
IPSJ SIG Technical Report

A Fast and Simple Subexponential Fixed Parameter
Algorithm for One-Sided Crossing Minimization

Yasuaki Kobayashi1,a) Hisao Tamaki1,b)

Abstract: We give a subexponential fixed parameter algorithm for one-sided crossing minimization. It runs in
O(3

√
2k + n) time, wheren is the number of vertices of the given graph and parameterk is the number of cross-

ings. The exponent ofO(
√

k) in this bound is asymptotically optimal assuming the Exponential Time Hypothesis and
the previously best known algorithm runs in 2O(

√
k logk) + nO(1) time. We achieve this significant improvement by the

use of a certain interval graph naturally associated with the problem instance and a simple dynamic program on this
interval graph. The linear dependency onn is also achieved through the use of this interval graph.

Keywords: Fixed parameter tractable, Graph algorithm, Graph drawing, Subexponential time

1. Introduction

A two-layer drawingof a bipartite graphG with bipartition
(X,Y) of V(G) places vertices inX on one line and those inY on
another line parallel to the first and draws edges as straight line
segments between these two lines. We call these parallel lines
layersof the drawing. Acrossingin a two-layer drawing is a pair
of edges that intersect each other at a point not representing a ver-
tex. Note that the set of crossings in a two-layer drawing ofG is
completely determined by the order of the vertices inX on one
layer and the order of the vertices inY on the other layer. We
consider the following problem.

OSCM(One-Sided Crossing Minimization)
Instance: (G,X,Y, <, k), whereG is a bipartite graph onX ∪ Y

with E(G) ⊆ X × Y, < is a total order onX, andk is a positive
integer.
Question: Is there a total order<′ on Y such that the two-layer
drawing ofG in which the vertices inX are ordered by< in one
layer and those inY are ordered by<′ in the other layer hask or
fewer crossings?

OSCM is a key subproblem in a popular approach to multi-
layer graph drawing, called the “Sugiyama approach” [19], which
repeatedly solves OSCM for two adjacent layers as it sweeps the
layers from top to bottom and vice versa, in hope of reducing the
total number of crossings in the entire drawing.

OSCM is known to be NP-complete [8], even for sparse graphs
[18]. On the positive side, Dujmović and Whitesides [7] showed
that OSCM is fixed parameter tractable [5], that is, it can be
solved in f (k)nO(1) time for some functionf . More specifically,
the running time of their algorithm isO(ψk ·n2), wheren = |V(G)|
1 Meiji University, Kawasaki, Japan 214-8571
a) yasu0207@cs.meiji.ac.jp
b) tamaki@cs.meiji.ac.jp

andψ ∼ 1.6182 is the golden ratio. This result was later improved
by Dujmovíc, Fernau, and Kaufmann [6] who gave an algorithm
with running timeO(1.4656k + kn2). Very recently, Fernauet al.

[9] reduced this problem to weighted FAST (feedback arc sets in
tournaments) and, using the algorithm of Alon, Lokshtanov, and
Saurabh [2] for weighted FAST, gave a subexponential time algo-
rithm that runs in 2O(

√
k logk) + nO(1) time. Karpinskiand Schudy

[13] considered a different version of weighted FAST proposed
in [1], which imposes certain restrictions called probability con-
straints on the instances, and gave a faster algorithm that runs in
2O(
√

OPT) + nO(1) time whereOPT is the cost of an optimal solu-
tion. However, reducing OSCM to this version of FAST seems
difficult: a straightforward reduction produces an instance that
does not satisfy the required probability constraints. Nagamochi
gave a polynomial time 1.4664-approximate algorithm [17] and
(1.2964+ 12/(δ− 4))-approximate algorithm when the minimum
degreeδ of a vertex inY is at least 5 [16].

Our main result in this paper is the following.

Theorem 1.1. OSCM can be solved in O(3
√

2k + n) time,assum-

ing that G is given in the adjacency list representation and X is

given in a list sorted in the total order<.

Our algorithm is faster than any of the previously known pa-
rameterized algorithms. Both the dependencyO(3

√
2k) on k and

the dependencyO(n) onn are strictly better than the algorithms
cited above. In particular, the exponent

√
2k does notcontain the

logk factor or any hidden constant as in the exponentO(
√

k logk)
of [9], the only previously known subexponential algorithm for
OSCM. Note that the running time of our algorithm is linear inn

as long ask ≤ log2
3 n

2 +O(1). Theimprovement is not only of the-
oretical but also of practical importance: the range ofk for which
the problem can be practically solvable is significantly extended.

