
IPSJ SIG Technical Report

Towards a Dataflow FMM using the
OmpSs Programming Model

Miquel Pericàs1,a) Abdelhalim Amer4,b) Keisuke Fukuda4,c) NaoyaMaruyama2,d)

Rio Yokota3,e) SatoshiMatsuoka1,f)

Abstract: This paper describes initial efforts towards the development of a dataflow implementation of the ExaFMM
Fast Multipole Method code using the OmpSs programming model. We first develop several implementations based
on task decomposition which overcome load balancing problems previously identified using traditional parallelization
approaches. We then add dataflow extensions to improve task throughput by extracting distant parallelism and remov-
ing barriers. Execution profiles and scalability results for a single node of the Tsubame 2.0 supercomputer are then
shown.

Keywords: Fast Multipole Method, Task-Dataflow Programming Models, Tsubame 2.0

1. Introduction
*1 The Fast Multipole Method (FMM) is an algorithm to com-

pute fast and efficient solutions to the N-Body problem. It has
multiple applications such as molecular simulation [1], turbu-
lence simulation [2] or computational electromagnetics [3]. The
computational complexity increases as O(N). This is a notable
advantage over the direct method which, while offering inmense
parallelism, is burdened by its O(N2) complexity. Large scale
simulations need more efficient solutions, such as treecodes or
the FMM.

As with treecodes [4], the Fast Multipole Method approximates
distant clusters of source bodies while processing close bodies us-
ing the direct method. However, contrary to treecodes, the FMM
also approximates target bodies, resulting in the hierarchical in-
teraction of source and target clusters. The resulting algorithm
has many more phases and kernels than the direct particle-to-
particle (P2P) approach. In addition, many of the kernels oper-
ate bottom-up or top-down on an octree structure, which results
in a dynamically varying level of parallelism over the execution
time. The efficient implementation of the FMM algorithm and its
parallelization on multiple cores becomes a much more complex
problem.

1 Global Scientific Information and Computing Center, Tokyo Institute of
Technology, Tokyo 152–8550, Japan

2 Advanced Institute for Computational Science, Riken, Kobe, Japan
3 King Abdullah University of Science and Technology, Saudi Arabia
4 Department of Mathematical and Compute Sciences, Tokyo Institute of

Technology, Tokyo 152–8550, Japan
a) pericas.m.aa@m.titech.ac.jp
b) amer@matsulab.is.titech.ac.jp
c) fukuda@matsulab.is.titech.ac.jp
d) nmaruyama@riken.jp
e) rio.yokoya@kaust.edu.sa
f) matsu@m.titech.ac.jp
*1 IMPORTANT NOTICE: This work is a non-refereed publication

Traditionally N-Body solvers have been parallelized by stati-
cally partitioning the input distribution among processors and al-
lowing them to operate on independent data as much as possi-
ble [5], [6]. Changes in the input distribution can potentially lead
to load balancing problems, thus a considerable fine tuning effort
is necessary to make such implementations highly scalable [7].
An alternative strategy is to avoid addressing load balancing at
the source code level and rely on the runtime to perform this
task. Many modern programming models such as StarPU [8] or
StarSs/OmpSs [9] try to do this by scheduling program sections
as tasks and using dataflow techniques to avoid barrier synchro-
nization.

In this paper we show initial efforts into applying one of these
systems, namely the OmpSs programming model, to parallelize
the ExaFMM code [10]. We explore several methods to paral-
lelize the main computation phase of the FMM kernel over a
single node of the Tsubame 2.0 supercomputer and analyze the
complexity and the result of adding task dataflow execution into
the code.

This paper is organized as follows. We begin by introducing
the necessary background information on task-dataflow program-
ming models and the fast multipole method together with the Ex-
aFMM implementation. Next we explain several strategies to
parallelize the main kernel of the ExaFMM code, the dual tree
traversal (DTT). Finally, we report initial results obtained on our
test platform, a single thin node of the Tsubame 2.0 supercom-
puter.

