M
2 |Ψ|− 1

2 , (13)

where v̄x is the x-th element of urev + Ψ
−1u.

2.2 Prior Distribution of Membrane Conductance
In this section, we introduce the smoothness prior, based on

the MRF [18], [19], of the membrane conductance. The MRF is
represented by a probability density function:

p(a) ∝ exp(−E(a)), (14)

E(a) = λ
M−1∑
x=1

(ax+1 − ax)2, (15)

ax ∈ [0,∞). (16)

This equation expresses a physiological premise that membrane
conductances of nearby compartments take similar values. The
probability p(a) increases if nearby membrane conductances take
similar values and decreases if they take dissimilar ones. The fac-
tor λ is called hyperparameter. In this paper, we show the results
in which λ was set to 100. We changed λ from 20 to 200 and
obtained qualitatively similar results to those in which λ = 100
(data not shown). The performance of our method is thus robust
to changes in λ.

As mentioned above, the objective of our study was to esti-
mate the membrane conductance ax over the dendrite. Accurate
estimation of the membrane conductance has been difficult be-
cause the signal-to-noise ratio of membrane potential imaging is
low. We use the MRF as a prior distribution of membrane con-
ductance, to accurately estimate the membrane conductance over
the dendrite even when observation process is noisy, without ex-
pressing the membrane conductance as a function of position on
dendrite.

2.3 Observation Model
We introduce the observation model, a Gaussian process,

which expresses the noisy observation of membrane potential.
Let yt = (y1,t, · · · , yM,t)T be the observed membrane potential at
time t. Then, the observation model is given as

p(yt |ut) =
1

(2πη2)
M
2

exp

(
− 1

2η2
E(yt |ut)

)
, (17)

E(yt |ut) =
M∑

x=1

(yx,t − vx,t)2. (18)

This equation expresses that the observed membrane potential yx,t

is the sum of the true membrane potential vx,t and Gaussian noise
with variance η2.

3. Estimation

In this section, we illustrate the estimation method. By using
the models Eqs. (11)–(18) described above, we estimate mem-
brane conductance ax and potential vx from observed noisy data
yx. We derive the estimation method based on the EM algo-
rithm [22]. The EM algorithm is a standard method for estimating
parameters in statistical models based on the maximum likelihood
or the maximum a posteriori principles.

The EM algorithm iterates over two steps, expectation (E-step)
and maximization (M-step). In the E-step, we obtain the ex-
pectation value of the membrane potential u, and in the M-step,
we obtain the estimates of the membrane conductance a. Let
Y = {y1, . . . , yN} denote a set of observed membrane potentials
and V = {u1, . . . , uN} denote a set of corresponding true mem-
brane potentials. Then, the two steps are given as follows:
E-step Based on the current estimate of the parameter aold, the

conditional distribution of the latent variables p(V|Y, aold)
is calculated. Then the expected values of V, and
the expected complete-data loglikelihood Q(a, aold) =

〈log p(Y,V|a)〉p(V |Y,aold

) are computed.

Q(a, aold) =
N
2

log |Ψ| − 1
σ2

N∑
i

{
Tr(Ψ(Σ + urevu

T
rev))

+mT
i Ψmi − 2vrevmT

i a + uTΨ−1u
}
+ const.,

(19)

where mi, Σ are the mean and the covariance of the Gaus-
sian distribution p(ui|yi, aold). Equation (19) is derived in
Appendix.

M-step A new estimation value of the parameter anew is in-
ferred, which maximizes the sum of Q(a, aold) and log p(a):

anew = argmax
a

{Q(a, aold) + log p(a)
}
. (20)

Starting with the initial setting aold = a0, these two steps are re-
peated until convergence.

4. Results

We present results of applying our method to synthetic data.
The synthetic data were generated as follows. First, true mem-
brane potentials were generated from the compartment model,
Eq. (2). Observed membrane potentials Y were then generated
from the observation model, Eq. (17). We estimated membrane
conductance a and membrane potentials V from observed mem-
brane potential Y generated as above. We compared our method
to that without the MRF, in which p(a) is a uniform distribution
instead of Eq. (14). We set D = 10, vrev = −70, σ = 0.01,
Δt = 0.01, η = 0.05, and λ = 100. The number of samples N

was 200.