Moreover, the exponent ofO(
√

k) in our bound is asymptoti-
cally optimal under the Exponential Time Hypothesis (ETH) [11],

c⃝ 2012 Information Processing Society of Japan 1

Vol.2012-AL-141 No.1
2012/10/4

IPSJ SIG Technical Report

a well-known complexity assumption which states that, for each
k ≥ 3, there is a positive constantck such thatk-SAT cannot be
solved inO(2ckn) time wheren is the number of variables. ETH
has been used to derive lower bounds on parameterized and exact
computation (see [15] for a survey).

Theorem 1.2. There is no2o(
√

k)nO(1) timealgorithm for OSCM

unless ETH fails.

Another advantage of our algorithm over the previous algo-
rithms is simplicity. The algorithm in [7] involves several re-
duction rules for kernelization and the improvement in [6] is ob-
tained by introduction of additional reduction rules which entail
more involved analysis. The algorithm in [9] relies on the algo-
rithm in [2] for the more general problem of FAST. Our result
suggests that OSCM is significantly easier than FAST in that it
does not require any advanced algorithmic techniques or sophis-
ticated combinatorial structures used in the algorithm of [2] for
FAST, in deriving a subexponential algorithm.

Our algorithm is along the lines of earlier work [6], [7]. We
emphasize that our improvement does not involve any complica-
tions but rather comes with simplifications. Our algorithm does
not require any kernelization. It is a straightforward dynamic pro-
gramming algorithm on an interval graph associated with each
OSCM instance. This interval graph is implicit in the earlier work
[6], [7], but is neither made explicit nor fully exploited in the pre-
vious work. Once we recognize the key role this interval graph
plays in the problem, the design and analysis of an efficient algo-
rithm becomes rather straightforward. Below we sketch how this
works.

Fix an OSCM instance (G,X,Y, <, k). For each vertexy ∈ Y, let
ly (ry, resp.) denote the smallest (largest, resp.)x ∈ X adjacent to
y, with respect to the given total order<. We denote the half-open
interval [ly, ry) = {x ∈ X | ly ≤ x < ry} in the ordered set (X, <) by
Iy and denote the system of intervals{Iy | y ∈ Y} by I. For sim-
plicity, we assume here that the degree of each vertexy in Y is at
least 2 so that the intervalIy is non-empty. Our formal treatment
in Section 3 does not need this assumption. A key observation
in [7] (see Lemma 2.2 in the present paper), is that ifru ≤ lv for
distinct verticesu, v ∈ Y thenu precedesv in any optimal ordering
of Y. Therefore, to determine the optimal ordering onY, we only
need to determine the pairwise order for each pair{u, v} such that
lv < ru andlu < rv, that is, such that the intervalsIu andIv intersect
each other. Thus, the problem can be viewed as that of orienting
edges of the interval graph defined by the interval systemI. The
fact exploited in earlier work [6], [7] to obtain fixed parameter
algorithms for OSCM is that, in our terminology, this interval
graph has at mostk edges in feasible instances of OSCM, as each
pair of u andv such thatIu andIv intersect each other contributes
at least one crossing to the drawing no matter which ordering of
this pair inY is chosen. Our interval graph view tells us more:
the clique size of this interval graph for a feasible instance is at
most

√
2k+ 1, as otherwise it has more thank edges, and hence

it has a path-decomposition of width at most
√

2k (see[3], for
example, for interval graphs and their path-decompositions). Our
algorithm is a natural dynamic programming algorithm based on
this path-decomposition and runs in time exponential in the width

of the decomposition.
We remark that the interval systemI also plays an important

role in reducing the dependency of the running time onn to O(n).
See Section 4 for details.

The proofs are omitted in this version and can be found in [14].
The rest of this paper is organized as follows. In Section 2,

we give preliminaries of the problem and outline our entire algo-
rithms. In Section 3, we describe the construction of the interval
systems used in our algorithm. In Section 4, we describe a pre-
processing phase of our algorithm. In Section 5, we describe our
dynamic programming algorithm.