2. Task-based Dataflow Programming Models
Recently we are witnessing the growing popularity of task

based programming models such as Intel’s Threading Build-
ing Blocks [11], the OpenMP 3.0 tasking constructs [12] or
CUDA [13]. This suggests that tasking is an intuitive abstraction

1ⓒ 2012 Information Processing Society of Japan

Vol.2012-HPC-136 No.12
2012/10/3



IPSJ SIG Technical Report

to address parallel programming in modern systems. Tasking also
allows to improve system utilization by addressing load balanc-
ing via work stealing techniques. This enables higher levels of
parallelization, but ultimately these schemes are also limited by
system wide synchronization events such as barriers.

The main idea of task-based dataflow programming models is
to relax the strict ordering of these schemes and provide a more
dynamic task scheduling environment. These schemes add de-
pendency information to individual tasks, allowing the runtime
to schedule the tasks based only on its input and output depen-
dencies. Modern programming languages following this design
approach include, among others, OmpSs [14], StarPU [8] and Se-
quoia [15]. In this paper we focus on OmpSs, an implementation
of the concepts of tasking and dataflow on top of the OpenMP 3.x
programming model. By adding extensions on top of OpenMP
constructs, OmpSs attempts to provide a familiar programming
environment, and one in which developers can verify the correct-
ness of their program sequentially, while having the runtime take
care of dynamic parallelization.

In OmpSs the programmer describes an application as a collec-
tion of tasks together with their dependencies. OmpSs tasks have
similarities to Cilk tasks [16]. On startup, only the main thread
(called Master Thread) executes. The master thread then starts
generating tasks, which are executed asynchronously by a pool
of workers which persists during the execution. Tasks are always
single-threaded and non-preemptible. They execute on a single
device and operate on local/global data as well as its input and
output dependencies. The OmpSs workers hide the complexities
and dynamic heterogeneities in the core and memory architec-
tures, as well as adapt to dynamic changes in resource availability
and workloads.

2.1 Dataflow Extensions
OmpSs adds a set of clauses (ss clauses) to the OpenMP 3.0

task construct indicating the usage of data within the task. It in-
cludes three directionality clauses: input, output and inout.
#pragma omp task [omp_clauses] [ss_clauses]

task_block

The task declarations can either be inlined or associated with
a function declaration. In the latter case, every invocation of the
function is executed as an asynchronous task.
#pragma omp task [omp_clauses] [ss_clauses]

function definition | function prototype

The three ss clauses accept a list of expressions that must
evaluate to a set of lvalues and that are used by the runtime sys-
tem to build the task dependency graph.
• input: Task not elegible to run until input dependency has

been generated
• output: Subsequent tasks cannot run until output has been

generated
• inout: Task reads and write dependency
Dependencies are described as memory ranges. The array sec-

tion syntax from Fortran 90 is used to describe these dependen-
cies. For example, in

#pragma omp task input([N] a [0:N-1], \

[N] b [0:N-1]) output ([N] c [0:N-1])

void vec_add(double *a, double *b, double *c)

the pragmas instruct the compiler that vec add() reads two
vectors of N elements and writes into array c an output vector
of the same length. This information is enough to build the de-
pendency graph. Dependency based execution has many benefits:
First, it enables asynchronous execution based on inputs/outputs,
therefore hiding communication latencies and enabling the ex-
traction of distant parallism. Second, global barriers are elimi-
nated since synchronization is implicit.

Since OmpSs extends the OpenMP task construct with depen-
dency clauses it is still possible to program a pure OpenMP 3.0
”dependency-less” code and use the OmpSs runtime to execute
the program. In this programming style, synchronization must
be explicitly encoded using the #pragma omp taskwait con-
struct. This is necessary because, since OmpSs deprecates the
#pragma omp parallel directive, there are no implicit syn-
chronizations at the end of a parallel section. As will be seen
later, only one of our multiple ExaFMM parallelizations uses the
dependency extensions of OmpSs. Thus we will also compare
with other OpenMP runtimes when executing the pure OpenMP
3.0 implementations of ExaFMM.

3. The Fast Multipole Method
In this section we provide an overview of the Fast Multipole

Method and give details on one of its implementations, namely
the ExaFMM code under development by Rio Yokota.

3.1 Overview
The FMM is a hierarchical N-Body Solver, which calculates

the interactions of N bodies with a computational complexity of
O(N). The kernel offers high arithmetic intensity and has been
shown to scale to large GPU based clusters [7].

