; Vol.2012-AL-141 No.1
IPSJ SIG Technical Report 2012/10/4

A Fast and Simple Subexponential Fixed Parameter
Algorithm for One-Sided Crossing Minimization

1,a) 1,b)

YASUAKI KOBAYASHI Hisao Tamaxka

Abstract: We give a subexponential fixed parameter algorithm for one-sided crossing minimization. It runs in
0(3‘@ + n) time, wheren is the number of vertices of the given graph and paramieisrthe number of cross-
ings. The exponent dd(Vk) in this bound is asymptotically optimal assuming the Exponential Time Hypothesis and

the previously best known algorithm runs iR(¥1o9k 4 0@ time. We achieve this significant improvement by the
use of a certain interval graph naturally associated with the problem instance and a simple dynamic program on this
interval graph. The linear dependencyrmis also achieved through the use of this interval graph.

Keywords: Fixed parameter tractable, Graph algorithm, Graph drawing, Subexponential time

andy ~ 1.6182 is the golden ratio. This result was later improved
by Dujmovic, Fernau, and Kaufmann [6] who gave an algorithm
A two-layer drawingof a bipartite graphG with bipartition with running timeO(1.4656 + kr?). Very recently, Fernast al.
(X,Y) of V(G) places vertices iiX on one line and those i¥i on [9] reduced this problem to weighted FAST (feedback arc sets in
another line parallel to the first and draws edges as straight linetournaments) and, using the algorithm of Alon, Lokshtanov, and
segments between these two lines. We call these parallel linesSaurabh [2] for weighted FAST, gave a subexponential time algo-
layersof the drawing. Acrossingin a two-layer drawing is a pair rithm that runs in 2(Vklegk 4 O time. Karpinskiand Schudy
of edges that intersect each other at a point not representing a verf13] considered a dlierent version of weighted FAST proposed
tex. Note that the set of crossings in a two-layer drawin@ a$ in [1], which imposes certain restrictions called probability con-
completely determined by the order of the verticeion one straints on the instances, and gave a faster algorithm that runs in
layer and the order of the vertices ¥hon the other layer. We 20(YOPT) | n0() time whereOPT is the cost of an optimal solu-

1. Introduction

consider the following problem. tion. However, reducing OSCM to this version of FAST seems
difficult: a straightforward reduction produces an instance that

OSCM(One-Sided Crossing Minimization) does not satisfy the required probability constraints. Nagamochi

Instance: (G, XY, <,K), whereG is a bipartite graph oX U'Y gave a polynomial time 1.4664-approximate algorithm [17] and

with E(G) € XX Y, < is a total order orX, andk is a positive (1.2964+ 12/(s — 4))-approximate algorithm when the minimum

integer. degrees of a vertex inY is at least 5 [16].

Question: Is there a total ordet’ on'Y such that the two-layer Our main result in this paper is the following.

drawing ofG in which the vertices irX are ordered by in one

layer and those ilY are ordered by’ in the other layer hak or Theorem 1.1. OSCM can be solved in@% + n) time, assum-

fewer crossings? ing that G is given in the adjacency list representation and X is

given in a list sorted in the total ordex.
OSCM is a key subproblem in a popular approach to multi-
layer graph drawing, called the “Sugiyama approach” [19], which Our algorithm is faster than any of the previously known pa-
repeatedly solves OSCM for two adjacent layers as it sweeps thd@meterized algorithms. Both the depended@¥*) onk and
layers from top to bottom and vice versa, in hope of reducing the the dependencyd(n) onn are strictly better than the algorithms
total number of crossings in the entire drawing. cited above. In particular, the exponevi2k does notontain the

