
IPSJ SIG Technical Report

Avoiding silent data corruption
in checkpoint files

Leonardo Bautista Gomez1,a) SatoshiMatsuoka1,b)

Abstract: Silent data corruption is one of the sources of inaccurate results for scientific simulations. As supercomput-
ers grow from tens to hundreds of thousands of computing cores, errors are becoming the norm, therefore it is critical
to guarantee the correctness of future scientific applications. In this paper we propose a technique to verify data on the
fly just before taking a checkpoint in order to guarantee the correctness of the saved data. We evaluate the efficiency
of our approach injecting random failures in a HPC application and demonstrate its low overhead while checkpointing
at high frequency.

1. Introduction
Scientific applications running in current supercomputers ob-

serve silent data corruption (SDC) in a regular basis. SDC are
involuntary bit alterations that are not detected by the system and
therefore introduce errors into the application execution, causing
wrong results. Most current computing systems are protected
against bit-flips using Error Correcting Codes (ECC), which are
usually capable of detecting and correcting one bit-flip. How-
ever, in many cases this is not enough to protect the system. The
validity and accuracy of scientific simulations deployed on high
performance computing (HPC) systems is paramount. Hence, it
is mandatory to guarantee the correctness of every result obtained
trough scientific simulations.

Moreover, future large scale systems, featuring smaller tran-
sistor sizes and higher density are likely to observe SDC several
times more often than current machines [3], [15]. Some studies
predict that in the coming years, the large majority of errors will
be soft-errors instead of hardware crashes [7]. Protecting scien-
tific applications against SDC is usually expensive in energy (i.e.
ECC) and it can also produce an important overhead, in particu-
lar at large scale, where large data sets need to be protected or
analyzed against data corruption. Nowadays, the most popular
fault tolerance technique in the HPC community is checkpoint-
ing. However, checkpoints do not protect the system against SDC.
In fact, errors can squeeze inside the saved state, corrupting the
checkpoints.

For this reason, novel techniques to protect checkpoints from
corrupted data must be proposed and evaluated. Proposed tech-
niques should minimize the execution overhead and should cover
a large percentage of errors. Many current HPC applications im-
plement periodical data consistency checkings, such as mass con-

1 Tokyo Institute of Technology
a) leobago@matsulab.is.titech.ac.jp
b) matsu@is.titech.ac.jp

servation or others. This tests depend strongly on the application
and cannot be performed by the system without help from the
user. In this article we present a user-friendly way to perform data
consistency checkings and hide its overhead using fault tolerance
dedicated threads. Our technique can detect an important per-
centage of data corruptions imposing only about 1% of overhead
to the applications. Unfortunately our technique cannot correct
the corrupted data but it does transforms an important number of
SDCs into soft errors for a negligible price. Such soft errors can
be tolerated using checkpointing.

1.1 Contributions
The main novelty of this research work is the way we off-load

the data consistency checkings so that its cost is negligible. This
can be decomposed in the following contributions:
• In order to substantially decrease the chance of SDC, we pro-

pose a technique to off-load data consistency checkings to
dedicated threads that are executed in the background.

• We implement our proposed technique and develop a statis-
tical analysis to predict the percentage of detected errors.

• We evaluate the overhead of our proposed technique and
demonstrate its efficiency using synthetic benchmarks.

The rest of this article is organized as follows: Section 2
presents the background and motivations for this work and in
Section 3 we presents some related work. Section 4 explains
our proposed techniques and some details about its implementa-
tion while Section 5 shows our evaluation and finally we present
our conclusions in Section 6.

2. Background
As explained in the previous section, data corruption may oc-

cur at any moment in any of the components of a system [16].
There are two types of data in a computer: the instructions of the
program executed by the machine and the data modified by those
instructions. When data corruption affects instructions of any of

ⓒ 2012 Information Processing Society of Japan 1

Vol.2012-HPC-136 No.11
2012/10/3



IPSJ SIG Technical Report

the procedures executed by the machine, most of the times the
error will cause the given program to crash. This is usually ob-
served as a transient failure. Transient failure can be easily recov-
ered assuming periodic checkpointing. However, when the data
corrupted makes part of the data used as input in the application,
the program may not fail and continue its execution, sometimes
even until the expected termination of the application. The data
and results produced by the execution will not be correct as the
data has been involuntarily altered.