The FMM consists of six kernels, with most of them having
some kind of dependency on others. The domain is hierarchically
partitioned into trees using an octree structure. The root cell of
the octree represents the full domain, while the leaf cells are the
smallest cells. Leaf cells may contain only up to a fixed number of
bodies. This number, which is often called q in FMM literature,
determines the depth of the tree structure. Another important pa-
rameter in FMM is the order of multipole expansions. The higher
this order, the more accurate the approximations will be, but also
the more computation needs to be conducted. In this work we
keep the order of expansions p fixed at 8. For non-uniform dis-
tributions of bodies, the octree becomes highly adaptive and the
performance very sensitive to load balancing.

In the following we define the functionality of the six main
kernels that define the FMM functionality:
( 1 ) Particle-to-Multipole (P2M): This first stage translates the

mass/charge of the particles into multipole expansions at the
center of the leaf cells.

( 2 ) Multipole-to-Multipole (M2M): In this stage, the multipole
expansions of smaller cells are translated into the multipole
expansions of larger cells.

( 3 ) Multipole-to-Local (M2L): Once the multipole expansions

2ⓒ 2012 Information Processing Society of Japan

Vol.2012-HPC-136 No.12
2012/10/3



IPSJ SIG Technical Report

have been computed they can be translated to local expan-
sions. In order to do so, cells need to be well separated.
A Multipole Acceptance Criteria (MAC), based on size and
distance is used to determine whether the cells fulfill the con-
ditions to be approximated in this manner [17].

( 4 ) Particle-to-Particle (P2P): The neighboring cells at the leaf
level are adjacent and thus never approximated using a M2L
kernel. Instead they are handled by a particle-to-particle ap-
proach, which computes the interaction of all bodies within
the cells using the direct method.

( 5 ) Local-to-Local (L2L): After the local expansions have been
computed, they are translated to the center of smaller cells
using the L2L kernel.

( 6 ) Local-to-Particle (L2P): Finally, the local expansions at the
center of the leaf cells are used to compute the final force on
the particles by means of a Local-to-Particle (L2P) kernel.

Except for the P2P kernel, all the stages depend on the data
generated by the previous stages and thus need to wait for its com-
pletion before progressing. The P2P kernel, on the other hand, is
independent on all other phases and can be executed concurrently
to all of them. The only concern is the update to the particles.
Since the L2P stage also updates the particles in the target cell,
such an update needs to be guarded with some kind of lock. Out
of all the kernels, M2L and P2P dominate the execution time.
While P2M, M2M, L2L and L2P are called at most once per cell,
the M2L kernel is called many times per cell. Because P2P is
often executed in parallel to all other stages, to achieve good load
balancing it is sized so that it takes similar execution time to M2L.
This balance between M2L and P2P is achieved by finding the
optimal value for the number of particles per cell (q). The higher
this number, the more dominant P2P becomes. On the other hand,
when q is small, the M2L kernel dominates the execution time.

3.2 Motivation Example
To motivate our work we start by analyzing a classic FMM

parallelization case. A typical parallelization scheme for the n-
body problems consists in partitioning the domain equally be-
tween workers at each timestep and have the workers operate on
their own data subset. We call this kind of partitioning octsec-
tion. Figure 1 shows the execution profile generated with extrae
and paraver for 8 processors performing an FMM simulation of
80000 bodies on a input data set following a plummer model.
The value of q is 4000. A plummer model is a common data
distribution which tries to model a globular star cluster. In this
distribution the bodies are highly clusterd towards the center and
only a few bodies are in the far regions. In the simulation of Fig-
ure 1, each processor is assigned one eighth of the domain before
starting the computation. The profile clearly shows the upward
phase (L2M, M2M), the generation of the Local Essential Trees
(Group Communication in orange color) and the downward phase
(M2L, P2P, L2L, L2P). Since each worker solves almost the same
problem, performance is good and features good load balancing.
Figure 2 shows the same expriment but using a plummer distribu-
tion that is not centered exactly in the middle of the domain, but
instead is moved slightly (about 1.22%) towards one of the edges
of the simulation cube. As can be seen, this small change has a

massive effect on performance. The code now runs more than 5
times slower. This occurs because the static partitioning scheme
generates a large load imbalance for this input distribution, with
some cores having almost no data to compute on and a single core
handling the bulk of the computation.