OSCM is known to be NP-complete [8], even for sparse graphs 09k factor or any hidden constant as in the expor@fivk logk)
[18]. On the positive side, Dujmobiand Whitesides [7] showed of [9], the only previously known subexponential algorithm for
that OSCM is fixed parameter tractable [5], that is, it can be OSCM. Note thazu the running time of our algorithm is lineanin
solved inf(k)n°® time for some functiorf. More specifically, ~ aslongak < %" 1 O(1). Theimprovement is not only of the-

the running time of their algorithm ®(y - n?), wheren = [V(G)| oretical but also of practical importance: the rangé& fidfr which
I — - the problem can be practically solvable is significantly extended.
Meiji University, Kawasaki, Japan 214-8571

) yasu0207@cs.meiji.ac.jp Moreover, the exponent @(Vk) in our bound is asymptoti-
b tamaki@cs.meiji.ac.jp cally optimal under the Exponential Time Hypothesis (ETH) [11],

© 2012 Information Processing Society of Japan 1

; Vol.2012-AL-141 No.1
IPSJ SIG Technical Report 2012/10/4

a well-known complexity assumption which states that, for each of the decomposition.
k > 3, there is a positive constagt such thatk-SAT cannot be We remark that the interval systefmalso plays an important
solved inO(2%") time wheren is the number of variables. ETH role in reducing the dependency of the running timexaa O(n).
has been used to derive lower bounds on parameterized and exa@ee Section 4 for details.
computation (see [15] for a survey). The proofs are omitted in this version and can be found in [14].
The rest of this paper is organized as follows. In Section 2,
we give preliminaries of the problem and outline our entire algo-
rithms. In Section 3, we describe the construction of the interval
Another advantage of our algorithm over the previous algo- systems used in our algorithm. In Section 4, we describe a pre-
rithms is simplicity. The algorithm in [7] involves several re- processing phase of our algorithm. In Section 5, we describe our
duction rules for kernelization and the improvement in [6] is ob- dynamic programming algorithm.
tained by introduction of additional reduction rules which entail 2
more involved analysis. The algorithm in [9] relies on the algo-
rithm in [2] for the more general problem of FAST. Our result In this section, we give some preliminaries and outline our
suggests that OSCM is significantly easier than FAST in that it algorithm claimed in Theorem 1.1. Throughout the remainder
does not require any advanced algorithmic techniques or sophis-of this paper, G, X, Y, <, K) will always be the given instance of
ticated combinatorial structures used in the algorithm of [2] for OSCM. We assume th&@ does not have any parallel edges or
FAST, in deriving a subexponential algorithm. isolated vertices. We denote the number of vertité&)| by n
Our algorithm is along the lines of earlier work [6], [7]. We and the number of edgéB(V)| by m. For eachv € XUY, we
emphasize that our improvement does not involve any complica-denote the set of neighborswin G by N(v) and its degregN(v)|
tions but rather comes with simplifications. Our algorithm does by d(v). We assume thall(v) is given as a list, together with its
not require any kernelization. Itis a straightforward dynamic pro- lengthd(v). We also assume thatis given as a list in which the
gramming algorithm on an interval graph associated with each vertices are ordered by.
OSCM instance. This interval graph is implicit in the earlierwork For each pair of distinct verticas v € Y, we denote by(u, v)
[6], [7], but is neither made explicit nor fully exploited in the pre- the number of pairsx x’) with x € N(u), X' € N(v), andx’ < x.
vious work. Once we recognize the key role this interval graph Note thatc(u, v) is the number of crossings between the edges

Theorem 1.2. There is na2*YWn%W time algorithm for OSCM
unless ETH fails.

Preliminaries and outline of the algorithm

plays in the problem, the design and analysis offéigient algo- incident withu and those incident with when the position of
rithm becomes rather straightforward. Below we sketch how this u precedes that of in the layer forY. We extend this nota-
works. tion for sets: for each disjoint subsdtsandV of Y, we define
Fix an OSCM instanced, X, Y, <, k). For each vertey € Y, let cU,V) = Yueuev U,).

l, (ry, resp.) denote the smallest (largest, respE)X adjacent to We represent total orderings by permutations in our algorithm.
y, With respect to the given total order We denote the half-open Let U be a finite set. Apermutationon U, in this paper, is a se-
interval [l,,r,) = {xe X |1, < x<r,} in the ordered se¥{, <) by quence of lengtiiJ| in which each member & appears exactly