2. Preliminaries and outline of the algorithm

In this section, we give some preliminaries and outline our
algorithm claimed in Theorem 1.1. Throughout the remainder
of this paper, (G,X,Y, <, k) will always be the given instance of
OSCM. We assume thatG does not have any parallel edges or
isolated vertices. We denote the number of vertices|V(G)| by n

and the number of edges|E(V)| by m. For eachv ∈ X ∪ Y, we
denote the set of neighbors ofv in G by N(v) and its degree|N(v)|
by d(v). We assume thatN(v) is given as a list, together with its
lengthd(v). We also assume thatX is given as a list in which the
vertices are ordered by<.

For each pair of distinct verticesu, v ∈ Y, we denote byc(u, v)
the number of pairs (x, x′) with x ∈ N(u), x′ ∈ N(v), andx′ < x.
Note thatc(u, v) is the number of crossings between the edges
incident with u and those incident withv when the position of
u precedes that ofv in the layer forY. We extend this nota-
tion for sets: for each disjoint subsetsU andV of Y, we define
c(U,V) =

∑
u∈U,v∈V c(u, v).

We represent total orderings by permutations in our algorithm.
Let U be a finite set. Apermutationon U, in this paper, is a se-
quence of length|U | in which each member ofU appears exactly
once. We denote the set of all permutations onU by Π(U). Let
π ∈ Π(U). We define the total order<π onU naturally induced by
π: for u, v ∈ U, u <π v if and only if u appears beforev in π. When
U andV are disjoint finite sets,π ∈ Π(U), andσ ∈ Π(V), we de-
note byπ+σ the permutation onU ∪V that is a concatenation of
π andσ, the sequence consisting ofπ followed byσ.

For each subsetU of Y and a permutationπ on U, we denote
by c(π) the number of crossings among the edges incident withU

when the vertices inU is ordered byπ, that is,

c(π) =
∑

u,v∈U,u<πv
c(u, v).

For each subsetU of Y, we define opt(U) = min{c(π) | π ∈ Π(U)}.
The goal of our algorithm is to decide if opt(Y) ≤ k.

We need the following simple observation to bound the number
of edges in feasible instances of OSCM.

Lemma 2.1. If G has a two-layer drawing with at most k cross-

ings then|E(G)| ≤ |V(G)| + k− 1.

We also need the following lemma due to Dujmović and White-
sides [7].

Lemma 2.2. (Lemma 1 in [7])Suppose u andv are distinct ver-

tices in Y such thatc(u, v) = 0. Then we have u<π v in every

c⃝ 2012 Information Processing Society of Japan 2

Vol.2012-AL-141 No.1
2012/10/4

IPSJ SIG Technical Report

optimal permutation on Y, unless we also havec(v,u) = 0.

Motivated by this lemma, let us call an unordered pair{u, v} of
distinct vertices inY forced to(u, v) if c(u, v) = 0 andc(v,u) > 0.
We say that it isforced if it is forced either to (u, v) or to (v,u).
We say such an unordered pair isorientable if c(u, v) > 0 and
c(v,u) > 0; free if c(u, v) = 0 andc(v, u) = 0. We use the above
lemma in the following form.

Corollary 2.1. Letπ be an optimal permutation on Y and let u, v

be distinct vertices in Y. If{u, v} is forced to(u, v) then we have

u <π v. If {u, v} is free, then the permutationπ′ obtained fromπ

by swapping the positions of u andv is also optimal.

Since each orientable pair contributes at least one crossing in
any ordering ofY, the following is obvious.

Proposition 2.1. Assuming that the given OSCM instance is fea-

sible, the number of orientable pairs is at most k.

The following is an outline of our algorithm.
(1) If m≥ n+ k then stop with “No”.
(2) Construct the interval systemI described in the introduction

and another interval systemJ , which inherits the property of
I that each intersecting pair of intervals contributes at least
one crossing in the drawing and is designed to allow degree-
1 vertices and to facilitate dynamic programming. The con-
struction of these interval systems can be done inO(m) time.
See Section 3.

(3) If J contains more thank intersecting pairs, stop with “No”.
(4) Precomputec(u, v) andc(v,u) for all orientable pairs of ver-

ticesu, v ∈ Y. This can be done inO(n+ k) total time. If
infeasibility is detected during this precomputation, stop im-
mediately with “No”. See Section 4 for details of this step.

