
IPSJ SIG Technical Report

レクトリニア多角形配置問題に対する高速な構築型解法

胡　艶楠1,a) 橋本　英樹1,b) 今堀　慎治2,c) 柳浦　睦憲1,d)

Abstract: The rectilinear block packing problem is a problem of packing a set of rectilinear blocks into a larger rect-
angular container, where a rectilinear block is a polygonal block whose interior angle is either 90◦ or 270◦. There
exist many applications of this problem. In this paper, we propose a new construction heuristic algorithm based on the
bottom-left strategy. The proposed algorithm is tested on a series of instances, which are generated from nine bench-
mark instances. The computational results show that the proposed algorithm is especially effective for large instances
of the rectilinear block packing problem.

1. Introduction
The rectilinear block packing problem is a problem of packing

a set of arbitrary shaped rectilinear blocks into a larger rectan-
gular container without overlap so as to minimize or maximize
a given objective function. A rectilinear block is a polygonal
block, whose interior angle is either 90◦ or 270◦. This problem
involves many industrial applications, such as VLSI design, tim-
ber/glass cutting, and newspaper layout. It is among classical
packing problems and is known to be NP-hard [1].

A special case of the rectilinear block packing problem is the
rectangle packing problem. Up to now, many efficient algorithms
have been proposed to solve the rectangle packing problem, such
as simulated annealing [2], hybrid algorithm [3] and quasi-human
heuristic algorithm [4]. The bottom-left algorithm [1] and the
best-fit algorithm [5] are known as the most remarkable ones
among the typical frameworks of existing construction heuristic
algorithms. Inspired by these approaches, we proposed a bottom-
left algorithm and a best-fit algorithm for the rectilinear block
packing problem, and we also designed their efficient implemen-
tations in [6].

The main strategy of our algorithms is the bottom-left strategy,
which derives from the bottom-left algorithm for rectangle pack-
ing [1]. In this strategy, whenever a new item is being packed
into the container, it will be placed at the bottom-left position
(abbreviated as BL position) relative to the current layout. The
BL position of a new item relative to the current layout is defined
as the leftmost point among the lowest bottom-left stable feasible
positions, where a bottom-left stable feasible position is a point
such that the new item can be placed without overlap and cannot

1 Department of Computer Science and Mathematical Informatics, Grad-
uate School of Information Science, Nagoya University, Nagoya, Japan

2 Department of Computational Science and Engineering, Graduate
School of Engineering, Nagoya University, Nagoya, Japan

a) yannanhu@nagoya-u.jp
b) hasimoto@nagoya-u.jp
c) imahori@nagoya-u.jp
d) yagiura@nagoya-u.jp

be moved leftward nor downward.
In this paper, we analyze the strength and weakness of the two

algorithms from both sides of the running time and the quality
of the packing result. Based on this observation, we then pro-
pose a new construction heuristic algorithm partition-based best-
fit heuristic (abbreviated as PBF) as a bridge between the best-fit
and bottom-left algorithms. The basic idea of the PBF algorithm
is that all the items to be packed are partitioned into groups, and
then items are packed into the container in a group-by-group man-
ner. The best-fit algorithm is taken as the internal tactics to pack
items of each group. We analyze the time complexity of the PBF
algorithm and perform a series of experiments on some bench-
mark instances. The computational results show that the pro-
posed algorithm is especially effective for large-scale instances
of the rectilinear block packing problem.

2. Problem Description
We are given a set of n items R = {R1,R2, . . . ,Rn} of recti-

linear blocks, where each rectilinear block takes a deterministic
shape and size from a set of t types T = {T1,T2, . . . ,Tt}. We are
also given a rectangular container C with fixed width W and un-
restricted height H. The task is to pack all the items orthogonally
without overlap into the container. We assume that the bottom
left corner of the container is located at the origin O = (0, 0) with
its four sides parallel to x- or y-axis. The objective is to min-
imize the height H of the container which is necessary to pack
all the given items. Note that the minimization of the height H
is equivalent to the maximization of the occupation rate defined
by
∑n

i=1 A(Ri)/WH, where A(Ri) denotes the area of a rectilinear
shape Ri.