I, and denote the system of intervéls | y € Y} by 7. For sim- once. We denote the set of all permutationslbby IT1(U). Let
plicity, we assume here that the degree of each vertexy is at n € II(U). We define the total order, onU naturally induced by

least 2 so that the intervg) is non-empty. Our formal treatment #: foru,v € U, u <, vifand only if uappears beforein 7. When
in Section 3 does not need this assumption. A key observationU andV are disjoint finite setsy € I1(U), ando € I1(V), we de-

in [7] (see Lemma 2.2 in the present paper), is thag i£ |, for note byr + o the permutation ot UV that is a concatenation of
distinct verticesl, v € Y thenu precedes in any optimal ordering ~ « ando, the sequence consistingofollowed byo-.
of Y. Therefore, to determine the optimal ordering¥grwe only For each subséf of Y and a permutatiom on U, we denote

need to determine the pairwise order for each fagis} such that by ¢(x) the number of crossings among the edges incidentWith
I, < ryandl, < r,, thatis, such that the intervdigandl, intersect when the vertices itJ is ordered byr, that is,

each other. Thus, the problem can be viewed as that of orienting

edges of the interval graph defined by the interval sysferfihe o) = " €;< o(u,)

fact exploited in earlier work [6], [7] to obtain fixed parameter R
algorithms for OSCM s that, in our terminology, this interval
graph has at mogtedges in feasible instances of OSCM, as each The goal of our algorithm is to decide if opY(< k.

pair of u andv such that,, andl, intersect each other contributes We need the following simple observation to bound the number
at least one crossing to the drawing no matter which ordering of of edges in feasible instances of OSCM.

this pair inY is chosen. Our interval graph view tells us more: Lemma 2.1. If G has a two-layer drawing with at most k cross-
the clique size of this interval graph for a feasible instance is at ings thenE(G)| < [V(G)| + k - 1.

most V2k + 1, as otherwise it has more tharedges, and hence

it has a path-decomposition of width at mogRk (see[3], for
example, for interval graphs and their path-decompositions). Our
algorithm is a natural dynamic programming algorithm based on Lemma 2.2. (Lemma 1 in [7])Suppose u andare distinct ver-
this path-decomposition and runs in time exponential in the width tices in Y such that(u,v) = 0. Then we have «, v in every

For each subsét of Y, we define optd) = min{c(x) | = € TI(U)}.

We also need the following lemma due to Dujmband White-
sides [7].

© 2012 Information Processing Society of Japan 2

IPSJ SIG Technical Report

optimal permutation on Y, unless we also hafeu) = 0.

Motivated by this lemma, let us call an unordered pajw} of
distinct vertices inY forced to(u, v) if c(u,v) = 0 andc(v, u) > 0.
We say that it iSorcedif it is forced either to @, v) or to (v,u).
We say such an unordered pairagentableif c(u,v) > 0 and
C(v, u) > 0O; freeif c(u,v) = 0 andc(v,u) = 0. We use the above
lemma in the following form.

Corollary 2.1. Letr be an optimal permutation on Y and letu
be distinct vertices in Y. Ku, v} is forced to(u, v) then we have
u <, v. If {u,v} is free, then the permutatior! obtained fromr
by swapping the positions of u ands also optimal.

Vol.2012-AL-141 No.1
2012/10/4

is slightly more complicated than the naive system. This compli-
cation comes from the need to deal with vertice¥ iof degree 1
and to facilitate dynamic programming. The systghwill sat-
isfy the following conditions. Led, = [a,,b,] for eachy € Y.
J1 For eacly, a, andb, are integers satisfying £ a, < b, <

2|Y].

For eacht, 1 < t < 2|Y], there is a unique vertaxe Y such

thata, =torb, =t.

If by < a, foru,v €Y, thenc(u,v) = 0.
Conditions J1 and J2 are for the sake of the ease of dynamic
programming described in the next section, while condition J3 is
the essential property thgt shares with the naive interval sys-
tem.