3.3 Load Balancing and Task Scheduling
When the particle distribution is irregular, or is not well po-

sitioned as in the previous example, balancing the load among
cores is not a simple task. Just assigning each engine to work
on a equally sized partition of the domain will result in large
load imbalance. This will be particularly bad when many pro-
cessors collaborate to solve the task, as some processes might not
have enough data to operate one while others will be overloaded.
This needs to be avoided. More advanced domain partitioning
schemes such as orthogonal recursive bisection (ORB) [5] will
generate a much more balanced work distribution by ensuring
that every processing engine handles the same number of parti-
cles. However, such a scheme has still drawbacks. First, it adds
complexity to the partitioning phase, and second, the work dis-
tribution is still static. Any remaining load imbalance will still
reduce performance. Given that some FMMs have timesteps exe-
cuting over 100 seconds each, a runtime approach can be a better
solution to the problem.

In task-based execution schemes, one of the main requirements
for performance is to keep the task pipeline as busy as possi-
ble. Barriers and synchronization points require the pipeline to
be halted. An additional goal is therefore to remove as much syn-
chronization as possible. One way to relax synchronization and
increase task throughput is to allow tasks to execute across syn-
chronization points. This can be done as long as all the inputs of
the future task have been computed. In such a scenario one can
remove the global barrier between two different parallel sections
and allows the runtime to interleave the execution of both, thus
increasing the task throughput and performance.

In this paper we explore the possibility of using such strategies
in the ExaFMM code to achieve both a good load balancing and
high utilitzation of the task pipeline by using a unified program-
ming methodology.

4. Testing environment
The development of the OmpSs ExaFMM code and its execu-

tion and analysis involve the utilization of many different tools.
The software environment consists, in addition to our modified
ExaFMM sources, of the gcc compiler (version 4.5.4), the OmpSs
runtime and source-to-source compiler (nanox-0.7a and mcxx-
1.3.5.8, respectively) and the extrae-2.2.1 tracing library, whose
output is then visualized by the Paraver tool (version 4.3.4). On
the hardware side, we ran all our experiments on a thin node of
the Tsubame 2.0 supercomputer. Each node has up to 12 physical
cores (two Intel Xeon X5670 CPUs operating at 2.93GHz) and
54 GB of main memory.

5. Parallelization Strategies and Performance
Results

This section describes several schemes that we developed to

3ⓒ 2012 Information Processing Society of Japan

Vol.2012-HPC-136 No.12
2012/10/3



IPSJ SIG Technical Report

Fig. 1 Execution profile for a Plummer Distribution with 8 processors. Static Partitioning is conducted
using binary octsection (Color Code: Blue=”Running”, Orange=”MPI Group Communication”,
Red=”Synchronization”)

Fig. 2 Execution profile for 8 cores simulating the slightly deviated Plummer Distribution. Static Parti-
tioning is performed using binary octsection

parallelize the ExaFMM code.

5.1 Dual Tree Traversal
To parallelize the ExaFMM code we consider the Dual Tree

Traversal, ExaFMM’s main kernel. The dual tree traversal (DTT)
simultaneously traverses the source and target octrees top-down
and constructs the interaction lists for the M2L and P2P kernels.
The interaction lists contain the lists of source cells to be used by
the M2L and P2P kernels. Given that the octree has many paths
to analyze, the DTT keeps an explicit stack to stor pairs of source
and target cells to be analyzed later. The original ExaFMM code
can handle the Dual Tree Traversal in two different ways:
• Default: In the default configuration, interactions are com-

puted as soon as they are recognized. This means that the
local expansions and particle interactions are computed in-
crementally.

• Queue: In this alternative mode, all interactions are first
stored in the interaction lists. After the DTT phase com-
pletes, the code traverses the target cells list and computes
all the interactions for the cell at once.

Both strategies are interesting from the point of view of paral-
lelization. We will analyze their strengths and weaknesses in the
following sections. More details on the operation of the Dual Tree
Traversal can be found in a recent publication by the ExaFMM
authors [2].

