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Abstract: For the detection of generic objects in the field of image processing, histograms of orientation gradients
(HOG) is discussed for these years. The performance of the classification system using HOG shows a good result.
However, the performance of using HOG descriptor would be influenced by the detecting object size. In order to
overcome this problem, we introduce a kind of hierarchy inspired from the convolution-net, which is a model of our
visual processing system in the brain. The hierarchical HOG (H-HOG) integrates several scales of HOG descriptors in
its architecture, and represents the input image as the combinatorial of more complex features rather than that of the
orientation gradients. We investigate the H-HOG performance and compare with the conventional HOG. In the result,
we obtain the better performance rather than the conventional HOG. Especially the size of representation dimension is
much smaller than the conventional HOG without reducing the detecting performance.
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1. Introduction

The image recognition technology has been applied in many
areas such as inspection systems for manufactured products in
factories, driving assistance system for automobile, and so on.
And more reducing of computational cost for the image recogni-
tion system is required for enlarging the application area.

In the field of generic object recognition, the histogram of ori-
ented gradient (HOG) proposed by Dalal has been focused for
description of objects in the images because of its simple feature
extraction rule [1], [2]. HOG represents features of an object as
a histogram of the input image gradient of certain areas that in-
cludes the object. Using HOG for the recognition of the image
area, the histogram of the image is usually treated as a vector
for the input of classification machine, such like a support vec-
tor machine (SVM). Even though HOG is a simple model, it has
shown several good recognition performances for pedestrian and
car detection [3].

However, we consider HOG includes two problems to solve.
The first point is the number of feature dimensions, which can be-
come huge number by the value of image dividing parameter. The
large number of feature dimensions prevents reducing computa-
tional cost and requires a lot of training images for classification,
so that we should reduce it for the cost down. The second point
is that invariance for both the location and the scale of the object
may not be good enough for the robust recognition. In the con-
ventional HOG framework, input image is scanned with several
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scales cropping window to adjust detecting object size. However,
this window size adjusting process might take a computational
cost.

On the other hand, we human have a flexible recognition sys-
tem, for example, we can recognize an object in the image with
any locations and with several scale changes. From the physio-
logical viewpoints, our visual processing system in the brain is
believed to have a kind of hierarchical structure [4], [5]. HOG
can be interpreted as a simple layered structure neural network,
so that we consider introducing hierarchical structure such like
the brain into the HOG can improve the robustness against the
deformation of the objects. Such hierarchical image processing
models, which are inspired from the brain, have been proposed.
Fukushima proposed “Neocognitron”, and applied it to hand-
written character recognition [6], [7]. LeCun also proposed “Le-
Net” series and showed good performance in the meaning of the
recognition accuracy [8]. Serre et al. compared such hierarchi-
cal image processing system with the real brain [9]. These kinds
of hierarchical neural networks are called “convolution-net”. In
the convolution-net, one of the important points is hierarchy, so
that we introduce a kind of hierarchical structure represented by
the convolution-net into the HOG. Introducing the hierarchy, we
expect the robustness for variations of both location and scale
can be improved to the conventional HOG model. Moreover, in
the convolution-net, the local feature description is gradually in-
tegrated through the hierarchical processing. The integrated de-
scription can be considered as a representation of the compressed
visual information for the input image. Therefore, we also ex-
pect reducing the number of dimension of the HOG description
by introducing such hierarchy. In order to overcome the conven-
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Fig. 1 A schematic diagram of a typical image recognition system using HOG descriptor [1].

tional HOG problems, we proposed an improving model of the
HOG that introduce a concept of the hierarchical structure of the
convolution-net. In this study, we evaluate the performance of our
proposing model by use of the INRIA Person Dataset, which is
an image database for the pedestrian detection, and we discussed
about recognition performance.