J2

J3

Since each orientable pair contributes at least one crossing in | etp = {(y, 1,,0)ly € Y} U{(y,ry,1) |y € Y}. Foreachy €Y,

any ordering ofY, the following is obvious.

Proposition 2.1. Assuming that the given OSCM instance is fea-
sible, the number of orientable pairs is at most k.

The following is an outline of our algorithm.
(1) If m> n+ kthen stop with “No”.
(2) Construct the interval systeidescribed in the introduction
and another interval systef, which inherits the property of

(.1,,0) and (yr,, 1) are intended to represent the left and the
right ends of the interval,, respectively. Our strategy is to de-
fine a total order o and leta, (b,, resp.) be the rank of (i, 0)
((y,ry, 1), resp.) in this total order. For eaghe P, we denote by
y(p), X(p), andi(p) the first, second, and the third elemenpof

The total ordek on P is defined as follows. This definition is
based on the given total orderon X.

The order is primarily based on the second component: if

T that each intersecting pair of intervals contributes at least x(p) < x(g) thenp < q. For eachx e X, letPy = {pe P| x(p) =
one crossing in the drawing and is designed to allow degree-x}. To describe the ordet within eachPy, we first partitionPy

1 vertices and to facilitate dynamic programming. The con-
struction of these interval systems can be dor@(im) time.
See Section 3.

(3) If J contains more thakintersecting pairs, stop with “No”.

(4) Precompute(u, v) andc(v, u) for all orientable pairs of ver-
ticesu,v € Y. This can be done i@(n + k) total time. If
infeasibility is detected during this precomputation, stop im-
mediately with “No”. See Section 4 for details of this step.

(5) Compute opt{) by a dynamic programming algorithm
based on the interval systeff In this computation, the val-
ues ofc(u, v) are needed only for orientable pairs. If infeasi-
bility is detected during this computation, stop immediately
with “No”. If the computation is successful and op}(< k
then answer “Yes”; otherwise answer “No”. This step can be
performed inO(3@ + n) time. See Section 5.

The total running time of the algorithm is dominated by the dy-

namic programming part and @(3‘@ +n).

It is straightforward to augment the dynamic programming ta-

bles so that, when the last step is complete, an optimal permuta
tion onY can be constructed. We note that this optimal solution is

correct even if opt(Y > k, as long as the dynamic programming
computation is completed.

3. Interval systems

We refer to the interval systei = {I, | y € Y} defined in
the introduction as theaive interval systemrRecalll, = [l,,r,),
wherel, is the smallest neighbor gfandr, is the largest neigh-
bor of y, with respect to the total orderon X. The construction
of I can be done i©(m) time: we scarX in the given total order
< and, as we scaxe X, we do necessary book-keeping to record
I, andr, for eachy € N(x).

We need another systef = {J, | y € Y} of intervals which

© 2012 Information Processing Society of Japan

into three subsetsP: = {p € Py | d(y(p)) > 1,i(p) = 1}, P2 =
{p € Px| d(y(p)) = 1}, andP§ = {p € Px | d(y(p)) > L,i(p) = O}.
We letp < qif p € P, andq € Py withi < j. The order of ele-
ments withinP} and withinP? is arbitrary. Elements dP2 come
in pairs: & y,0) and & y,1), wherey € N(x) with d(y) = 1.
The order inP2 is chosen so thatx(y,0) < (x,y,1) for each
pair and these pairs are not interleaved: we do not hayewith
(% y,0) < (X,y,0) < (X y,1)or (X,y4,0) < (%, y',1) < (X, y,1).

Now we list the elements d? aspy, ..., Py, in the total order
just defined. For each € Y, we leta, = t wheret is such that
Pt = (v,1,,0) andb, = t wheret is such thatpy = (y,r,, 1). This
completes the description of the interval systgm

The construction off can also be done i®(m) time. The set
P is constructed as a list by scanniKgThis list is already sorted
in the primary keyx. The partitioning ofPy into P}, P2, P$ and
the pairing inP2 are done irD(d(x)) time for eachx and hence in
O(m) time for allx € X.