5.2 Parallel Task Execution Strategies
We focus on the dual tree traversal and taskify the execution

of the two kernels: M2L and P2P. Given that M2L and P2P are
executed hundreds of thousands of times during a timestep for a
input set of about 50000 bodies, focusing on these kernels should
provide enough granularity to balance the overall execution work-
load.

We implement the following strategies to taskify the execution.
• Fine-Grained: This version works like the default ExaFMM

execution except that all interactions are spawned asyn-
chronously as tasks. To avoid concurrency issues when mul-
tiple tasks access the same target cell OpenMP locks are
used, with one lock per cell. This version generates many
fine grained tasks, which might put a lot of pressure on the
runtime system. On the other hand, it has the potential to fin-
ish earlier as it does not delay the execution of the kernels.

• Queue-PAR. This version is like Queue but it generates one
asynchronous task for each cell during the kernel evaluation
phase. Because all the interactions for a single cell are com-
puted by the same task there is no need to set OpenMP locks.
In addition, since it computes multiple interactions per cell
and spawns just one task per each target cell, the granularity
is much larger and it is much less likely to be impacted by
runtime overheads.

• Queue-EE-PAR: This version is like Queue-PAR in that it
spawns one asynchronous task to compute all the P2P and
M2L interactions of a cell. However, it does not wait until

4ⓒ 2012 Information Processing Society of Japan

Vol.2012-HPC-136 No.12
2012/10/3



IPSJ SIG Technical Report

completion of the Dual Tree Traversal and instead launches
the task as soon as it decides that no more interactions can
be added to this cell. After each interaction evaluation it
analyzes the explicit stack to check if a cell can no longer re-
ceive interactions in the future. It then conditionally spawns
a task to compute the interactions. The ’EE’ portion in the
name is a shortcut for Early Execution.

The trace in Figure 3 shows the effect of applying the Queue-
EE-PAR implementation to the example from Figure 2, keeping
all other parameters identical. As can be seen, the usage of work-
stealing techniques has a very positive impact on the load balance.
The same results can also be achieved using the Queue-PAR and
Fine-Grained schemes. Later we will analyze the performance of
all three schemes in detail.

5.3 Dataflow Scheduling
The performance achieved by tasking can be further improved

by applying dataflow scheduling. When applying task-dataflow
techniques the programmer explicitly declares the dependency re-
lationship between tasks, which are then executed in a dataflow
manner by the runtime. This has two main benefits. First, the
number of synchronization points is reduced. Global barriers
are very detrimental to performance, particularly in large par-
allel runs because they force all processes to block at the same
time, temporarily reducing the concurrency to just one. In addi-
tion, dataflow scheduling enables the explotation of distant paral-
lelism. It allows tasks that belong to future phases of the program
to start execution ahead of time, as long as all their input depen-
dencies are ready.

Applying a dataflow execution scheme to the complete Fast
Multipole Method is challenging. In the case of the ExaFMM
code, specifying the dependencies between the M2M phase and
the Dual Tree Traversal is non-trivial. Thus in our first approach
described here, only the M2L→L2L→L2P interactions have been
implemented in a dataflow scheme. The interactions are de-
scribed at the level of cells. This means they are very fine-grained,
but at the same time this programming methodology maximizes
the extraction of parallelism. The dataflow scheme has been im-
plemented as an extention to the Queue-EE-PAR scheme to allow
the L2L tasks start as soon as possible. Of course, in order to
trigger the L2L tasks it is also a condition that the local expan-
sion (L2L kernel) of the parent cell has completed.

Figure 4 shows the last part of the downward phase execu-
tion profile of the dataflow execution. In this trace the M2L/P2P
kernels are shown in blue color, while the L2Ls are shown in
light green and L2P is shown in pink. Idle sections are shown
in whilte. The L2L and L2P portions of the trace are the most
interesting. The Figure allows to observe how these kernels exe-
cute in dataflow order and how distant tasks are overlapped. Al-
though in this part of the profile many L2L and L2P kernels can
be observed, the main part of the downware phase (not shown) is
dominated by the blue color of the M2L and P2P kernels. This ex-
plains why the speed-up achieved by dataflow scheduling versus
non-dataflow scheduling is rather small (around 4%). Another
interesting observation is the middle section of the profile. Dur-
ing this time there are no M2L or P2P executions taking care,

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1  2  3  4  5  6  7  8  9  10  11  12

S
p
e
e
d
-u

p

Number of Cores

gomp.queue
gomp.queue-ee

gomp.fine

Fig. 5 Scalability results for the GOMP versions

there are some L2L and L2P kernels executing, but otherwise
the workers are either idle or are busy performing other tasks.
What exactly is ocurring needs yet to be studied. It remains to be
seen if these wait times can be overlapped with later execution of
P2P/M2L kernels in order to further improve the performance.