We define the bounding box of an item Ri as the smallest rect-
angle that encloses Ri, and its width and height are denoted as wi

and hi. We call the area of the bounding box, wihi, the bounding
area of Ri. The location of an item Ri is described by the co-
ordinate (xi, yi) of its reference point, where the reference point
is the bottom-left corner of its bounding box. For convenience,
each rectilinear block and the container C are regarded as the set

c© 2012 Information Processing Society of Japan 1

Vol.2012-AL-141 No.6
2012/10/4

IPSJ SIG Technical Report

of points (including both interior and boundary points), whose
coordinates are determined from the origin O = (0, 0). Then,
we describe the rectilinear block Ri placed at vi = (xi, yi) by the
Minkowski sum Ri ⊕ vi = {p + vi | p ∈ Ri}. For a rectilinear block
Ri, let int(Ri) be the interior of Ri. Then the rectilinear block
packing problem is formally described as follows:

minimize H

subject to 0 ≤ xi ≤ W − wi, 1 ≤ i ≤ n (1)

0 ≤ yi ≤ H − hi, 1 ≤ i ≤ n (2)

int(Ri ⊕ vi) ∩ (R j ⊕ v j) = ∅, i , j. (3)

The constraints (1) and (2) tell that all the rectilinear blocks
must be packed inside the container. The constraint (3) means
that there exists no item overlapping with others.

3. Basic Knowledge
In this section, we explain some important techniques and def-

initions used in our algorithms, and the bottom-left and the best-
fit algorithms. As a crucial technique for packing problem, the
idea of no-fit polygon is introduced in Section 3.1. As a basic
terminology, the BL position is introduced in Section 3.2. Two
construction algorithms for the rectilinear block packing problem
are introduced in Section 3.3 and 3.4.

3.1 No-Fit Polygon
No-fit polygon (abbreviated as NFP) is a geometric technique

to check overlaps of two polygons in two-dimensional space.
This concept was introduced by Art [7] in 1960s, who used the
term “shape envelope” to describe the positions where two poly-
gons can be placed without intersection. It is defined for an or-
dered pair of two polygons i and j, where the position of polygon
i is fixed and polygon j can be moved. NFP(i, j) denotes the
set of positions of polygon j having intersection with polygon i,
which is formally defined as follows:

NFP(i, j) = int(i) ⊕ (−int(j)) = {u − w | u ∈ int(i), w ∈ int(j)}.
(4)

When the two polygons are clear from the context, we may sim-
ply use NFP instead of NFP(i, j). Assume that ∂NFP(i, j) de-
notes the boundary of NFP(i, j), and the cl(NFP(i, j)) denotes
the closure of NFP(i, j). The no-fit polygon has the following
important properties:
• j ⊕ v j overlaps with i ⊕ vi if and only if v j ∈ NFP(i, j)⊕ vi.
• j ⊕ v j touches i ⊕ vi if and only if v j ∈ ∂NFP(i, j) ⊕ vi.
• i ⊕ vi and j ⊕ v j are separated if and only if v j <

cl(NFP(i, j)) ⊕ vi.
Hence, the problem of checking whether two polygons overlap or
not becomes an easier problem of checking whether a point is in
a polygon or not.

When i and j are both convex, ∂NFP(i, j) can be computed
by the following simple procedure: We first place the reference
point of i at the origin O = (0, 0), and slide j around i having it
keep touching with i. Then the trace of the reference point of j is
∂NFP(i, j).
3.1.1 Method of Calculating NFP of Rectilinear Blocks

In this paper, we treat rectilinear blocks. However, we only

need NFPs between a rectangle and a rectilinear block. Let i be a
rectangle and R j be a rectilinear.