Proposition 3.1. The systeny/ of intervals defined above satis-

fies conditions J1, J2, J3.

We restate Corollary 2.1 using our interval systgimWe say
that a permutatiomr on U C Y is consistent with7 if b, < a,
impliesu <, v for every pairu,v e U.

Lemma 3.1. Let U be an arbitrary subset of Y. There is an opti-
mal permutatiorr on U that is consistent witly.

4. Computing the crossing numbers

Dujmovic and Whitesides [7] give an algorithm for computing
the crossing numbergu,) for all pairs{u, v} in O(kr?) time. We
spendO(n + k) time for precomputing:(u, v) for all orientable
pairs, ignoring forced and free pairs.

IPSJ SIG Technical Report

We use the naive interval system = {l, | y € Y}, where
I, =1[l,,r,), in this computation.

For eachy € Y andx € X, letd**(y) = |{z€ N(y) | z < x}|
andd**(y) = {z € N(y) | z < x}|. Then, we have(u,v) =
2ixeN(u) d~(v).

It turns out helpful to decompose the above sum as follows.

o) =| 40|+ o) - (@ - d W), @)
xeN(u),l,<x<r,
For eachx € X, letYy = {y € Y | |, < X < r,} be the set of
vertices inY whose corresponding intervals strictly contain
In the following, we call an ordered paiu,(v) orientableif

Vol.2012-AL-141 No.1
2012/10/4

andR; = R_;.

In other words, when interval, opens at, y is moved from
the “right set” to the “middle set”; when it closestay is moved
from the “middle set” to the “left set”.

For each integet, 1 < t < 2|Y|, we compute the following
and store the results in a table: (), {y}), for eachy € M;; (2)
opt(L; U S), for eachS C M.

The recurrences for (1) are straightforward. The base case is
c(L1, {y}) = 0, whereL; = 0 andy is the unique element d¥l;.
Let 2 <t < 2|Y|and suppose first that a, for somey € Y. Note
thatL; = Li_; andM;\ Mi_1 = {y}. Therefore, fov € M\ {y}, we
havec(Ly, {v}) = ¢(Li-1, {v}). Sinceby < &, foreachu e Ly = L,

the corresponding unordered pair is orientable. We evaluate thesave havec(L;, {y}) = 0. Suppose next that= b, for somey € Y.

sums simultaneously for all orientable pawsid), using a counter

c[u, v] for each pair. We represent these counters p{pg Y| two-

dimensional array. Since we canndioad to initialize all of its

elements, we initialize[u, ¢] to 0 only for orientable pairsu v).

Our algorithm proceeds as follows.

(1) ScanX in the total order<, maintainingYy as we scarx.
When we scarx € X, we initialize c[u,v] to 0 for each
u e N(x) and eachy € Yy.

(2) ScanX again in the total ordex, maintainingYy andd<*(y)
for eachy € Y, as we scarx. Suppose we are scanning
x € X. For eachu € N(x) and each € Yy, we addd<*(v), the
summand in (1), ta[u,v]. Moreover, for eachu € Yy and
v € N(xX) such that, = x, we addd(v) - (d(u) — d=*(u)), the
second term in (1), to[u, v].

Lemma 4.1. Assuming that the given OSCM instance is feasible,
the running time of the above algorithm igro+ k).

To control the running time for infeasible instances, we count
the number of times the initialization of a counter occurs in the
first scan. As soon as the number exceddsa2 stop the com-
putation and report infeasibility.

5. Dynamic programming

In this section, we describe our dynamic programming algo-
rithm for computing opf(). Owing to the previous section, we
assume in this section thefu, v) andc(v, u) are available for all
orientable pairsu, v}.

We use the interval systeffi = {J, | y € Y} we have defined
in Section 3, wherd, = [a,, b,].