Since such errors are not detected or detected very late in the
execution, they are called silent errors. Silent errors are very
difficult to deal with because of their very nature. Most of the
fault tolerance techniques used in HPC can not address wrong
results produced by silent errors. Scientists usually use applica-
tion level techniques, such as data checking, during the execution.
For instance, basic physic laws, such as mass conservation or pos-
itive time values, are checked at a certain frequency to guarantee
correctness. These techniques cannot be easily standardized be-
cause correct value ranges are application dependent and only re-
searches know the expected value ranges for the variables in their
applications. Moreover, reactive techniques may not guarantee a
proper recovery because the data may have been corrupted for a
long period of time.

As systems grow in transistors count, noise levels increase and
feature sizes decrease future supercomputers are more likely to
be affected by silent errors than current machines. Moreover,
silent errors can affect nodes, networks, disks, etc. increasing
the probability of silent error in systems with many more compo-
nents than current platforms. This lead us to a situation where
future fault techniques will require solutions to avoid data corrup-
tion. However, not all the applications are similarly affected by
silent errors, some applications are significantly more sensitive
than others. This is because not all undetected faults necessarily
lead to a silent error and the probability of this happening depends
in the way the application stores its data and the corrupted data.

3. Related Work
There is a large literature in fault tolerance for HPC systems.

System-level checkpointing [8] for instance makes checkpoint-
ing transparent to the user. Several works have proposed tech-
niques to make checkpointing faster in large scale systems [1],
[5], [6], [10], [11], [13], [14]. Also, there have been substantial
work on improving PFS write troughput for large scale check-
pointing [2], [17]. New hardware devices such as Phase Change
Memory (PCM) have been studied to decrease fault tolerance
overhead [7]. However, none of these works tackle the problem
of SDC. All these improvement in checkpointing only cover fail-
stop failures and assume that failures are detected in order to be
recovered. Therefore, the problem of SDC remains open and it
can be critical for future exascale machines.

Most of the work done to deal with involuntary bit alterations
is done at the hardware level. Those works are focused on de-
veloping more elaborated ECC mechanisms to substantially de-
crease the chance of data corruption. However, it is very difficult
to completely remove data corruption in very large scale systems.
In addition, ECC strategies require extra space to store the check-

sum used for corrections. For instance, the new Fermi GPU can
activate ECC on the GPU memory to guarantee higher confidence
on the data correctness but it also requires about 12% of the GPU
memory for the checksums. Another important element to take
into account is the power consumption. Indeed, ECC requires a
significant amount of energy to protect the data. Such energy con-
sumption is tolerable at current scale, but it is not clear whether it
will still be tolerable at exascale. The power limitations are exas-
cale are so important that it is not clear today if we still can afford
ECC in future system components.

Many scientific applications perform data consistency checks
by themselves inside the application. This is a flexible way of
checking data because the user can develop elaborated functions
to check different parameters. However, this functions are usu-
ally executed by the same applications processes, imposing an
important overhead to the application. Algorithm-Based Fault
Tolerance (ABFT) [4] is one of the emerging solutions to deal
with data corruption. In ABFT, the algorithms are implemented
with additional computations and extra data, to make them toler-
ant to errors, including bit-flips or other involuntary alterations.
However, if the corruption is not detected the corruption might
propagate to the checksums kept during the execution, making
the extra work useless.

Another way to protect large scale systems against SDC is to
use process replication. For instance, replicating every process
twice and periodically checking that both replicas are producing
the same results is a way to detect data corruption. In addition,
using three replicas the system can, not only detect but also cor-
rect data corruption. For instance, recent work [9] has proposed
to use three way process replication with a voting system imple-
mented at the communication level, to detect and automatically
correct data corruption. This technique has the advantage of giv-
ing a high degree of confidence in the data correctness but unfor-
tunately it also imposes a very expensive price, since three way
data replication implies that the machine is only being used at
about 30% of its maximum performance.

4. Pre-checkpoint data-checking
In our previous work, we have proposed to use idle CPU cores

to encode the checkpoint files in parallel with the application exe-
cution. This encoding is performed after the application is check-
pointed. This implies that the fault tolerance dedicated processes
work periodically and if the encoding is not too long they might
see some idle time between encodings. In addition, in the multi-
level scheme that we have proposed, not every checkpoint is fol-
lowed by some encoding, therefore the encoding processes are
very likely to have idle time to perform other tasks.