5.4 Scalability Results
The final set of experiments that we conducted focuses on the

scalability to larger numbers of cores. Given that of our four par-
allel schemes only one uses the OmpSs extensions, we take the
opportunity to check not only the scalability of the OmpSs run-
time, but also the scalability of another OpenMP library such as
GOMP. We choose to use the GOMP OpenMP implementation
here as our OmpSs-based FMM already uses the GNU g++ com-
piler for the native compilation of the code.

Figure 5 shows the speed-ups achieved by the three implemen-
tations described in Section 5.2 executing the downward phase of
a single FMM timestep on a Plummer distribution centered in the
middle of the domain. The runtime used for this experiment is
GOMP. All speed-ups are reported against the serial execution of
the benchmark, which takes 4.57 seconds to execute the Down-
ward phase. The behavior varies considerably from implemen-
tation to implementation. Queue-EE-PAR offers the best perfor-
mance, achieving an 8× speed-up when using all of the 12 cores
on the node. Queue-PAR has a similar behavior for a low number
of cores, but performance quickly degrades, reaching only about
a 6× speed-up for 12 cores. The Fine-Grained implementation
has the worst performance, scaling only to 3-4 cores. After this
point performance almost does not improve any more, and after
7 cores it actually gets worse. This means that for larger number
of cores the execution is dominated by the overhead of creating
so many fine-grained tasks. An important property of task-based
runtime systems is that the maximum acceptable time for task
creation decreases proportionally to the inverse of the number of
cores. This is because a larger number of cores can absorb more
tasks. As a result the master thread needs to be able to deliver
tasks at a higher rate. For the case of libgomp, after 3 cores, task
creation starts being a major part of the execution time, and after
7 cores the runtime becomes the execution bottleneck.

Figure 6 shows the results for the OmpSs runtime. These re-

5ⓒ 2012 Information Processing Society of Japan

Vol.2012-HPC-136 No.12
2012/10/3



IPSJ SIG Technical Report

Fig. 3 Profile for the non-centered Plummer distribution using Queue-EE-PAR

Fig. 4 Profile showing a section of the dataflow execution in the FMM downward phase (Color code:
Blue = M2L/P2P, Green = L2L, Pink = L2P, White = other)

sults also include the dataflow implementation. The speed-ups
for Queue-EE-PAR and Queue-EE are somewhat smaller than the
libgomp results. This might indicate that the GOMP task creation
overhead is smaller than the OmpSs task creation overhead, but
overall the behavior is very similar. The performance of Fine-
Grained is very bad in this case, not scaling to even just 2 proces-
sors. In fact, at its best performance, with about 9 cores, it reaches
only a speed-up of 1.8×. The reason is probably the larger task
creation overhead. Fine-Grained spawns more than 700000 tasks
in a little less than 2.6 seconds, thus the runtime needs to be able
to spawn more than 300000 tasks per second if speed-ups are de-
sired. Fine-Grained also makes extensive usage of locks to avoid
race conditions which can also be a source of performane degra-
dation.