(5) Compute opt(Y) by a dynamic programming algorithm
based on the interval systemJ . In this computation, the val-
ues ofc(u, v) are needed only for orientable pairs. If infeasi-
bility is detected during this computation, stop immediately
with “No”. If the computation is successful and opt(Y) ≤ k

then answer “Yes”; otherwise answer “No”. This step can be
performed inO(3

√
2k + n) time. See Section 5.

The total running time of the algorithm is dominated by the dy-
namic programming part and isO(3

√
2k + n).

It is straightforward to augment the dynamic programming ta-
bles so that, when the last step is complete, an optimal permuta-
tion onY can be constructed. We note that this optimal solution is
correct even if opt(Y) > k, as long as the dynamic programming
computation is completed.

3. Interval systems

We refer to the interval systemI = {Iy | y ∈ Y} defined in
the introduction as thenaive interval system. RecallIy = [l y, ry),
wherely is the smallest neighbor ofy andry is the largest neigh-
bor of y, with respect to the total order< on X. The construction
of I can be done inO(m) time: we scanX in the given total order
< and, as we scanx ∈ X, we do necessary book-keeping to record
ly andry for eachy ∈ N(x).

We need another systemJ = {Jy | y ∈ Y} of intervals which

is slightly more complicated than the naive system. This compli-
cation comes from the need to deal with vertices inY of degree 1
and to facilitate dynamic programming. The systemJ will sat-
isfy the following conditions. LetJy = [ay,by] for eachy ∈ Y.
J1 For eachy, ay andby are integers satisfying 1≤ ay < by ≤

2|Y|.
J2 For eacht, 1 ≤ t ≤ 2|Y|, there is a unique vertexy ∈ Y such

thatay = t or by = t.
J3 If bu < av for u, v ∈ Y, thenc(u, v) = 0.

Conditions J1 and J2 are for the sake of the ease of dynamic
programming described in the next section, while condition J3 is
the essential property thatJ shares with the naive interval sys-
tem.

Let P = {(y, ly,0) | y ∈ Y} ∪ {(y, ry,1) | y ∈ Y}. For eachy ∈ Y,
(y, ly,0) and (y,ry,1) are intended to represent the left and the
right ends of the intervalJy, respectively. Our strategy is to de-
fine a total order onP and letay (by, resp.) be the rank of (y,ly,0)
((y, ry,1), resp.) in this total order. For eachp ∈ P, we denote by
y(p), x(p), andi(p) the first, second, and the third element ofp.

The total order< on P is defined as follows. This definition is
based on the given total order< on X.

The order is primarily based on the second component: if
x(p) < x(q) thenp < q. For eachx ∈ X, let Px = {p ∈ P | x(p) =
x}. To describe the order< within eachPx, we first partitionPx

into three subsets:P1
x = {p ∈ Px | d(y(p)) > 1, i(p) = 1}, P2

x =

{p ∈ Px | d(y(p)) = 1}, andP3
x = {p ∈ Px | d(y(p)) > 1, i(p) = 0}.

We let p < q if p ∈ Pi
x andq ∈ P j

x with i < j. The order of ele-
ments withinP1

x and withinP3
x is arbitrary. Elements ofP2

x come
in pairs: (x, y, 0) and (x, y, 1), wherey ∈ N(x) with d(y) = 1.
The order inP2

x is chosen so that (x, y, 0) < (x, y, 1) for each
pair and these pairs are not interleaved: we do not havey, y′ with
(x, y, 0) < (x, y′,0) < (x, y, 1) or (x, y, 0) < (x, y′,1) < (x, y, 1).

Now we list the elements ofP asp1, . . . , p2|Y| in the total order
just defined. For eachy ∈ Y, we letay = t wheret is such that
pt = (y, ly,0) andby = t wheret is such thatpt = (y, ry,1). This
completes the description of the interval systemJ .

The construction ofJ can also be done inO(m) time. The set
P is constructed as a list by scanningX. This list is already sorted
in the primary keyx. The partitioning ofPx into P1

x, P2
x, P3

x and
the pairing inP2

x are done inO(d(x)) time for eachx and hence in
O(m) time for allx ∈ X.

Proposition 3.1. The systemJ of intervals defined above satis-

fies conditions J1, J2, J3.

We restate Corollary 2.1 using our interval systemJ . We say
that a permutationπ on U ⊆ Y is consistent withJ if bu < av
impliesu <π v for every pairu, v ∈ U.