We propose to use the idle time of the fault tolerance dedicated
processes to perform data checkings in the background. The idea
is to check that all the values of a given data vector are with-in the
possible physical boundaries of the simulated model. Of-course,
only the user knows which are such limits, therefore is the user
who gives the vector to analyze and the minimum and maximum
values that any item of the vector should respect. The data vector
is then transfered to the fault tolerance dedicated thread, who will
verify that every single element of the vector respects the mini-

ⓒ 2012 Information Processing Society of Japan 2

Vol.2012-HPC-136 No.11
2012/10/3



IPSJ SIG Technical Report

mum and maximum specified by the user. As shown in Figure 1,
this verification will be done in parallel with the application ex-
ecution, which is one of the advantages of using the idle time of
the fault tolerance dedicated thread.

The data checking could be performed at random time points
during the execution with some periodicity. However, to increase
the confidence in that the data saved in the checkpoint files is not
corrupted, we decided to perform the data checking just before
taking a checkpoint. While it is clear that the data can be cor-
rupted at any point in time, for instance just after the checking and
before the checkpoint, performing the data checking just before
the checkpoint does increase the probability of having accurate
results.

It is also important to notice that the data can be corrupted and
still have a value with-in the specified boundaries, In particular,
for physical data that has a wide range of possible correct val-
ues. While the data is corrupted and still with-in the given limits,
the application is very likely to produce wrong results and our
technique will not detect the corruption. The probability of such
scenario taking place depends on the range of possible values that
the application data can have. Very wide ranges will increase the
probability of undetected corruption, while narrow ranges of pos-
sible values will make undetected corruption very unlikely. Such
range depends on the application and its physic characteristics.

Fig. 1 Concurrent data consistency checking

If we analyze the way data is stored in scientific simulations
we find that most applications use floating point representation of
values, either in single precision or in double precision. Floating
point representations use a certain number of bits (32 for single
precision and 64 for double precision) and the bits are organized
in three parts: the sign, the mantissa and the exponent. Depend-
ing on which of these three parts the corruption happens, the cor-
ruption might be more or less easy to detect. For instance, if the
difference between the minimum and maximum possible values
is no larger than one order of magnitude then every corruption
in the exponent of the floating point representation should be de-
tected by our technique.

Table 1 shows the internal representation of floating point num-
bers for both cases: single and double precision. As we can see,
they reserve more than 70% of bits to the mantissa and the rest

for exponent and sign. When one of the bits belonging to the ex-
ponent or the sign is corrupted, the application is very likely to
be highly perturbed by such corruption because the data values
are not within the expected limits. In such cases our technique
will detect the corruption. Statistically, bit-flips are more likely
to hit the mantissa because it takes the majority of the space in
the floating point representation. When a bit is corrupted in the
mantissa, depending on the position of the corrupted bit and the
sensitivity of the application, the corruption can be ignored with-
out perturbing the execution because the alteration is observed
as a insignificant change in the decimal on the value in question.
These alteration will not be detected by our technique because
the values will be comprised between the corresponding limits
but at the same time such errors can be simply ignored as they
do not significantly change any data. The last case, is when one
of the important bits of the mantissa is corrupted and the result is
within the boundaries given by the user. Our technique will be un-
able to detect the corruption and the alteration will be significant,
causing wrong results. For most applications this last scenario is
unlikely to happen, as most alterations will corrupt either the sign
or exponent, changing dramatically the values, or the right deci-
mals of the mantissa that will not have a significant impact and
can be ignored. However, there are some applications that are
very sensitive to any minimal alteration and even the lightest al-
teration in the right part of the mantissa will cause the application
to diverge.

Type Sign Mantissa Exponent Total
Single 1 8 23 32
Double 1 11 52 64

Table 1 Floating point representation

Finally, it is important to point out that this technique can only
detect data corruption but cannot correct it. This is an important
limitation of this technique. However, it importantly decreases
the probability of SDC and when a data corruption is detected
the application can restart from the last saved checkpoint, with
a high probability that the previous checkpoint is not corrupted.
In other words, our technique does not guarantee that SDC can-
not happen, but it transforms an important number of SDCs in
soft-errors, which are significantly less harmful failures.