2. Conventional Model Formulation

In this study, we introduce the hierarchical structure, which is
inspired from visual processing in our brain, into the conventional
HOG called Hierarchical HOG (H-HOG). Thus, we explain sum-
maries about conventional visual recognition system using HOG,
and the convolution-net proposed by Mutch & Lowe in this sec-
tion[1], [10].

2.1 Conventional HOG System

The conventional HOG, which is applied to the generic im-
age recognition, is a kind of feature descriptor using histograms
of the local image gradients. We can obtain a HOG descriptor,
which can represent a rough shape of the object, into the local
area of an image, so that the HOG descriptor is often applied to
the object detection such like human detection [3].

Figure 1 shows the schematic diagram of a typical visual
recognition system using the HOG descriptors. At first, the image
gradient is calculated from the input image I(u, v), where (u, v) in-
dicates the location in the image and /(u, v) means the pixel value
at the location. The gradient for each location (i, v) is represented
as both intensity m(u, v) and orientation 6(u, v),

m(u,v) = VI,(u,v)? + I,(u,v)?, €]
_1 [ Lo(u,0)
=t === 2
O(u,v) = tan ( T U)) , 2
where I, (1, v) and I,(u, v) means the difference between the neigh-
bors:
L(u,v) =I(u+1,0)—I(u—-1,v) 3)
L(u,v) = l(u,v+ 1) = I(u,v—1). %)

2.1.1 Histogram Representation for the Cell

In the next step for obtaining HOG descriptor, we divide the
gradient into several small areas called “cell” and make an orien-
tation histogram for each cell. In the process, the intensity m(u, v)
plays a roll of the weight for the voting bin of 6(u,v). Apply-
ing such local orientation histograms, local translation deforma-
tion effect of the object in the cell is reduced. The histogram,
which describes the distribution of the edge components for the
orientation, can be regarded as a vector. Quantizing the orien-
tation 6(u,v) on the i-th cell into the Q state, we can obtain Q
bins histogram whose elements are represented by the vector:

fi = {ﬁ,l’ﬁl"" ’ﬁ,Q}:
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fa= D mwo) 5,000, )
(u,v)€ith cell
5,(5) = { (1) gsg DA <5 < gAs where As=7/Q

The size of cells is an important parameter that makes influ-
ence to the number of feature dimension for the classifier. Large
cell size conducts small number of the feature dimension, which
is treatable property for the classifier; however, feature extraction
may become too rough to represent the object. On the contrary,
small size cell size, which can represent detail of the object, may
make huge number of feature dimensions to describe the object,
which makes hard problem for the classifier.

2.1.2 Block Normalization for the Cells Representation

The gradient strength varies over a wide range owing to local
variations in illumination and contrast between foreground and
background. Thus, effective local contrast normalization may be
good for the classification. We adopt L2 normalization in the
same manner of Dalal [1]. Considering the neighboring cells for
the i-th cell as a group, which is called “block”, the i-th block
feature can be described as collection of the histogram vectors:

Vi = {fi \f e )s @)

where NN(7) means the neighbor cells for the i-th cell. Then the
block vector V; is normalized as

v,
VIVIE+ e

where € is a small positive constant to prevent diverging.

V,‘ = (8)

HOG descriptor, in the final form, is a collection of these nor-
malized block vectors {V;}. For example, let us consider the HOG
descriptor for 100 x 200 [pixels] images. Assuming the cell size
as 20 x 20 [pixels], we obtain 5 X 10 blocks, however, the bor-
der cells does not have enough neighbors to normalize. Thus,
we take 3 X 8 = 24 blocks as the effective blocks when we take
3 x 3 cells as one block. When we divide orientation into each
7/9, the histogram quantization parameter becomes Q =9, and a
block vector V; has 9 x (3 x3) = 81 dimensions. The block size is
24, and dimension of each block vector is 81 dimensions, so that,
the number of feature vector dimensions in the HOG descriptor
becomes 1,944 in this case.