When i and R j are both rectangles, where rectangle i (resp., R j)
has width wi (resp., w j) and height hi (resp.,h j), NFP(i,R j) can
be computed by the following expression:

NFP(i,R j) = {(x, y) | −w j < x < wi,−h j < y < hi}. (5)

When R j is a rectilinear block, we first divide R j into a set of
rectangles S . For example, a rectilinear block with m j concave
vertices (i.e., vertices whose angle outside of the block is 90◦)
can be cut into at most m j + 1 rectangular pieces by horizontal
lines that go through its concave vertices. For each item S k in S ,
we can easily calculate its NFP with respect to i by using (5). The
NFP(i,R j) is the union of these NFP(i, S k) for all S k in the set
S . The NFP(i,R j) can be formally calculated as follows:

NFP(i,R j) =
∪
S k∈S

(NFP(i, S k) ⊕ vk), (6)

where vk is the position of S k relative to the reference point of R j.

3.2 Bottom-Left Position
Bottom-left stable feasible positions are defined for a given

area, a set of rectilinear blocks placed in the area, and one new
item to be placed. In this paper, we assume that the shape of the
given area is rectangular. A bottom-left stable feasible position
is a point in the area where the new item can be placed without
overlap with already placed rectilinear blocks and the new item
cannot be moved leftward nor downward. “Bottom-left stable”
means that the new item cannot move to the bottom or to the left,
and “feasible” means that the new item will not overlap with other
blocks when it is placed.

Note that there are many bottom-left stable feasible positions in
general. The BL position is the leftmost point among the lowest
bottom-left stable feasible positions.
3.2.1 Method of Calculating BL Position

In this section, we explain how to calculate the BL position of
a rectilinear block by using the NFPs. For simplicity, in this sec-
tion, we assume that all the items in the container are rectangles.
This assumption does not lose generality because any rectilinear
block can be represented as the union of a set of rectangles.

First we calculate NFPs of the new rectilinear block relative
to all the rectangles which are in the container. We then place
every NFP at the position where the corresponding rectangle is
placed. We define the CrossPoint as follows: if one NFP’s right
edge crosses another’s top edge, we call the crossing point as
a CrossPoint. Observe that, the bottom-left stable feasible po-
sition will only appear at the non-overlapping CrossPoints. By
checking such CrossPoints, we can get the bottom-left stable fea-
sible positions. The BL position of the rectilinear block is the
leftmost point among the lowest bottom-left stable feasible posi-
tions. Instead of checking such CrossPoints one by one, we use
the sweep line technique to compute the number of NFPs that
cover every CrossPoint. As a result, we can compute the BL po-
sition of a rectilinear block R j in O(m jM log M) time, where mi is
the number of rectangles that represent a rectilinear block Ri and
M =

∑n
i=1 mi.

c© 2012 Information Processing Society of Japan 2

Vol.2012-AL-141 No.6
2012/10/4

IPSJ SIG Technical Report

3.3 Bottom-Left Algorithm for Rectilinear Block Packing
In this section, we explain the bottom-left algorithm for the

rectilinear block packing problem.
The bottom-left algorithm can be generally explained as fol-

lows: We are given a set of n rectilinear blocks R and an order
of items (e.g., decreasing order of area). The algorithm packs the
items one by one according to the given order, where each item is
placed at its BL position of the current layout (i.e., the layout at
the time just before it is placed).

3.4 Best-Fit Algorithm for Rectilinear Block Packing
In this section, we explain the best-fit algorithm for the recti-

linear block packing problem.
The basic idea of the best-fit algorithm comes from the best-

fit algorithm for the rectangle packing problem, which was pro-
posed by Burke et al. [5]. The best-fit algorithm can be generally
explained as follows: We are given a set of n rectilinear blocks
R and priority among them (e.g., an item with larger area has
higher priority). The algorithm packs items one by one, and in
each iteration, it dynamically chooses a rectilinear block to pack
among the remaining items by the following rule: Calculate the
BL positions of all the remaining items. Then a rectilinear block,
whose BL position takes the smallest x-coordinate among those
with the lowest y-coordinate, is packed in this iteration. If there
exists more than one such item, the one with the highest priority
among them is chosen.