5. Evaluation
In this section we present our evaluation for the proposed tech-

nique. In this evaluation we use synthetic benchmarks to mea-
sure the overhead on the application execution while performing
the data checking before checkpointing and compare it with an
execution without data checking. The synthetic benchmark cor-
responds to a program that allocates a certain amount of memory
as a grid and then performs computations into that grid. The pro-
gram is composed by a main loop in which at every time step
we call a kernel. The kernel includes some data transfer between
processes and it performs some dummy computation on the grid
cells.

The program is modified to perform checkpointing with our
fast checkpointing library FTI. The checkpoints are stored in lo-
cal SSDs and some of them encoded using Reed-Solomon encod-

ⓒ 2012 Information Processing Society of Japan 3

Vol.2012-HPC-136 No.11
2012/10/3



IPSJ SIG Technical Report

ing. We set up to versions of the code, one that only performs the
checkpoint without data consistency checking, and a second ver-
sion in which data consistency is performed before checkpointing.
The data consistency is performed in the background by the head
of the fault tolerance dedicated thread that is spawned with FTI
and that also encodes the checkpoint files.

CPU 2 Intel Westmere-EP 3.20GHz 12Cores/node
Memory 16 GB

SSD 120 GB
Network InfiniBand

Table 2 Cluster specifications

For our evaluation we use a medium size cluster which specifi-
cations are given in Table 2. We launch our synthetic benchmark
with a total of 64 processes. Each process allocates the same
amount of memory and performs the same computation and com-
munications, in the same way that stencil applications works [12].
The allocated grid is a vector of floats (single precision). During
the execution we perform one checkpoint and for the version of
the code with data consistency the checking is performed before
the checkpoint. We measure and compare the execution time for
both versions for different grid sizes. The results are given in Fig-
ure 2. Every point in the figure is the average of three executions.

Fig. 2 Overhead comparison for single precision data

We increase the data size per process from 100MBs to
700MBs, which is almost the saturation point of the node memory
launching 16 processes per node. As we can see, the execution
time increases with the size of the data, which is normal because
more data implies more computation. What is really important to
notice in this experiment is that both versions (w/ and w/o check-
ing) have almost the same execution time in most of the cases.
The largest difference between both versions is not more than
1%. This was expectable because the data consistency checking
is performed in the background before the checkpoint is taken.

We perform the same evaluation for double precision data,
moving again from 100MBs to 700MBs. It is important to notice
that in double precision the number of grid elements is lower than
for single precision assuming the same storage size, because dou-
ble precision data requires more space. This means that the num-
ber of data verifications is lower than in single precision. Once
again, the overhead of performing data consistency checking in

the background is negligible, as we can see in Figure 3.

Fig. 3 Overhead comparison for double precision data

6. Conclusions
In this research work we have proposed a technique to detect

SDC. Although our technique has several limitations, it has the
benefit of being almost transparent in that the overhead imposed
by this technique is negligible. This is because the data consis-
tency checkings are performed in the background by the same
fault tolerance dedicated threads that perform the checkpoint files
encoding. Our technique does no guarantee to detect all the SDC
and it cannot correct any, but it does transform an important num-
ber of SDCs into less harmful soft errors. In the future, we plan to
allow the user to perform more complex data consistency verifi-
cations more than just giving two boundaries for the data vectors.

References
[1] Bautista-Gomez, L. A., Tsuboi, S., Komatitsch, D., Cappello, F.,

Maruyama, N. and Matsuoka, S.: FTI: High performance fault tol-
erance interface for hybrid systems., SC, ACM, p. 32 (2011).

[2] Bent, J., Gibson, G., Grider, G., McClelland, B., Nowoczynski, P.,
Nunez, J., Polte, M. and Wingate, M.: PLFS: a checkpoint filesystem
for parallel applications, Proceedings of the Conference on High Per-
formance Computing Networking, Storage and Analysis, SC09, New
York, NY, USA, ACM, pp. 21:1--21:12 (2009).

[3] Borkar, S.: Designing Reliable Systems from Unreliable Components:
The Challenges of Transistor Variability and Degradation, IEEE Mi-
cro, Vol. 25, pp. 10--16 (2005).

