WEKO3
アイテム
A Fast and Simple Subexponential Fixed Parameter Algorithm for One-Sided Crossing Minimization
https://ipsj.ixsq.nii.ac.jp/records/85805
https://ipsj.ixsq.nii.ac.jp/records/8580574d9ab46-5dd0-440c-a69d-6119856abf8f
名前 / ファイル | ライセンス | アクション |
---|---|---|
![]() |
Copyright (c) 2012 by the Information Processing Society of Japan
|
|
オープンアクセス |
Item type | SIG Technical Reports(1) | |||||||
---|---|---|---|---|---|---|---|---|
公開日 | 2012-09-27 | |||||||
タイトル | ||||||||
タイトル | A Fast and Simple Subexponential Fixed Parameter Algorithm for One-Sided Crossing Minimization | |||||||
タイトル | ||||||||
言語 | en | |||||||
タイトル | A Fast and Simple Subexponential Fixed Parameter Algorithm for One-Sided Crossing Minimization | |||||||
言語 | ||||||||
言語 | eng | |||||||
資源タイプ | ||||||||
資源タイプ識別子 | http://purl.org/coar/resource_type/c_18gh | |||||||
資源タイプ | technical report | |||||||
著者所属 | ||||||||
Meiji University | ||||||||
著者所属 | ||||||||
Meiji University | ||||||||
著者所属(英) | ||||||||
en | ||||||||
Meiji University | ||||||||
著者所属(英) | ||||||||
en | ||||||||
Meiji University | ||||||||
著者名 |
Yasuaki, Kobayashi
× Yasuaki, Kobayashi
|
|||||||
著者名(英) |
Yasuaki, Kobayashi
× Yasuaki, Kobayashi
|
|||||||
論文抄録 | ||||||||
内容記述タイプ | Other | |||||||
内容記述 | We give a subexponential fixed parameter algorithm for one-sided crossing minimization. It runs in O(3√2k + n) time, where n is the number of vertices of the given graph and parameter k is the number of crossings. The exponent of O(√k) in this bound is asymptotically optimal assuming the Exponential Time Hypothesis and the previously best known algorithm runs in 2O(√k log k) + nO(1) time. We achieve this significant improvement by the use of a certain interval graph naturally associated with the problem instance and a simple dynamic program on this interval graph. The linear dependency on n is also achieved through the use of this interval graph. | |||||||
論文抄録(英) | ||||||||
内容記述タイプ | Other | |||||||
内容記述 | We give a subexponential fixed parameter algorithm for one-sided crossing minimization. It runs in O(3√2k + n) time, where n is the number of vertices of the given graph and parameter k is the number of crossings. The exponent of O(√k) in this bound is asymptotically optimal assuming the Exponential Time Hypothesis and the previously best known algorithm runs in 2O(√k log k) + nO(1) time. We achieve this significant improvement by the use of a certain interval graph naturally associated with the problem instance and a simple dynamic program on this interval graph. The linear dependency on n is also achieved through the use of this interval graph. | |||||||
書誌レコードID | ||||||||
収録物識別子タイプ | NCID | |||||||
収録物識別子 | AN1009593X | |||||||
書誌情報 |
研究報告アルゴリズム(AL) 巻 2012-AL-141, 号 1, p. 1-5, 発行日 2012-09-27 |
|||||||
Notice | ||||||||
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc. | ||||||||
出版者 | ||||||||
言語 | ja | |||||||
出版者 | 情報処理学会 |