3.5 Time Complexity
In this section, we explain the time complexity of the bottom-

left and best-fit algorithm.
In this paper, we assume that each rectilinear block is repre-

sented as a set of rectangles with certain constraints on their rel-
ative positions. The number of rectangles that represent a recti-
linear block Ri is denoted by mi, and M denotes the sum of mi

over all the n rectilinear blocks. The sum of mi of the rectilinear
blocks from t distinct types is denoted by m.

The time complexity of both of the bottom-left algorithm and
the best-fit algorithm is O(Mm log M).

4. New Construction Heuristic Algorithm
In this section, we first analyze the performance of the bottom-

left algorithm and the best-fit algorithm. Then, we explain our
new construction heuristic algorithm PBF, which takes the ad-
vantages of these two algorithms. Finally, we analyze the time
complexity of our new algorithm.

4.1 Analysis of Bottom-Left Algorithm and Best-Fit Algo-
rithm

According to the experimental results [6] obtained by the
bottom-left algorithm and the best-fit algorithm, we observed that
the best-fit algorithm performed better with respect to the occupa-
tion rate for many of the instances we tested. However, there are
also a non-negligible number of instances for which the opposite
holds. Observing and analyzing the packing layouts obtained by
the two algorithms, we summarize the reason why the best-fit al-
gorithm performs better for many of the instances we tested and

for what kind of instances, the bottom-left algorithm performs
better.

The reason why the best-fit algorithm performs better for many
instances is that whenever the best-fit algorithm packs an item
into the container, it tries all the remaining items relative to the
current layout, and chooses the one that can be placed at the low-
est position. As a result, an item that fits well with the surround-
ing layout tends to be chosen, which means that redundant space
around the new item is usually small. On the contrary, the bottom-
left algorithm may not choose a proper item that fits well with the
current layout, because the next item to place is always fixed a
priori (by the given order of items). Fig. 1 shows an example
when the best-fit algorithm performs better. The left layout of
Fig. 1 is obtained by the bottom-left algorithm, and the right one
is obtained by the best-fit algorithm. The height obtained by the
bottom-left algorithm is 40 and that obtained by the best-fit algo-
rithm is 37.

14

11

1

12

25

13

3

22

6

21

5

232

24

18

29 20

26

19

15

4

9

8

16

17 10 7

27

28

14

11

20

1

13

5

15

28

6

25

19

17

10 27

12

23 3

2

24

26

18

29

4

7

22

8

9 16

21

Fig. 1 An example when the best-fit algorithm performs better (left: the
bottom-left algorithm, right: the best-fit algorithm)

However, there are instances for which the bottom-left algo-
rithm performs better. Recall that the bounding area of an item
is the area of its bounding box, where the bounding box of an
item is the smallest rectangle that encloses the rectilinear block.
For example, when there are items whose areas are small but
the bounding areas are extremely large, and there are also items
whose bounding areas are small, the bottom-left algorithm often
performs better.

Note that if an item has a small area but has a large bound-
ing area, it has large blank space inside (i.e., if it is put into its
bounding box, large blank space remains in the bounding box
in which small items can fit). It is known that the bottom-left
algorithm tends to perform well when the given order is the or-
der of decreasing area or decreasing bounding area. Assume that
we are given the decreasing order of bounding area. At the be-
ginning of the packing process, the bottom-left algorithm packs
relatively bigger items (with greater bounding area) into the con-
tainer, and some of them have large blank space inside. At this
moment, large spaces are often made between such large items.
Later, when relatively smaller ones come, they tend to be packed
into the blank space between the packed ones. This means that
the placement of small ones is not very important, and the height
H of the container is mainly decided by the layout of bigger ones.