Lemma 3.1. Let U be an arbitrary subset of Y. There is an opti-

mal permutationπ on U that is consistent withJ .

4. Computing the crossing numbers

Dujmović and Whitesides [7] give an algorithm for computing
the crossing numbersc(u, v) for all pairs{u, v} in O(kn2) time. We
spendO(n + k) time for precomputingc(u, v) for all orientable
pairs, ignoring forced and free pairs.

c⃝ 2012 Information Processing Society of Japan 3

Vol.2012-AL-141 No.1
2012/10/4

IPSJ SIG Technical Report

We use the naive interval systemI = {Iy | y ∈ Y}, where
Iy = [l y, ry), in this computation.

For eachy ∈ Y and x ∈ X, let d<x(y) = |{z ∈ N(y) | z < x}|
andd≤x(y) = |{z ∈ N(y) | z ≤ x}|. Then, we havec(u, v) =∑

x∈N(u) d<x(v).
It turns out helpful to decompose the above sum as follows.

c(u, v) =
[∑
x∈N(u),lv<x≤rv

d<x(v)
]
+ d(v) · (d(u)− d≤rv (u)). (1)

For eachx ∈ X, let Yx = {y ∈ Y | ly < x < ry} be the set of
vertices inY whose corresponding intervals strictly containx.

In the following, we call an ordered pair (u, v) orientable if
the corresponding unordered pair is orientable. We evaluate these
sums simultaneously for all orientable pairs (u, v), using a counter
c[u, v] for each pair. We represent these counters by a|Y|×|Y| two-
dimensional array. Since we cannot afford to initialize all of its
elements, we initializec[u, v] to 0 only for orientable pairs (u, v).
Our algorithm proceeds as follows.
(1) ScanX in the total order<, maintainingYx as we scanx.

When we scanx ∈ X, we initialize c[u, v] to 0 for each
u ∈ N(x) and eachv ∈ Yx.

(2) ScanX again in the total order<, maintainingYx andd<x(y)
for eachy ∈ Y, as we scanx. Suppose we are scanning
x ∈ X. For eachu ∈ N(x) and eachv ∈ Yx, we addd<x(v), the
summand in (1), toc[u, v]. Moreover, for eachu ∈ Yx and
v ∈ N(x) such thatrv = x, we addd(v) · (d(u)− d≤x(u)), the
second term in (1), toc[u, v].

Lemma 4.1. Assuming that the given OSCM instance is feasible,

the running time of the above algorithm is O(n+ k).

To control the running time for infeasible instances, we count
the number of times the initialization of a counter occurs in the
first scan. As soon as the number exceeds 2k, we stop the com-
putation and report infeasibility.

5. Dynamic programming

In this section, we describe our dynamic programming algo-
rithm for computing opt(Y). Owing to the previous section, we
assume in this section thatc(u, v) andc(v, u) are available for all
orientable pairs{u, v}.

We use the interval systemJ = {Jy | y ∈ Y} we have defined
in Section 3, whereJy = [ay,by].

A standard dynamic programming approach (see [4], [10], for
example) gives us the following exponential upper bound on the
complexity of computing opt(U), which we need for small sub-
problems.

Lemma 5.1. Let V ⊆ Y and assume thatc(u, v) is available in

O(1) time for each pair of distinct vertices u, v ∈ V. Then,opt(U)
for all U ⊆ V can be computed in O(h2h) total time where h= |V|.

For eacht, 1 ≤ t ≤ 2|Y|, let Lt = {y ∈ Y | by ≤ t},
Mt = {y ∈ Y | ay ≤ t < by}, and Rt = {y ∈ Y | t < ay}.
Note that
(1) if t = ay for somey ∈ Y thenLt = Lt−1,Mt = Mt−1∪ {y}, and

Rt = Rt−1 \ {y};
(2) if t = by for somey ∈ Y thenLt = Lt−1∪{y}, Mt = Mt−1 \ {y},

andRt = Rt−1.
In other words, when intervalJy opens att, y is moved from

the “right set” to the “middle set”; when it closes att, y is moved
from the “middle set” to the “left set”.

For each integert, 1 ≤ t ≤ 2|Y|, we compute the following
and store the results in a table: (1)c(Lt, {y}), for eachy ∈ Mt; (2)
opt(Lt ∪ S), for eachS ⊆ Mt.