We now analyze the dataflow implementation. As it is imple-
mented as an optimization to Queue-EE-PAR, which was already
the best performer, it is no surprise that it beats all other configu-
rations. Dataflow reaches about an 8.5× speed-up with 12 cores,
the highest of all experiments (including GOMP). The speed-up
over Queue-EE-PAR is not very large, but this is expected as the
pipelining of M2Ls with L2Ls and L2Ps just enables the over-
lapping of a small amount of computations after the Dual Tree
Traversal. However, we also observe that the gap seems to in-
crease with the number of processors, reaching 8% with 12 cores.
This makes sense, as the impact of barriers on performance grows
the more processors are being used. In this case, the barrier be-
tween the DTT and the L2L kernels present in the Queue-derived
implementations is causing a scalability problem. On the other
hand, the dataflow implementation is not affected by this prob-
lem as it removes the barrier.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 1  2  3  4  5  6  7  8  9  10  11  12

S
p
e
e
d
-u

p

Number of Cores

ompss.queue
ompss.queue-ee

ompss.fine
ompss.dataflow

Fig. 6 Scalability results for the OmpSs versions

6. Related Work
Task-based runtimes are currently a hot topic of research, but

their history goes far into the past. Perhaps the most important
work in this topic was the development of the Cilk programming
language at MIT during the 90s [16]. One particular concept
that can be found in many implementation is that of FIFO work-
stealing and LIFO execution by each worker [18]. Many later lan-
guages such as Nanos [19], Qthreads [20] or MassiveThreads [21]
have adapted these principles.

Recently, several groups have proposed to combine tasking
with dataflow programming principles. Dataflow promises to
remove barriers and exploit distant parallelism in programs, in-
creasing task throughput and, therefore, performance. Systems
such as StarSs [9], StarPU [8] or QUARK [22] are all based on
this principle. OmpSs [14], the runtime used for the currrent

6ⓒ 2012 Information Processing Society of Japan

Vol.2012-HPC-136 No.12
2012/10/3



IPSJ SIG Technical Report

work, is an extension to OpenMP based on the ideas introduced
in StarSs.

Fast Multipole Methods are a hot topic due to their multi-
ple applications and good characteristics for petascale comput-
ing and beyond. ExaFMM has been recently parallelized using
MassiveThreads [23]. In the field of task-dataflow programming
models, we are aware of at least two other works that have tried
to run the FMM on a task-dataflow runtime. The first [24] is an
attempt to run the Black Box FMM on the StarPU system, while
the second is an attempt to run ExaFMM on top of QUARK [25].
The main difference with the present work is that the latter ([25])
focuses only on the M2L and P2P kernels and does not pipeline
the L2L and L2P kernels.

7. Conclusions
We present our initial work towards implementing a Fast Mul-

tipole Methods using the OmpSs task-dataflow programming
model. For simplicity we first taskify the application and then ap-
ply dataflow constructs.This initial implementation does not yet
cover the full application, but the main execution phase (called
downward) is covered. Experiments show that the dataflow ver-
sion outperforms the task-only versions thanks to the extraction
of distant parallelism between the M2L, L2L and L2P kernels.
The speed-up over the task-only versions is not large, but we also
observe that it increases with the number of cores, an observa-
tion which we plan to study in more detail. We also compared
the OmpSs runtime with the GOMP runtime. GOMP seems to
have less overhead in task creation, but this turns out not to be an
important factor as the best performing schemes do not put much
pressure on the runtime system.

References
[1] Board, J. A., Causey, J. W., Leathrum, J. F., Windemuth, A., and

Schulten, K.: Accelerated molecular dynamics simulation with the
parallel fast multipole algorithm, Chemical Physics Letters, Volume
198, Issues 12, 2 October 1992, Pages 89-94.

[2] Yokota, R., Narumi, T., Barba, L. A., and Yasuoka, K.: Petascale
turbulence simulation using a highly parallel fast multipole method
on GPUs, available from 〈http://arxiv.org/abs/1106.5273〉 (accessed
2012-9-3).

[3] Engheta, N., Murphy, W. D., Rokhlin, V., and Vassiliou, M. S.: The
Fast Multipole Method (FMM) for Electromagnetic Scattering Prob-
lems, IEEE Transactions on Antennas and Propagation, Volume 40,
Issue 6, June 1992, pages 634-641.

[4] Barnes, J., and Hut, P.: A hierarchical O(N log N) force-calculation
algorithm, Nature 324 (4): 446-449, December 1986

[5] Warren, M. S., and Salmon, J. K.: Astrophysical N-body simulation
using hierarchical tree data structures, ACM/IEEE Conference on Su-
percomputing, pages 570-576, 1992.

[6] Warren, M. S., and Salmon, J. K.: A parallel hashed oct-tree N-body
algorithm, ACM/IEEE conference on Supercomputing, pages 1221,
1993.