Conversely, because the BL positions of relatively smaller
items are often lower than those of bigger ones, the best-fit al-
gorithm tends to pack them first, and leave relatively bigger ones

c© 2012 Information Processing Society of Japan 3

Vol.2012-AL-141 No.6
2012/10/4

IPSJ SIG Technical Report

behind. In the end of the processing of the best-fit algorithm, re-
maining bigger items are placed on top of smaller ones, and the
blank space between these bigger ones significantly reduces the
final occupation rate. Fig. 2 shows an example of this case. The
left layout of Fig. 2 is obtained by the bottom-left algorithm, and
the right one is obtained by the best-fit algorithm. The height of
the left one is 3960 and that of the right one is 4283.

13 13

7 7

18 18

5

5

1 1

12

12

9

9

6

6

2

2

15

15

8

8

10

10

17

17

16

16

19 19

3

3

11

11

20

20

14

14

4

4

41

41

27 27

34

34

38 38

26

26

47

47

22

22

21

21

39

39

46 46

50

50

40

40

32

32

37

37

35

35

29

29

31

31

44

44

28

28

43

43

23

23

48

48

25

25

30

30

42

42

45

45

33

33

49

49

51

51

36

36

24 24

13

41

17 17

3 3

7

27

47

41

27

32

38

36

47

32

36

38

9

6

42

9

51

8

31

24 24

26

20

42

48

26

31

6

51

20

46

40

40

46

37

14

14

39

37

44

35

35

4

10

44

33

28

33

49

28

43

49

23

43

23

48

25

30

162

2

25

8

30

45

45

19

16

21

21

4

34

39

10

50

2929

5

13

34 22

18

5

7

18

1 19

22

50

1

12

12

15

15

11

11

Fig. 2 An example when the bottom-left algorithm performs better (left: the
bottom-left algorithm, right: the best-fit algorithm)

For the same instance used in Fig. 2, Fig. 3 shows the lay-
outs when the first half of the items are packed into the container.
The left layout is obtained by the bottom-left algorithm, and the
right one is obtained by the best-fit algorithm. The height of the
bottom-left algorithm is 3960 and that of the best-fit algorithm is
1880. At this moment, the height of the container obtained by
the bottom-left algorithm is already the same as that of its final
layout. This means that the remaining half of items have no effect
on the final height of the container. On the contrary, many small
items have already been packed by the best-fit algorithm, and we
can observe by comparing the layouts on the right of Fig. 2 and 3
that most of the remaining items are large.

13 13

7 7

18 18

5

5

1 1

12

12

9

9

6

6

2

2

15

15

8

8

10

10

17

17

16

16

19 19

3

3

11

11

20

20

14

14

4

4

41

41

27 27

34

34

38 38

26

26

47

13

41

17 17

3 3

7

27

47

41

27

32

38

36

47

32

36

38

9

6

42

9

51

8

31

24 24

26

20

42

48

26

31

6

51

20

46

40

40

46

37

14

14

39

37

44

35

35

4

10

44

Fig. 3 Layouts when the algorithms pack half of the items (left: the bottom-
left algorithm, right: the best-fit algorithm)

4.2 Partition-Based Best-Fit Algorithm
Considering the observation in Section 4.1, the idea of simply

choosing either the best-fit algorithm or the bottom-left algorithm
according to the property of instances comes naturally. Another
simple idea would be just to run both algorithms and then choose
the better layout. However, considering the fact that occupation
rate of the best-fit algorithm is better in many cases, we propose
a new construction heuristic, which uses the best-fit algorithm as
its core part, but alleviates the drawback of the best-fit algorithm.
The main idea is to divide the items to be packed into groups and

then pack the items into the container in a group-by-group man-
ner. We adopt the best-fit algorithm to pack the items of each
group. Intuitively, we would like to divide the items into groups
so that the smaller the item is, the later the group containing it is
processed. There will be many rules that realize this, and the rule
we tested is explained in Section 5.