The recurrences for (1) are straightforward. The base case is
c(L1, {y}) = 0, whereL1 = ∅ andy is the unique element ofM1.
Let 2≤ t ≤ 2|Y| and suppose first thatt = ay for somey ∈ Y. Note
thatLt = Lt−1 andMt \Mt−1 = {y}. Therefore, forv ∈ Mt \ {y}, we
havec(Lt, {v}) = c(Lt−1, {v}). Sincebu < ay for eachu ∈ Lt = Lt−1,
we havec(Lt, {y}) = 0. Suppose next thatt = by for somey ∈ Y.
Note thatLt \Lt−1 = {y} andMt−1 \Mt = {y} in this case. For each
v ∈ Mt, we havec(Lt, {v}) = c(Lt−1∪{y}, {v}) = c(Lt−1, {v})+c(y, v).
Note that pair (y, v) is orientable, asy, v ∈ Mt−1, and hencec(y, v)
is available. Thus, in either case, the table entries of type (1) for
t can be computed from the entries fort − 1 in O(h) time, where
h = |Mt |.

We now turn to the recurrences for type (2) entries. Since
L0 = ∅, the base case opt(L0 ∪ ∅) = 0 is trivial. To facilitate
the induction steps, we define, for eachy ∈ Y and disjoint subsets
Y1,Y2 of Y \ {y},

opt(Y1, y,Y2) = min{c(π) | π ∈ Π(Y1 ∪ {y} ∪ Y2),Y1 <π {y} <π Y2},

where, byU <π V, we meanu <π v for everyu ∈ U and every
v ∈ V. In other words, opt(Y1, y,Y2) is the cost of the optimal
permutation onY1 ∪ {y} ∪ Y2 subject to the condition that it is of
the formπ1+ y+ π2, whereπ1 ∈ Π(Y1) andπ2 ∈ Π(Y2). Note that
opt(Y1, y,Y2) can be computed by

opt(Y1, y,Y2) = opt(Y1) + c(Y1,Y2) + c(Y1, {y}) + c({y},Y2) + opt(Y2).

Lemma 5.2. Let1 ≤ t ≤ 2|Y| and suppose ay = t for somey ∈ Y.

For each S⊆ Mt with y ∈ S , we have

opt(Lt ∪ S) = min{opt(Lt−1 ∪ T, y,U) |
T ∪ U = S \ {y},T ∩ U = ∅}.

The dynamic programming gives us the optimal solution
opt(Y) sinceL2|Y| = Y.

Lemma 5.3. Let1 ≤ t ≤ 2|Y| and let h= |Mt |. Given a table that

lists the values ofc(Lt−1, {v}) for everyv ∈ Mt−1 andopt(Lt−1∪S)
for every S ⊆ Mt−1, we can compute in O(3h) time the values

of c(Lt, {v}) for all v ∈ Mt and the values ofopt(Lt ∪ S) for all

S ⊆ Mt.

Each pair of vertices inMt contributes at least one crossing in
any ordering ofY. Therefore, for the given instance to be fea-
sible, we haveh(h − 1)/2 ≤ k and henceh ≤

√
2k + 1, where

h = |Mt |. Using this bound and an observation that|Mt | ≥ 2 for
at mostk values oft, it is straightforward to derive a bound of
O(k3

√
2k + n) on the running time of the entire dynamic program-

ming computation. For a tighter analysis, we need the following
lemmas.

Lemma 5.4. Assume thatJ has at most k intersecting pairs of

c⃝ 2012 Information Processing Society of Japan 4

Vol.2012-AL-141 No.1
2012/10/4

IPSJ SIG Technical Report

intervals. Let H= ⌈
√

2k⌉+1 and, for2 ≤ h ≤ H, let ch denote the

number of values of t with|Mt | = h. Then, we have ch ≤ 2H−h+2

for 2 ≤ h ≤ H.

Lemma 5.5. Assume that the given OSCM instance is feasible,

the total running time of the dynamic programming algorithm

based on Lemma 5.3 is O(3
√

2k + n).

To control the running time for infeasible instances, we com-
putech for each 2≤ h ≤ H and, ifch exceeds the proved bound,
we immediately stop the computation as we have detected infea-
sibility.