2.1.3 Conventional HOG Classifying System

HOG descriptor is a robust expression for the local translation
deformation and illumination variation, and it can represent rough
feature of the object in an image. Thus, HOG is considered as
good for the generic object recognition [2]. Dalal proposed to
use HOG descriptor as the input for the support vector machine
(SVM), which is a kind of classifier, and showed better classifi-
cation performance rather than those of other features [1].
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Fig. 2 A schematic diagram of the convolution-net proposed by Mutch&Lowe [10]. The input image
would be processed through the pathway, that is, SI — C1 — S2 — C2 layers. The input image is
translated the description of d dimensional vector appeared in C2 layer.

2.2 Summary of a Convolution-net of Mutch & Lowe

For introducing the brain inspired mechanism into the HOG,
we explain a kind of convolution-net proposed by Mutch &
Lowe [10]. The convolution-net is a hierarchical artificial neural
network model originated from the model proposed by Hubel and
Wiesel [5]. Hubel & Wiesel found two types of cells in the early
visual processing area of the mammal brain, which are called
“simple cell” and “complex cell”. Each type of cell has local
area for responding in the viewing field, which is called “recep-
tive field”, and responds to the specific input stimulus such that
line/edge component in the receptive field. The difference be-
tween these types of cells is response for the location of the pre-
ferred input stimulus in the receptive field. The simple cell only
responds to the preferred input stimulus at the specific location.
On the other hand, the complex cell responds to the preferred in-
put stimulus at any location in the receptive field. Thus, Hubel &
Wiesel proposed a kind of hierarchy between these cells, that is, a
complex cell may gather the outputs of simple cells that respond
to same preferred stimulus but have slightly different receptive
fields. The convolution-net has a hierarchy of these types of cells,
and connects this hierarchy alternately [6], [7], [10].

Figure 2 is a schematic diagram of the convolution-net pro-
posed by Mutch & Lowe [10]. The lowest of the figure shows the
input layer. The most specific feature of this model is introducing
the multi-scale expression for the input image. An input image is
scaled into the several resolutions, which is described as the im-
age pyramid in the bottom of the figure. The S1-layer in the figure
is a model for the simple cells that extract line/edge components
for each location and resolution. Mathematically, this extracting
operation can be described as a convolution with line/edge fil-
tering template. The next Cl-layer in the figure is a model for
the complex cells. The Cl-layer cell calculate local maximum
for the corresponding S1-layer cells. This type of operation is
called spatial pooling, which is to tolerate the deformation of lo-
cal translation of the pattern in the image. The spatial pooling
operation can also describe as a convolution with non-linear op-
eration. These two layers are corresponds to the model of early
visual processing area.

The S2-layer is a higher feature extraction layer, which is im-
plemented as a kind of template-matching mechanism. The S2-
layer consists of d types of templates, and each template is also
treated as the line/edge extracting filters. These template filters
are obtained with sampling from the patterns appeared in Cl1-
layer for training input images.

The final layer, which is called C2-layer, integrates extracted
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features in the S2-layer pyramids. The unit in the C2-layer de-
tects maximum value for the corresponding S2-layer pyramid. As
the result, the unit represents the containing rate of the template
pattern for the input pattern. The expression of the C2 layer can
be regarded as the d dimensional vector for an input image, so
that, we can apply several classifiers such like SVM for this ex-
pression.

3. Hierarchical HOG Formulation

The hierarchical architecture of the convolution-net is an im-
portant concept for our study. The S1 layer in the convolution-net
plays a role of line/edge extractor for in the viewing field. Cal-
culating histogram from the image gradient operation in HOG is
the similar function for the line/edge extractor. Focusing to the
function of line/edge extraction, the difference between these two
models is only representation for the extracted features. The func-
tion of the C1 layer and that of the cell/block mechanism in HOG
is also similar. Figure 3 shows the corresponding architectures
between the convolution-net and HOG. In the figure, the conven-
tional HOG output corresponds to the C1 layer output; however,
the convolution-net has more deep hierarchy such like S2 and C2
layer. Thus, we can introduce hierarchy extension for HOG in
the manner of the convolution-net. In the following we call our
hierarchical HOG as “H-HOG".