The PBF algorithm is generally explained as follows: We are
given a set of n rectilinear items R, which is divided into K groups
B = {B1, B2, . . . , BK}, and we are also given the priority among
the items. The PBF algorithm repeats the following steps:
Step 0. Set k := 1.
Step 1. For the current layout, call the best-fit algorithm to

pack all the items in group Bk into the container.
Step 2. If k = K, output the current layout and stop; otherwise,

set k := k + 1, and then return to Step 1.
Note that, if K = 1, the PBF algorithm performs the same as

the best-fit algorithm. If K = n, the processing of PBF algorithm
is the same as the bottom-left algorithm. If appropriately imple-
mented, the running time of the PBF algorithm is independent of
K and is O(Mm log M). The details of how to realize this time
complexity is omitted due to space limitations.

5. Computational Results
The PBF algorithm proposed in this paper was implemented

in the C programming language and run on a Mac PC with 2.3
GHz Intel Core i5 processor and 4 GB memory. Performance of
the PBF algorithm has been tested on a series of instances, which
are generated from nine benchmark instances. For more details
of these instances, readers could refer to [8]. The width W of the
container is decided by W =

⌈ √∑n
i=1 A(Ri)

⌉
.

For two rectilinear blocks Ri and R j, Ri � R j signifies that Ri

and R j can be packed into the bounding box of R j without over-
lap. For these instances, we divide all the given items into two
groups Large and Small so that for every item Ri in Small, there
exists at least one item R j in R that satisfies Ri � R j and A(Ri) is
strictly smaller than that of any item in Large. This rule can be
formally described as follows:

Tem S = {Ri ∈ R | ∃R j ∈ R,Ri � R j}
Tem L = R \ Tem S

Small = {Ri ∈ Tem S | ∀R j ∈ Tem L, A(Ri) < A(R j)}
Large = R \ Small.

As to the order of the items for the bottom-left algorithm and
the priority among the items for the best-fit algorithm, we tested
the decreasing order of width, area, and bounding area. The com-
putational results of the decreasing order of area is slightly better
than the results obtained by other orders. Hence, we report those
results of the decreasing order of area.

The proposed algorithm is tested on a series of instances, which
are generated from nine benchmark instances. For some in-
stances, the results obtained by the PBF algorithm and the best-fit
algorithm are not much different, and hence, we omit their results
and show those of four types of benchmark instances for which
interesting outcomes are observed. The computational results ob-
tained by the bottom-left algorithm, the best-fit algorithm, and the

c© 2012 Information Processing Society of Japan 4

Vol.2012-AL-141 No.6
2012/10/4

IPSJ SIG Technical Report

20 20 20 20

2

2 2 2

16 16 16

16

7 19 7 19 7 19

7 19

12 12

12 12

6

11

6

11

6

11

6

11

17 17

17 17

45

4

5

4

5

45

1 1 1 1

3

8

3

8

3

8 3 8

15

15

15

15

14 14 14 14

10 10 10

10

18

18 18 18

9

9 9

9

13

13 13 13

20 20 20 20

2

5

13

9 13

15

15

2

5

2

5

2

5

14

179

7

13

13

15 157 7 10 17

16

10

14 14

7

17 17

1 1 1 1610

1

16 16

10 19

9 9

3

3 3

19 193 8 8

19

4 8

4 12 12 11

12

6

12

6

11

6

8

11

6

18 18

11 4 4

18 14

18

20 20 20 20

2

2 2 2

16 16 16

16

7

12

7

12

7

12

7 19 19

19

19

12

5

13

9 13

15

13

9 8 8 9

15

13

18

15

9

18

1

18

1 1 6

5

1 15

6 6

5

18

17 10

6

5 3 3

173

10

3

10

10

4

17 174 4 11

8 11 8

11 11 4

14

14 14 14

Fig. 4 Layouts obtained for T144 004 by the three algorithms (left: the bottom-left algorithm, middle:
the best-fit algorithm, right: the PBF algorithm)