References

[1] Ailon, N., Charikar, M., and Newman, A.: Aggregating inconsistent
information:Ranking and clustering.Journal of the ACM, 55(5):Arti-
cle No. 23, 2008

[2] Alon, N., Lokshtanov, D. and Saurabh, S.: Fast FAST, InAutomata,
Languages and Programming, 36th International Colloquium, ICALP
2009, Rhodes, Greece, July 5-12, 2009, Proceedings, Part I, pp. 49–
58, 2009.

[3] Bodlaender, H.: A Tourist Guide through Treewidth,Acta Cybernet-
ica, Vol. 11, pp. 1–23, 1993.

[4] Bodlaender, H., Fomin, F., Kratsch, D. and Thilikos, D.: A Note on
Exact Algorithms for Vertex Ordering Problems on Graphs,Theory of
Computing Systems, Vol. 50(3), pp. 420–432, 2012.

[5] Downey, R. G. and Fellows, M. R.:Parameterized Complexity,
Springer, 1998.

[6] Dujmović, V., Fernau, H. and Kaufmann, M.: Fixed parameter algo-
rithms for one-sided crossing minimization revisited,Journal of Dis-
crete Algorithms, Vol. 6(2), pp. 313–323, 2008.

[7] Dujmović, V. and Whitesides, S.: An Efficient Fixed Parameter
Tractable Algorithm for 1-Sided Crossing Minimization,Algorith-
mica, Vol. 40(1), pp. 15–31, 2004.

[8] Eades, P. and Wormald, N. C.: Edge crossings in drawings of bipartite
graphs,Algorithmica, Vol. 11(4), pp. 379–403, 1994.

[9] Fernau, H., Fomin, F. V., Lokshtanov, D., Mnich, M., Philip, G. and
Saurabh, S.: Ranking and drawing in subexponential time, InPro-
ceedings of the 21st International Workshop On Combinatorial Algo-
rithms, IWOCA’10, pp. 337–348, 2010.

[10] Held, M. and Karp, R. M.: A dynamic programming approach to se-
quencing problems,Journal of the Society for Industrial and Applied
Mathematics, Vol. 10, pp. 196-210, 1962.

[11] Impagliazzo, R. and Paturi, R.: On the complexity ofk-SAT Journal
of Computer and System Sciences, Vol. 62, pp. 367–375, 2001.

[12] Impagliazzo, R., Paturi, R. and Zane, F.: Which problems have
strongly exponential complexity?Journal of Computer and System
Sciences, Vol. 63, pp. 512–530, 2001.

[13] Karpinski, M. and Schudy, W.: Faster Algorithms for Feedback Arc
Set Tournament, Kemeny Rank Aggregation and Betweenness Tour-
nament, InProceedings of the 21st International Symposium on Algo-
rithms and Computation, ISAAC’10, part I, pp. 3-14, 2010.

[14] Kobayashi, Y. and Tamaki, H.: A Fast and Simple Subexponential
Fixed Parameter Algorithm for One-Sided Crossing Minimization, In
Proceedings of the 20th Annual European Symposium on Algorithms,
ESA’12, pp. 683–694, 2012.

[15] Lokshtanov, D., Marx, D. and Saurabh, S.: Lower bounds based on the
Exponential Time Hypothesis, The Complexity Column by Arvind V.,
Bulletin of the EATCS, pp. 41–72, 2011.

[16] Nagamochi, H.: On the one-sided crossing minimization in a bipar-
tite graph with large degree,Theoretical Computer Science, Vol. 332,
pp. 417–446, 2005.

[17] Nagamochi, H.: An improved bound on the one-sided minimum cross-
ing number in two-layered drawings,Discrete and Computational Ge-
ometry, Vol. 33(4), pp. 569–591, 2005.

[18] Muñoz, X., Unger, W. and Vrt’o, I.: One sided crossing minimization
is NP-hard for sparse graphs, InRevised Papers from the 9th Interna-
tional Symposium on Graph Drawing, GD’01, pp. 115–123, 2002.

[19] Sugiyama, K., Tagawa, S. and Toda, M.: Methods for visual under-
standing of hierarchical system structures.,IEEE Transactions on Sys-
tems, Man, and Cybernetics, Vol. 11(2), pp. 109–125,1981.

c⃝ 2012 Information Processing Society of Japan 5

Vol.2012-AL-141 No.1
2012/10/4