3.1 Input Feature Modulation

Before explaining the higher layers, we introduce several mod-
ifications for the calculation of HOG descriptor. In Fig.3, HOG
descriptor, which is conducted from Eq. (6) to Eq. (8), is calcu-
lated as the input of the higher stage. In the count up for the
histogram by Eq. (6), the intensity m(u,v) is piled up linearly,
however, the small value of m(u, v) might be a kind of contam-
ination. Considering the case that all components of i-th block
V, are weak, all the weak components are enhanced in the nor-
malization procedure in Eq. (8). Thus, we introduce a nonlinear
modulation in order to emphasize the histogram:

fa= D wmuw,v) 6,0, v)), ©)
(u,v)ith cell
AT
¢(x)={|(;‘ Weifx>h (10)
else

where £ plays a role of threshold and d means an enhance fac-
tor. After calculating the modulated histograms {f;}, we adopt
the same manner of the conventional HOG representation.
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Fig. 3 Comparison among conventional HOG, convolution-net, and our hierarchical HOG. The
convolution-net alternate S-layer, which extracts features, and C-layer, which tolerate deforma-
tion with spatial pooling. The conventional HOG corresponds to the S1-layer and Cl-layer in the
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3.2 Multi-resolution Representation

The convolution-net proposed by Mutch & Lowe introduces a
multi-resolution representation. In order to introduce the multi-
resolution representation in our system, we prepare several HOG
descriptors that have different cell sizes. The advantage of the
multi-resolution representation is to the deformation of object
magnification and shrinkage. Figure 4 shows the advantage of
introducing the multi-resolution representation. Preparing differ-
ent scale representations, we can treat different scale objects as
identical representation.

3.3 Template-matching Layer: HS2

The template-matching layer in the H-HOG corresponds to the
S2 layer in the convolution-net, which is to extract just more com-
plex feature rather than those of the S1 layers. Mutch&Lowe
adopt to use templates of partial C1 descriptions for the train-
ing patterns chosen by sampling. For convenience, we call this
template-matching layer as HS 2-layer.
3.3.1 Template Selection

In the conventional HOG, the output description is represented
by {V;} in Eq. (8), where i means the block location. In the train-
ing mode of the H-HOG, at first, we select several block locations
in the several resolutions randomly. We treat neighbor blocks of
the selected block as a cluster for the template, and the size of
cluster is selected from several variations randomly. Thus, when
location ' is selected for the k-th template T, the template vector
can be denoted as:

T, = {Vi AV} jenniin ) (11)

where NN (i") means collection of neighborhood blocks of the i’-
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th block, and the size of the neighborhood is chosen from several
variations randomly.

Moreover, in order to prevent using similar template, we adopt
the following discard rule. Selecting new template 7', from the in-
put description, we calculate similarities for whole existing tem-
plates by use of direction cosine:

T, Tk
Tl TRl

where k is the index for the any existing templates. If the simi-

Unje = (12)

larity u,; is larger than a threshold U, we regard the HS?2 layer
already has template 7', and the template 7', is not accepted for
the HS 2 layer.
3.3.2 Calculation of HS2 Layer Representation

For the representation of the input image in the HS 2 layer, we
adopt direction cosine between a template and input representa-
tion in for the feature extraction of the HS2 layer. Denoting X ;
as the conventional HOG description of the location j for the k-th
template, that is,

X; =V, {Vikien) (13)
we describe the output of the HS2 layer R/’3* as

HS2 _ Tk'Xj

2 0 — (14)
ST X

Thus, the feature description RkHJS 2 describes the including de-
gree of k-th template at the location j. Applying this operation
to whole input location, we can obtain a feature map for the k-th
template.