Table 1 Computational results of T144

instance W n BL(%) BF(%) PBF(%)
T144 001 11 20 85.31 ∗92.42 85.31
T144 002 15 40 85.61 ∗90.37 ∗90.37
T144 004 22 80 88.73 92.42 ∗96.44
T144 008 31 160 92.60 ∗95.41 ∗95.41
T144 016 44 320 92.42 94.39 ∗96.44
T144 032 62 640 95.41 96.87 ∗98.39
T144 064 88 1280 96.44 ∗97.50 ∗97.50
T144 128 124 2560 96.87 97.62 ∗98.39
T144 256 176 5120 98.04 98.59 ∗99.14
T144 512 249 10240 98.38 98.76 ∗99.15

Table 2 Computational results of T40

instance W n BL(%) BF(%) PBF(%)
T40 001 301 32 ∗88.72 81.53 86.19
T40 002 426 64 ∗90.70 87.00 ∗90.70
T40 004 602 128 ∗92.82 91.41 ∗92.82
T40 008 852 256 92.67 93.69 ∗95.80
T40 016 1205 512 94.19 92.74 ∗94.93
T40 032 1704 1024 95.26 93.18 ∗95.80
T40 064 2410 2048 96.07 92.74 ∗97.23
T40 128 3409 4096 ∗96.58 93.15 96.31
T40 256 4821 8192 ∗97.01 93.44 ∗97.01
T40 512 6818 16384 ∗96.86 93.53 96.72

Table 3 Computational results of ami49L21

instance W n BL(%) BF(%) PBF(%)
ami49L21 001 5936 28 ∗85.00 84.66 84.49
ami49L21 002 8396 56 83.41 86.42 ∗88.20
ami49L21 004 11873 112 86.91 86.55 ∗88.17
ami49L21 008 16792 224 87.68 86.98 ∗87.94
ami49L21 016 23747 448 88.40 87.17 ∗89.37
ami49L21 032 33584 896 ∗89.38 87.78 88.85
ami49L21 064 47495 1792 ∗89.49 87.82 89.30
ami49L21 128 67168 3584 89.93 88.28 ∗89.95
ami49L21 256 94991 7168 ∗90.19 88.84 ∗90.19
ami49L21 512 134337 14336 ∗90.59 88.66 90.52

PBF algorithm are shown in Table 1 to 4.
In the tables, the columns of BL, BF and PBF are the occupa-

tion rate in % obtained by the bottom-left algorithm, the best-fit
algorithm and the PBF algorithm. For each instance, the best
results among the three are marked by ‘∗’. The computational re-
sults show that the PBF algorithm performs best for most of these
instances. Even for the instances where the PBF algorithm did
not obtain the best results, the difference in the occupation rate is

Table 4 Computational results of ami49LT21

instance W n BL(%) BF(%) PBF(%)
ami49LT21 001 5953 27 82.58 ∗86.80 84.89
ami49LT21 002 8419 54 84.71 87.42 ∗87.55
ami49LT21 004 11907 108 87.14 86.09 ∗87.77
ami49LT21 008 16839 216 ∗88.57 85.31 87.61
ami49LT21 016 23814 432 87.96 86.61 ∗88.64
ami49LT21 032 33678 864 88.44 87.54 ∗88.74
ami49LT21 064 47628 1728 89.27 87.41 ∗89.39
ami49LT21 128 67357 3456 ∗89.96 87.70 89.81
ami49LT21 256 95257 6912 89.65 87.73 ∗90.06
ami49LT21 512 134714 13824 90.00 88.38 ∗90.32

less than 3% between the PBF algorithm and the best one among
the other algorithms except for T144 001.

The running times of the bottom-left, the best-fit and the PBF
algorithm are 1.89, 2.04 and 1.97 seconds, respectively, for the
instance T144 512 with 10,240 items. Fig. 4 shows three ex-
ample layouts obtained by the bottom-left algorithm, the best-fit
algorithm and the PBF algorithm from left to right. These are the
layouts obtained for the instance named T144 004. The height
obtained by the bottom-left algorithm is 25, that obtained by the
best-fit algorithm is 24, and that obtained by the PBF algorithm is
23. The occupation rates of these layouts are reported in Table 1.