[7] Rahimian, A., Lashuk, I., Chandramowlishwaran, A., Malhotra, D.,
Moon, L., Sampath, R., Shringarpure, A., Veerapaneni, S., Vetter, J.,
Vuduc, R., Zorin, D., and Biros. G.: Petascale direct numerical sim-
ulation of blood flow on 200k cores and heterogeneous architectures,
ACM/IEEE Conference on Supercomputing (SC10), 2010.

[8] Augonnet, C., Thibault, S., Namyst, R., and Wacrenier, P.: StarPU: A
Unified Platform for Task Scheduling on Heterogeneous Multicore Ar-
chitectures, Concurrency and Computation: Practice and Experience,
Special Issue: Euro-Par 2009, February 2011

[9] Bellens, P., Perez, J. M., Badia, R. M., and Labarta, J.: CellSs: a pro-
gramming model for the Cell BE architecture, ACM/IEEE conference
on Supercomputing (SC06), 2006.

[10] ExaFMM | Boston University, available from
〈http://www.bu.edu/exafmm/〉 (accessed 2012-9-3)

[11] Intel Threading Building Blocks, available from
〈http://software.intel.com/en-us/intel-tbb〉 (accessed 2012-9-3)

[12] OpenMP.org, available from 〈http://openmp.org/wp/〉 (accessed 2012-
9-3)

[13] Parallel Programming and Computing Platform | CUDA | NVIDIA,
available from 〈http://www.nvidia.com/object/cuda home new.html〉
(accessed 2012-9-3)

[14] Bueno-Hedo, J, Planas, J, Duran, A, Badia, R. M., Martorell, X,
Ayguad, E, and Labarta, J.: Productive Programming of GPU Clus-
ters with OmpSs, IEEE International Parallel and Distributed Process-
ing Symposium (IPDPS), 2012.

[15] Fatahalian, K., Horn, D. R., Knight, T. J., Leem, L., Houston, M.,
Park, J. Y., Erez, M., Ren, M., Aiken, A., Dally, W. J., and Hanrahan,
P.: Sequoia: programming the memory hierarchy, ACM/IEEE confer-
ence on Supercomputing (SC06), 2006

[16] Frigo, M., and Leiserson, C. E., and Randall, K. H.: The imple-
mentation of the Cilk-5 multithreaded language, ACM SIGPLAN
Conference on Programming language design and implementation
(PLDI’98), 1998

[17] Dehnen, W.: A hierarchical O(N) force calculation algorithm, Journal
of Computational Physics, 179(1):27 42, 2002.

[18] Mohr, E., Kranz, D. A., and Halstead, R. H.: Lazy task creation: A
technique for increasing the granularity of parallel programs, IEEE
Transactions on Parallel and Distributed Systems, 2(3):264, July 1991.

[19] NANOS++, available from 〈https://pm.bsc.es/projects/nanox〉 (ac-
cessed 2012-9-3).

[20] Qthreads, available from 〈http://www.cs.sandia.gov/qthreads/〉 (ac-
cessed 2012-9-3).

[21] massivethreads - A Lightweight Thread Library
for High Productivity Languages, available from
〈http://code.google.com/p/massivethreads/〉 (accessed 2012-9-3).

[22] QUARK, available from 〈http://icl.cs.utk.edu/quark/〉 (accessed 2012-
9-3).

[23] Taura, K., Nakashima, J., Yokota, R., Maruyama, N.: Parallelizing Ex-
aFMM with MassiveThreads Task Parallel Library and Its Evaluation,
HPC-135, 2012.

[24] Agullo, E., Bramas, B., Coulaud, O., Darve, E., Messner, M., and
Toru, T., Pipelining the Fast Multipole Method over a Runtime System,
available from 〈http://arxiv.org/abs/1206.0115〉 (accessed 2012-9-3).

[25] Ltaief, H., and Yokota, R.: Data-Driven Execution of Fast Mul-
tipole Methods, available from 〈http://arxiv.org/abs/1203.0889〉 (ac-
cessed 2012-9-3).

7ⓒ 2012 Information Processing Society of Japan

Vol.2012-HPC-136 No.12
2012/10/3