3.4 Max-operator Layer: HC2

In the convolution-net, the C2 layer plays a role of integration
of feature by use of maximum operation, which can be consid-
ered as a kind of spatial pooling. In the H-HOG model, we also
adopt the maximum operator for the location, so that, the output
for the k-th template RMC% is calculated as

R/ = max R[S, (15)
ax K,

As the result, when we prepare K templates to describe input
data set, we can obtain K dimension vector for an input image.
This local template-matching and maximum integration might be
effective for the deformation of the image caused by the object
translation.
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Fig. 5 Examples of the human images. The left shows those in the original INRIA data set provided by
Dalal 100 x 200 [pixels®] [11]. The right top shows those of the dataset 1, which is re-cropped into
180 x 400 [pixelsz] and re-scaled into 100 x 200 [pixelsz]. The right bottom shows those of the
dataset 2, which is re-cropped into 300 x 600 [pixelsz] and re-scaled into 100 x 200 [pixelsz].

4. Computer Simulation & Results

In the evaluation of the H-HOG using compute simulation, we
adopt following parameters. In the experiment using conven-
tional HOG, we prepare several sizes for the cell, which is the unit
description for the histogram described as Eq. (6). These sizes are
{5x5,10x10, 15x15,20x20,25%x25} [pixelsz]. The quantization
parameter is fixed as Q = 9, and the block size is also fixed as 3 X
3 [cells?]. For example, when a 100 x 200 [pixels®] input image is
provided, the total dimensions of conventional HOG descriptors
for these cell sizes become {55,404, 11,664, 3,564, 1,944,972} el-
ements vectors respectively. In the following, we denote the HOG
descriptor that have n X n cells size as HOG,, for convenience.

In the H-HOG experiment, the model has multi-resolution rep-
resentation in the pre-HS 2 layer. We prepare several cell sizes for
the multi-resolution representation, that are {5 x 5,10 x 10, 15 X
15,20 x 20,25 x 25} cells. For template choosing in the HS2-
layer denoted as Eq. (11), template block size are randomly cho-
sen from following candidates: {1 x 2,2 x 4, 3 x 6} [blocks?]. For
example, when we segmented 2 X 4 [blocks?] as a template, the
template become 648 elements vector. Each location for the tem-
plate is also chosen randomly from one cell size representation.
We determine to choose 4 templates for each cell size represen-
tation, so that 20 templates are selected from one training input
image.

For the H-HOG experiments, we focus to the feature extraction
ability in HS 2 layer, so that, we prepare the following three types
of H-HOGs. One is H-HOG with applying template selection de-
scribed in Section 3.3.1, and we denote it as “H-HOG,,;”. We
choose U = 0.8 for the threshold in Eq. (12) to discard similar
templates, which is determined experimentally.

The second type is applying the non-linear modulation denoted
as Eq. (10) into the H-HOGy,;. We described this type as “H-
HOG_'Y‘ZI””. The modulation parameters, which are threshold 4 and
emphasize factor d, are experimentally determined as 7 = 50 and
d = 1.1 respectively.

The last one is not applying these modifications, and we denote
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it without any suffixes as “H-HOG”.

4.1 Dataset: INRIA Person Detection

We evaluate the performance of the H-HOG for a person de-
tection problem using a modified INRIA person dataset [11]. The
conventional INRIA person dataset is for the evaluation of the
classification accuracy of the conventional HOG. In the conven-
tional dataset provided by Dalal [1], human objects are segmented
and normalized in the 64 x 128 [pixels’]. Figure 5 left shows sev-
eral examples of the normalized human image in the same manner
of Dalal except image size, which is 100x 200 [pixels>]. Roughly
speaking, the parts of the human such that head, body, and legs
in the normalized images looks located similar position, and each
size of human looks same size even though the target is child or
adult.