[4] Bosilca, G., Delmas, R., Dongarra, J. and Langou, J.: Algorithm-
based fault tolerance applied to high performance computing, J. Par-
allel Distrib. Comput., Vol. 69, No. 4, pp. 410--416 (2009).

[5] Chen, Z. and Dongarra, J.: A Scalable Checkpoint Encoding Algo-
rithm for Diskless Checkpointing, High Assurance Systems Engineer-
ing Symposium, 2008. HASE 2008. 11th IEEE, pp. 71 --79 (2008).

[6] da Lu, C.: Scalable Diskless Checkpointing for Large Parallel Sys-
tems, Technical report, Ph.D. Dissertation, Univ. of Illinois at Urbana-
Champain (2005).

[7] Dong, X., Muralimanohar, N., Jouppi, N., Kaufmann, R. and Xie, Y.:
Leveraging 3D PCRAM technologies to reduce checkpoint overhead
for future exascale systems, Proceedings of the Conference on High
Performance Computing Networking, Storage and Analysis, SC ’09,
New York, NY, USA, ACM, pp. 57:1--57:12 (2009).

[8] Duell, J., Hargrove, P. and Roman., E.: The Design and Implemen-
tation of Berkeley Lab’s Linux Checkpoint/Restart, Technical Report
LBNL-54941, Future Technologies Group (2002).

[9] Ferreira, K., Stearley, J., Laros, III, J. H., Oldfield, R., Pedretti, K.,
Brightwell, R., Riesen, R., Bridges, P. G. and Arnold, D.: Evaluat-
ing the viability of process replication reliability for exascale systems,
Proceedings of 2011 International Conference for High Performance
Computing, Networking, Storage and Analysis, SC ’11, New York,
NY, USA, ACM, pp. 44:1--44:12 (2011).

ⓒ 2012 Information Processing Society of Japan 4

Vol.2012-HPC-136 No.11
2012/10/3



IPSJ SIG Technical Report

[10] Gomez, L., Nukada, A., Maruyama, N., Cappello, F. and Matsuoka,
S.: Low-overhead diskless checkpoint for hybrid computing systems,
High Performance Computing (HiPC), 2010 International Conference
on, pp. 1 --10 (2010).

[11] Gomez, L. A. B., Maruyama, N., Cappello, F. and Matsuoka, S.: Dis-
tributed Diskless Checkpoint for Large Scale Systems, Cluster, Cloud
and Grid Computing (CCGrid), 2010 10th IEEE/ACM International
Conference on, pp. 63 --72 (2010).

[12] Maruyama, N., Nomura, T., Sato, K. and Matsuoka, S.: Physis: an
implicitly parallel programming model for stencil computations on
large-scale GPU-accelerated supercomputers, Proceedings of 2011 In-
ternational Conference for High Performance Computing, Network-
ing, Storage and Analysis, SC ’11, New York, NY, USA, ACM, pp.
11:1--11:12 (2011).

[13] Moody, A., Bronevetsky, G., Mohror, K. and Supinski, B. R. d.: De-
sign, Modeling, and Evaluation of a Scalable Multi-level Checkpoint-
ing System, Proceedings of the 2010 ACM/IEEE International Con-
ference for High Performance Computing, Networking, Storage and
Analysis, SC ’10, Washington, DC, USA, pp. 1--11 (2010).

[14] Plank, J. S., Li, K. and Puening, M. A.: Diskless Checkpointing, IEEE
Transactions on Parallel and Distributed Systems, Vol. 9, No. 10, pp.
972--986 (1998).

[15] Schroeder, B. and Gibson, G. A.: A large-scale study of failures
in high-performance computing systems, Proceedings of the Interna-
tional Conference on Dependable Systems and Networks, DSN ’06,
Washington, DC, USA, IEEE Computer Society, pp. 249--258 (2006).

[16] Schroeder, B. and Gibson, G. A.: Understanding failures in petascale
computers, Journal of Physics: Conference Series, Vol. 78, No. 1, p.
012022 (2007).

[17] Thakur, R., Gropp, W. and Lusk, E.: On Implementing MPI-IO
Portably and with High Performance, In Proceedings of the 6th Work-
shop on I/O in Parallel and Distributed Systems, ACM Press, pp. 23--
32 (1999).

ⓒ 2012 Information Processing Society of Japan 5

Vol.2012-HPC-136 No.11
2012/10/3