A standard dynamic programming approach (see [4], [10], for

Note thatl; \ L;_; = {y} andM;_1 \ M; = {y} in this case. For each
v € My, we havec(Ly, {v}) = c(Li-1U{y}, {v}) = c(Lt-1, {v})+C(y, v).
Note that pair g, v) is orientable, ag,v € M_;, and hence(y, v)
is available. Thus, in either case, the table entries of type (1) for
t can be computed from the entries for 1 in O(h) time, where
h =M.

We now turn to the recurrences for type (2) entries. Since
Lo = 0, the base case op{ U 0) = O is trivial. To facilitate
the induction steps, we define, for each Y and disjoint subsets
Y1, Y2 of Y\ {y},

opt(Y1, y, Y2) = min{c(n) | 7 € TI(Y1 U {y} U Y2), Y1 <z {y} <z Y2},

where, byU <, V, we mearnu <, v for everyu € U and every
v € V. In other words, op¥, y, Y2) is the cost of the optimal
permutation orY; U {y} U Y» subject to the condition that it is of
the formmy + y + 2, wherer; € TI(Y1) andr;, € TI(Y2). Note that
opt(Y1,y, Y2) can be computed by

opt(Y1, y, Y2) = opt(V1) + C(Y1, Y2) + (Y1, {y}) + C({y}, Y2) + opt(Y2).

Lemma5.2. Letl <t < 2|Y| and suppose,a=t for somey € Y.
For each SC M; withy € S, we have
opt(L; U S) = minfopt(Li-1 U T,y,U) |
TuU =S\{y, TnU =0}

The dynamic programming gives us the optimal solution
opt(Y) sinceLyy =Y.

Lemmab’5.3. Letl <t < 2|Y| and let h= |M¢|. Given a table that
lists the values of(L;-1, {v}) for everyv € M;_; andopt(Li—1 U S)

example) gives us the following exponential upper bound on the for every Sc M;_;, we can compute in @") time the values

complexity of computing opt() which we need for small sub-
problems.

Lemma 5.1. Let V C Y and assume tha{u, v) is available in
O(2)time for each pair of distinct verticesue V. Thenopt(U)
forallU c V can be computed in@2") total time where h= |V|.

For eacht, 1 <t < 2], letLy = {y € Y | b, < t},
Mi={yeYla <t<b} andR ={y e Y|t < al.
Note that

(1) ift =@, for somey € Y thenL; = Li_1, My = Mi_1 U {y}, and

R =R-1\{yh
(2) ift = b, for somey € Y thenL; = Li_1 U{y}, M; = M1\ {y},

© 2012 Information Processing Society of Japan

of ¢(L, {v}) for all v € M; and the values obpt(L; U S) for all
Sc M.

Each pair of vertices iM; contributes at least one crossing in
any ordering ofY. Therefore, for the given instance to be fea-
sible, we havéeh(h — 1)/2 < k and hencéh < V2k + 1, where
h = |My|. Using this bound and an observation thdf| > 2 for
at mostk values oft, it is straightforward to derive a bound of
O(IG@ + n) on the running time of the entire dynamic program-
ming computation. For a tighter analysis, we need the following
lemmas.

Lemma 5.4. Assume thayf has at most k intersecting pairs of

IPSJ SIG Technical Report

intervals. Let H= [V2K]+1and, for2 < h < H, let g, denote the
number of values of t witiM;| = h. Then, we have,c< 252
for2<h<H.

Lemma 5.5. Assume that the given OSCM instance is feasible,
the total running time of the dynamic programming algorithm
based on Lemma 5.3 is(E)‘@ +n).

To control the running time for infeasible instances, we com-
putec;, for each 2< h < H and, ifc, exceeds the proved bound,
we immediately stop the computation as we have detected infea-
sibility.

References

[1] Ailon, N., Charikar, M., and Newman, A.: Aggregating inconsistent
information:Ranking and clusteringournal of the ACM, 55(5):Arti-
cle No. 23, 2008

[2] Alon, N., Lokshtanov, D. and Saurabh, S.: Fast FASTAlriomata,
Languages and Programming, 36th International Colloquium, ICALP
2009, Rhodes, Greece, July 5-12, 2009, Proceedings, Ppft. 149—

58, 2009.