In this study, we re-crop the human images from the original
image database for evaluation of the scale and location invariance.
The dataset 1 is cropped as 180 x 400 [pixels®] from the original
image, and normalized in 100 x 200 [pixels?], which includes hu-
man object at random position for positive samples. The dataset
2 is also cropped as 300 x 600 [pixels?] from the original image,
and normalized in 100 x 200 [pixelsz]. The locations and sizes
of human objects are assigned more random rather than those of
the dataset 1 for positive samples. Figure 5 right top shows cor-
responding examples in the dataset 1, and the bottom shows the
dataset 2. The difference between dataset 1 and 2 is human ob-
jects sizes and locations. The larger cropping images, which is
included in the dataset 2, have more flexibility rather that that of
the smaller set. Thus, the dataset 2 is considered to be the most
difficult for human detection in our prepared datasets, since the
size and location is further from the normalized images provided
by Dalal [1].

In order to compare performances among the H-HOG and sev-
eral conventional HOGs, we prepare following 3 image groups.
One is for creating templates in the HS?2 layer of the H-HOG.
For creating proper templates, we use original segmented posi-
tive images in the INRIA person dataset [11]. The other 2 groups,
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Table 1 Result for the dataset 1, which has small variations of human object locations in normalized
100 x 200 [pixels®]. Each column shows, detecting accuracy, input dimension for classifier, time
for classifier learning, time for classifier testing, and required memory size respectively. The
memory size is indicated as required page size, which has 4,096 [KBytes/pages].

Accuracy[%] | # Dimension time [sec] memory [pages]
Learn | Test

HOG:s 88.2 55,404 | 140.80 | 2.92 7.02x10°
HOG 88.2 11,664 27.88 | 0.55 1.49%10°
HOG;5 78.3 3,565 8.42 | 0.16 5.33x10°
HOG, 82.2 1,944 4.58 | 0.07 5.48x10°
HOG5s 78.3 972 231 | 0.04 5.52x10°
H-HOG 86.3 4,000 8.73 | 0.12 5.63x10°
H-HOGg,, 86.8 2,431 5.34 | 0.07 5.56x10°
H-HOGY! 88.7 3,306 7.04 | 0.08 5.55x10°

Table 2

Result for the dataset 2, which has large variations of human object locations in 300 x

600 [pixels®]. Each column shows same as Table 1.

Accuracy[%] | # Dimension time [sec] memory [pages]

Learn | Test
HOGs 71.5 55,404 | 140.82 | 2.89 7.01x10°
HOG; 75.3 11,664 27.77 | 0.55 1.48x10°
HOG;s 77.5 3,565 8.42 | 0.14 5.39x10°
HOG 76.7 1,944 4.59 | 0.08 5.44x10°
HOG;s 80.5 972 228 | 0.03 5.53x10°
H-HOG 83.3 4,000 8.54 | 0.11 5.70x10°
H-HOGg,, 83.0 2,431 5.25 | 0.06 5.56x10°
H-HOG 86.5 3,306 7.01 | 0.10 5.55x10°

which are prepare from dataset 1 and 2, are used for SVM clas-
sifier learning and evaluation. These 3 groups do not share any
images.

For obtaining templates in the HS2 layer of the H-HOG, we
prepare 200 inputs images for template creation. The contents of
these images are 100 positive examples that involve human ob-
ject, and 100 negatives that does not involve. For creating proper
templates, we use scale and location normalized images for pos-
itive samples in the same manner with Dalal such like images in
Fig. 5 left. In our simulation, our algorithm select 20 templates
for each training image, so that HS 2 layer would have 4,000 tem-
plates at a maximum, and similar templates would be discarded
in the H-HOGy,; and H-HOG"%"

sel

by applying templates selection
described in Section 3.3.1.

For evaluation, we use both the dataset 1 and 2. In each dataset,
80 images are used for training of the classifier SVM for both the
conventional HOG and the H-HOG descriptions. The number of
positive images and negatives are 40 images equivalently. We
apply the SVM provided from the OpenCV with default parame-
ters [12]. We also prepare another 600 patterns for each dataset in
order to evaluate the classification accuracy of the conventional
HOG and H-HOG. The positives and negatives are also equiva-
lently included.