Chen et al. [8] proposed an algorithm for a slightly different
problem, where the width W of the container is also a variable and
the rotation and reflection of items are allowed. Their objective is
to maximize the occupation rate. Their algorithm is designed to
find a solution of extremely high occupation rate spending long
computation time for relatively small instances. For the instance
named ami49LT21 001 with 27 items, for example, the occupa-
tion rate obtained by their algorithm is 95.09% and W is 6370
with the running time of 2842.75 seconds on an IBM portable
PC with 2.0 GHz processor and 512 MB memory. The worst-
case time complexity of their algorithm is O(n8), though they re-
ported that the average time complexity would be much smaller.
Indeed, there exists an instance with 29 items for which their al-
gorithm terminated in 2.72 seconds. For the same instance of
ami49LT21 001, we tested the PBF algorithm with the value of
W every integer from 4000 to 7000. The total running time (of
about 3000 calls to the PBF algorithm) was 6.23 seconds and the
best occupation rate was 90.14% when W = 4186. Note that the
rotation and reflection were not considered in our algorithm. The

c© 2012 Information Processing Society of Japan 5

Vol.2012-AL-141 No.6
2012/10/4

IPSJ SIG Technical Report

occupation rate was significantly improved from 84.89%, the re-
sult reported in Table 4, just by considering various values for
W. Although their algorithm obtained higher occupation rate, the
running time will not be practical for much larger instances such
as those reported in this section. On the contrary, our algorithm
is especially efficient for large-scale instances of the rectilinear
block packing problem.

6. Conclusions
In this paper, we proposed a new construction heuristic algo-

rithm PBF for the rectilinear block packing problem. We ana-
lyzed the time complexity of our algorithm and showed that the
PBF algorithm runs in O(Mm log M) time.

We also performed a series of experiments based on some
benchmark instances. The occupation rate of the packing lay-
outs obtained by our algorithm was more than 90% on average
for these instances. Even for instances with more than 10,000
rectilinear blocks, the proposed PBF algorithm runs in less than
10 seconds.

References
[1] B.S. Baker, E.G. Coffman Jr. and R.L. Rivest, “Orthogonal packings in

two dimensions,” SIAM Journal on Computing, vol. 9, pp. 846–855,
1980.

[2] K.A. Dowsland, “Some experiments with simulated annealing tech-
niques for packing problems,” European Journal of Operational Re-
search, vol. 68, pp. 389–399, 1993.

[3] J.F. Gonçalves, “A hybrid genetic algorithm-heuristic for a two-
dimensional orthogonal packing problem,” European Journal of Opera-
tional Research, vol. 183, pp. 1212–1229, 2007.

[4] Y.L. Wu, W. Huang, S. Lau, C.K. Wong and G.H. Young, “An effective
quasi-human based heuristic for solving the rectangle packing prob-
lem,” European Journal of Operational Research, vol. 141, pp. 341-358,
2002.

[5] E.K. Burke, G. Kendall and G. Whitwell, “A new placement heuristic
for the orthogonal stock-cutting problem,” Operations Research, vol.
52, pp. 655–671, 2004.

[6] Y. Hu, H. Hashimoto, S. Imahori and M. Yagiura, “Heuristics for the
rectilinear block packing problem,” Proceedings of the 2012 Spring
National Conference of Operations Research Society of Japan, March
27–28, 2012, Yokosuka, Japan, pp. 64–65.

[7] R.C. Art, “An approach to the two dimensional irregular cutting stock
problem,” IBM Cambridge Science Center, 36.Y08, 1966.

[8] D. Chen, J. Liu, Y. Fu and M. Shang, “An efficient heuristic algorithm
for arbitrary shaped rectilinear block packing problem,” Computers &
Operations Research, vol. 37, pp. 1068–1074, 2010.

c© 2012 Information Processing Society of Japan 6

Vol.2012-AL-141 No.6
2012/10/4