4.1 Sigmoidal Case
First, we present the results of applying the methods to the

case where membrane conductance varies sigmoidally, plotted as
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Fig. 2 Estimating parameters for sigmoidal case ((a), (b)) and sinusoidal case ((c), (d)). Top panels show
membrane potential. Sample of observed membrane potential out of N samples is plotted as black
circles. Corresponding true membrane potential, estimate using MRF, and estimate without MRF
are plotted as gray line, open circles (◦), and crosses (×), respectively. Bottom panels show mem-
brane conductance. True membrane conductance, estimate using MRF, and estimate without MRF
are plotted as gray line, open circles (◦), and crosses (×), respectively.

a gray line in Fig. 2 (b). In hippocampal CA1 pyramidal neu-
ron dendrite, sigmoidally-varying membrane-conductance is ob-
served [4], [5]. A sample of observed membrane potential out
of N samples is plotted as black circles in Fig. 2 (a). The corre-
sponding true membrane potential, estimate using the MRF, and
estimate without the MRF are plotted as gray line, open circles
(◦), and crosses (×), respectively. we can see that the open circles
(◦) and crosses (×) are almost on the gray line, that is, the esti-
mates of membrane potential agree well with the true membrane
potential. The estimates of membrane conductance are plotted in
Fig. 2 (b). Although our method did not assume that the mem-
brane conductance varies sigmoidally, estimated membrane con-
ductance (◦) agrees well with the true membrane conductance. In
contrast, the estimate without MRF (×) is less accurate.

4.2 Sinusoidal Case
Second, we present results of applying the methods to the case

where membrane conductance varies sinusoidally, to show that
our method is applicable not only to the sigmoidal case. As is in
the above case, observed membrane potential is plotted as black
circles in Fig. 2 (c). The true membrane potential, the estimate
using the MRF, and the estimate without the MRF are plotted
as gray line, open circles (◦), and crosses (×), respectively. The
membrane potential is plotted in Fig. 2 (c). We can see that the
open circles (◦) and crosses (×) are almost on the gray line, that
is, the estimates of membrane potential agree well with the true
membrane potential. The estimates of membrane conductance is
plotted in Fig. 2 (d). The estimate using the MRF (◦) agree well
with the true membrane conductance, while the estimate without

the MRF (×) deviates due to noise.
As presented above, in both sigmoidal and sinusoidal cases,

the membrane conductances estimated using the MRF agree well
with true membrane conductances, while those estimated without
the MRF deviate from the true membrane conductances. Thus,
our method, in which the MRF is used as a smoothness prior,
enables us to estimate the membrane-resistance over the dendrite
accurately even when the appropriate function is unknown.

5. Summary

We proposed a method for estimating the membrane resistance
over a dendrite. The dynamics of the membrane potential are
expressed using the compartment model and the observation pro-
cess was modeled as a Gaussian process. Membrane resistance
was estimated using the EM algorithm.

Unlike the previous studies, in our method membrane conduc-
tance is not expressed as a function of position on dendrite, but
is assumed to be smoothly varying along dendrite by using the
MRF. We showed using synthetic data that our method can be
applied when the appropriate function is unknown.

The stationary distribution of the compartment model is used
for computational simplicity. Transient dynamics can be used for
estimation by applying Kalman filter to the compartment model.
We targeted voltage-independent resistance. Our framework us-
ing MRF as a prior distribution of membrane resistance can also
be applicable to voltage-dependent resistance. This is a subject
for further study.
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Appendix

A.1 Derivation of the Expected Complete-data
Loglikelihood

In our method we use the EM algorithm. In the M-step of the
EM algorithm, the expected complete-data loglikelihood is com-
puted. In this appendix, we give the derivation of the expected
complete-data loglikelihood Eq. (19).

The conditional distribution p(V|Y, aold) is given by

p(V|Y, aold) =
N∏

i=1

p(ui|yi, aold)

=

N∏
i=1

N (ui|mi,Σ) ,

(A.1)

where

mi = Σ
{
η−2yi + 2σ−2(u + Ψurev)

}
, (A.2)

Σ = η−2 + 2σ−2Ψ. (A.3)

Then, the expected complete-data loglikelihood Q(a, aold) is
given by

Q(a, aold)

= 〈log p(Y,V|a)〉p(V |Y,aold

)

=

N∑
i=1

〈log p(yi|ui) + log p(ui|a)〉p(ui |yi ,aold)

=

N∑
i=1

〈
−1

2
log

∣∣∣∣∣∣
σ2

2
Ψ−1

∣∣∣∣∣∣ −
1
σ2

(ui − μ)TΨ(ui − μ)

〉
p(ui |yi ,aold)

+const., (A.4)

where

μ = urev + Ψ
−1u. (A.5)

The distribution p(ui|yi, aold) is a Gaussian distribution with mean
mi and covariance Σ. Hence, Q(a, aold) is given by

Q(a, aold)

=
N
2

log |Ψ| − 1
σ2

N∑
i=1

{
(mi − μ)TΨ(mi − μ) + Tr(ΨΣ)

}
+ const.

=
N
2

log |Ψ| − 1
σ2

N∑
i=1

{
Tr(Ψ(Σ + urevu

T
rev)) + mT

i Ψmi

−2vrevmT
i a + uTΨ−1u

}
+ const.. (A.6)
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