[3] Bodlaender, H.: A Tourist Guide through Treewid#hcta Cybernet-
ica, Vol. 11, pp. 1-23, 1993.

[4] Bodlaender, H., Fomin, F., Kratsch, D. and Thilikos, D.: A Note on
Exact Algorithms for Vertex Ordering Problems on Graphseory of
Computing Systems, Vol. 50(3), pp. 420-432, 2012.

[5] Downey, R. G. and Fellows, M. R.:Parameterized Complexity
Springer, 1998.

[6] Dujmovic, V., Fernau, H. and Kaufmann, M.: Fixed parameter algo-
rithms for one-sided crossing minimization revisitddurnal of Dis-
crete Algorithms\ol. 6(2), pp. 313-323, 2008.

[7] Dujmovi¢, V. and Whitesides, S.: An ficient Fixed Parameter
Tractable Algorithm for 1-Sided Crossing MinimizatioAlgorith-
mica, Vol. 40(1), pp. 15-31, 2004.

[8] Eades, P. and Wormald, N. C.: Edge crossings in drawings of bipartite
graphsAlgorithmica, Vol. 11(4), pp. 379-403, 1994.

[9] Fernau, H., Fomin, F. V., Lokshtanov, D., Mnich, M., Philip, G. and
Saurabh, S.: Ranking and drawing in subexponential timeRrin
ceedings of the 21st International Workshop On Combinatorial Algo-
rithms, IWOCA'10, pp. 337-348, 2010.

[10] Held, M. and Karp, R. M.: A dynamic programming approach to se-
quencing problemslournal of the Society for Industrial and Applied
Mathematics, Vol. 10, pp. 196-210, 1962.

[11] Impagliazzo, R. and Paturi, R.: On the complexitykeBAT Journal
of Computer and System Sciencés. 62, pp. 367-375, 2001.

[12] Impagliazzo, R., Paturi, R. and Zane, F.: Which problems have
strongly exponential complexity@ournal of Computer and System
Sciences\ol. 63, pp. 512-530, 2001.

[13] Karpinski, M. and Schudy, W.: Faster Algorithms for Feedback Arc
Set Tournament, Kemeny Rank Aggregation and Betweenness Tour-
nament, InProceedings of the 21st International Symposium on Algo-
rithms and Computation, ISAAC’10, part |, pp. 3-14, 2010.

[14] Kobayashi, Y. and Tamaki, H.: A Fast and Simple Subexponential
Fixed Parameter Algorithm for One-Sided Crossing Minimization, In
Proceedings of the 20th Annual European Symposium on Algotithms
ESA12, pp. 683-694, 2012.

[15] Lokshtanov, D., Marx, D. and Saurabh, S.: Lower bounds based on the
Exponential Time Hypothesis, The Complexity Column by Arvind V.,
Bulletin of the EATCSop. 41-72, 2011.

[16] Nagamochi, H.: On the one-sided crossing minimization in a bipar-
tite graph with large degre@heoretical Computer Scienceol. 332,
pp. 417-4486, 2005.

[17] Nagamochi, H.: Animproved bound on the one-sided minimum cross-
ing number in two-layered drawingdjscrete and Computational Ge-
ometry, Vol. 33(4), pp. 569-591, 2005.

[18] Mufioz, X., Unger, W. and Vrt'o, |.: One sided crossing minimization
is NP-hard for sparse graphs, Revised Papers from the 9th Interna-
tional Symposium on Graph DrawinGD’01, pp. 115-123, 2002.

[19] Sugiyama, K., Tagawa, S. and Toda, M.: Methods for visual under-
standing of hierarchical system structurédSEE Transactions on Sys-
tems, Man, and Cybernetics, Vol. 11(2), pp. 109-125,1981.

© 2012 Information Processing Society of Japan

Vol.2012-AL-141 No.1
2012/10/4