4.2 Detection Performance for INRIA Person Dataset
Table 1 shows the result of detection performance for the
dataset 1. The dataset 1 has small variations of human object
locations in normalized 100 x 200 [pixels?]. Each column shows
detecting accuracy, input dimension size for classifier, spending
time for learning and for testing, and required memory size re-
spectively. We investigate these performances over the computer
which has following specification: OS: Ubuntu 10.04 LTS, CPU:
Xeon E5530 2.4 [GHz], Memory: 24 [GBytes]. In the result Ta-
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ble 1 and Table 2, the calculation time for both learning and test-
ing stands for the consuming time for only the SVM classifier.
Of course, our H-HOG requires extra time cost for template cre-
ation and extraction compared with the conventional HOG sys-
tem. However, in the conventional HOG, adjusting the object
location and scale variances are carried out in the pre-process.
Thus, comparing these time costs for feature extractions are diffi-
cult, so that, we only evaluate the consuming time for SVM clas-
sifier in these tables. The consuming memory size is shown as
required page size, which is 4,096 [KBytes/pages]. In the conven-
tional HOG, the small size of cell denoted as HOG5 shows better
performance on the accuracy rather than the other HOGs, while
the size of input dimension for classifier, required memory and
spending time is larger than those of others. Our H-HOG shows
also good performance, while the input dimensions is only 4,000
at a maximum. Moreover, H-HOG introduced non-linear mod-
ulation and template selection, which is denoted as H-HOG'/),
show the best accuracy result for the dataset 1.

Table 2 shows the result of the detection performance for the
dataset 2, which has large variations for human object locations
and sizes. Each column indicates same as shown in Table 1. The
HOG:s, which shows the best detecting accuracy in the dataset
1, indicates the worst accuracy in this dataset. So that, the con-
ventional HOG requires designing for adjusting to the detecting
object scales. On the contrary, H-HOG also shows the good per-
formance against to the conventional HOGs.

Figures 6 and 7 show the detection error trade-off (DET)
curves for dataset 1 and 2 respectively. In each figure,
the horizontal axis shows the false positive rate per window
(FPPW), and vertical one shows the miss rate[1]. FPPW is
calculated as the rate such that (the number of false alarms)/
(the total number of testing negative examples). The miss rate is
calculated as the (1 — recall rate). Thus the lower DET curve
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Fig. 6 Detection error trade off (DET) curve for dataset 1. The horizontal
axis shows false positive per window (FPPW), and the vertical shows
the miss rate. The H-HOG curve shows the lowest miss rate for al-
most all the FPPW area. The only HOGs becomes lowest miss-rate
with over around 0.08 FPPW.

DET curve for Dset 2

10°
]
e
a
£
---- HOG 5
——= HOG 15
—-- HOG 25
=== H-HOG
107 !
1073 10 10"

FPPW

Fig.7 DET curve for dataset 2. The horizontal and vertical axis is identical
to Fig. 6. The H-HOG curve shows the lowest miss rate.

means better performance.

From the DET curves in Fig.6, we can see the H-HOG
shows the best performance in the compared systems under the
0.08 FPPW. Over the value HOGs shows the better performance
rather than the H-HOG.

On the contrary, in Fig.7 that shows the performance for the
dataset 2, HOGs becomes the worst performance, and the large
cell size HOG,5 becomes better in the conventional HOG. Thus
the proper scaling and assignment of the object location is impor-
tant for the conventional HOG. Our H-HOG keeps better perfor-
mance in this environment.

5. Conclusion & Discussion

In this study, we propose a hierarchical extension of HOG
model, and evaluate the performance about classification. In the
conventional HOG models, the HOGs, HOG( shows a good re-
sult for the small image dataset, however, the dimension of input
vector for the classifiers become over 10,000 dimensions. Gener-
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Table 3 Performance comparison between raw HOG descriptors and PCA-
HOGs for dataset 1.

Accuracy[%] # Dimension

Raw | PCA Raw | PCA
HOG; 88.2 88.7 | 11,664 297
HOG;s 78.3 80.3 972 67

H-HOG"™" | 88.7 88.3 3,306 130

sel

Table 4 Performance comparison between raw HOG descriptors and PCA-
HOG:s for dataset 2.

Accuracy[%] # Dimension

Raw | PCA Raw | PCA
HOG 75.3 73.7 | 11,664 285
HOG;s 80.5 77.7 972 63

H-HOGY)' | 86.5 87 3,306 121

ally, the large dimension classification brings several difficulties
for classification, that is called ‘the curse of dimension’. On the
contrary, our H-HOG model can control the dimension, which is
the number of the templates selected from multi-resolution repre-
sentation of the HOG description. We also demonstrate that the
performance of our model is as good as that of the HOGs even
in the small dimensions, which is under 4,000 dimensions, of the
input vector for classifier. Our H-HOG model shows the best per-
formance for the dataset 2. The dataset 2 have larger variances
for the location and size of the human object. The performances
of the classification of conventional HOG models are just affected
to these variances. The smaller cell size becomes, the worse the
classification result becomes. On the contrary, our H-HOG model
integrates several resolution size and show robustness for these
flexibility. Thus, we consider these hierarchical extension is ef-
fective for the generic object recognition for the real world.

From the view point of the reducing the input dimension, we
can apply to project HOG descriptor into the subspace obtained
by principal component analysis (PCA) for the input feature. Lu
& Little applied PCA for the HOG descriptor, which is called
PCA-HOG, for the video tracking and show the good perfor-
mance [13]. Thus, we also apply projecting the HOG (s and
the H-HOG descriptors into each PCA subspace and evaluate the
performances. Tables 3 and 4 shows the accuracy and feature de-
scriptor dimensions for dataset 1 and 2 respectively. The general
relationship between raw HOG descriptors and PCA projected
is not so much differ. For the dataset 1, H-HOG is slightly worse
performance rather than that of the HOG in the condition of low
FPPW (< 9.07%), however, HOG ( becomes worst in the dataset
2. Thus, we can confirm the robustness of the H-HOG for the
scale and location variances. Figures 8 and 9 show the DET
curves for the dataset 1 and 2 respectively. We can see HOGg
shows good performance in the small variances of object loca-
tion and size, however, in the large variances the HOG becomes
worst. On the contrary, H-HOG keeps good performance for both
environments.

Felzenszwalb et al. proposes a part-based object detection
model [14], [15]. This model represents input image in multi-
scale resolution by the HOGs. The lower-resolution HOG de-
scriptor plays a roll of rough detection and higher-resolution
HOG plays detecting of part of the objects. These descriptors
are combined into a feature map in order to find root object lo-
cations. The concept of our H-HOG model is similar to this part
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Fig. 8 Detection error trade off (DET) curve for dataset 1 using PCA pro-
jected descriptors. The horizontal and vertical axis is identical to
Fig. 6.
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Fig. 9 Detection error trade off (DET) curve for dataset 2 using PCA pro-
jected descriptors. The horizontal and vertical axis is identical to
Fig. 6.

model except combining these feature into a single map.

Comparison with the conventional convolution-net, such like
Neocognitron, Le-Net and Lowe model [6], [7], [8], [10], the
most difference points is description manner. The convolution-net
often apply Gabor function like filter in order to extract line/edge
segment in the image, and sub-sampling, which is called blur-
ring, is carried out for local pattern deformation. In this sub-
sampling process, peripheral information is sum up into a scalar
value. In the manner of HOG descriptor, the line/edge segment
is represented as an image gradients histogram, and this function
is similar to the Gabor filter extraction. However, in the block
description of the HOG, peripheral information is not sum up but
preserving as a vector description as Eq. (8). The vector repre-
sentation includes more detail information rather than that of the
scalar description, so that, the HOG descriptor might be suitable
description for object detection/recognition.
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