
Electronic Preprint for Journal of Information Processing Vol.20 No.4

Regular Paper

Malware Sandbox Analysis with Efficient
Observation of Herder’s Behavior

Takahiro Kasama1,2,a) Katsunari Yoshioka1,b) TsutomuMatsumoto1,c)

Masaya Yamagata3,d) Masashi Eto2,e) Daisuke Inoue2,f) Koji Nakao2,g)

Received: December 1, 2011, Accepted: June 1, 2012

Abstract: Recent malware communicate with remote hosts in the Internet for receiving C&C commands and updat-
ing themselves, etc., and their behaviors can be diverse depending on the behaviors of the remote hosts. Thus, when
analyzing these malware by sandbox analysis, it is important not only to focus behaviors of a malware sample itself
but also those of the remote servers that are controlled by attackers. A simple solution to achieve this is to observe the
live sample by an Internet-connected sandbox for a long period of time. However, since we do not know when these
servers will send meaningful responses, we need to keep the sample being executed in the sandbox, which is indeed
a costly operation. Also, leaving the live malware in the Internet-connected sandbox increases the risk that its attacks
spill out of the sandbox and induce secondary infections. In this paper, we propose a novel sandbox analysis method
using a dummy client, an automatically generated lightweight script to interact with the remote servers instead of the
malware sample itself. In the proposed method, at first we execute a malware sample in the sandbox that is connected
to the real Internet and Internet Emulator. Secondly, we inspect the traffic observed in the sandbox and filter out high-
risk communications. The rest of the traffic data is then used by the dummy client to interact with the remote servers
instead of the sample itself and effectively collects the responses from the servers. The collected server responses are
then fed back to the Internet Emulator in the sandbox and will be used for improving observability of malware sandbox
analysis. In the experiment with malware samples captured in the wild, we indeed observed a considerable number
of changes in the responses from the remote servers that were obtained by our dummy client. Also, in comparison
with the simple Internet-connected sandbox, the proposed sandbox could improve observability of malware sandbox
analysis.

Keywords: malware, sandbox analysis, dummy client

1. Introduction

As the Internet has become essential medium in our life, secu-
rity threats (e.g., divulging of private information, phishing, and
denial of service attack (DoS)) have also increased. In these se-
curity threats, malware, which is a generic term for computer
viruses, worms, Trojan houses, spywares, adwares, and bots,
plays a significant role. Consequently, great research efforts have
been taken to tackle them. With the recent explosive increase
of malware, it is becoming nearly impossible to analyze them
all by manual analysis using the reverse engineering techniques.
As an effective countermeasure for this problem, malware sand-
box analysis [2], [3], [5], [12], [14], [15], [16], [17], [18], [19],
[20], [23], [25] has been studied widely. Its basic idea is to actu-
ally execute a captured malware sample in a testing environment

1 Yokohama National University, Yokohama, Kanagawa 240–8501, Japan
2 National Institute of Information and Communications Technology,

Koganei, Tokyo 184–8795, Japan
3 NEC Corporation, Minato, Tokyo 108–8001, Japan
a) kasama@nict.go.jp
b) yoshioka@ynu.ac.jp
c) tsutomu@ynu.ac.jp
d) yamagata@da.jp.nec.com
e) eto@nict.go.jp
f) dai@nict.go.jp
g) ko-nakao@nict.go.jp

(i.e., sandbox) to observe and analyze its behaviors. One of the
advantages of the sandbox analysis is that it is not disturbed by
packing and code obfuscation techniques, which are often used
by malware developers to make static reverse engineering more
time-consuming. Another advantage is that the sandbox analyzer
can be implemented in highly automated fashion. However, there
are several important issues to be addressed in malware sandbox
analysis. One of them is that it can indeed observe only a sin-
gle execution path of the malware sample by each execution and
important behavior which can be crucial for developing an effi-
cient countermeasure may not be observed. Especially, because
recent malware communicate with remote hosts in the Internet for
receiving C&C commands and updating themselves, etc., their
behaviors can be diverse depending on the behaviors of remote
hosts. In fact, the paper [16] reports that the behavior of malware
observed by malware sandbox analysis can differ greatly when
the analyses are done in two different time periods because some
of the remote servers which the analyzed samples communicated
with changed their behaviors over time. Therefore, in malware
sandbox analysis, it is important not only to focus behaviors of
malware sample itself but also those of the remote servers that
are controlled by attackers. A simple solution to achieve this is to
observe the live sample by an Internet-connected sandbox for a
long period of time. However, since we do not know when these

c© 2012 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.20 No.4

servers will send meaningful responses, we need to keep the sam-
ple being executed in the sandbox, which is indeed a costly op-
eration. Also, leaving the live malware in the Internet-connected
sandbox increases the risk that its attacks spill out of the sandbox
and induce secondary infections.

In this paper, we propose a novel sandbox analysis method us-
ing a dummy client, an automatically generated lightweight script
to interact with the remote servers instead of the actual sample.
In the proposed method, at first we execute a malware sample in
the sandbox that is connected to the real Internet and Internet Em-
ulator. Secondly, we inspect the traffic observed in the sandbox
and filter out high-risk communications. The rest of the traffic
data is then used by the dummy client to interact with the remote
servers instead of the sample itself and effectively collects the
responses from the servers. The collected server responses are
then fed back to the Internet Emulator in the sandbox and will
be used for improving observability of malware sandbox analy-
sis. For example, when next time a malware sample is analyzed
and the remote servers cannot be connected, then, the dummy
server can emulate the remote servers by sending the collected
responses. As another example, when a new response from the
remote servers is observed, we can re-analyze the malware sam-
ple which accesses the corresponding server and the response are
fed back to the sample in order to observe its corresponding re-
actions. The advantage of the proposed method is that we can
increase observability of the malware behavior by continuously
monitoring many remote servers in parallel while not decreasing
the efficiency too greatly by using light-weighted dummy clients
instead of observing the interactions by live malware themselves.
Besides that, since we can closely inspect the malware traffic and
filter out potentially dangerous traffic before replaying it by the
dummy client, containment of the outgoing attacks is also ex-
pected to improve.

We evaluated the proposed method with samples captured in
the wild. By using a low risk containment policy of “emulat-
ing only the harmless HTTP and IRC connections,” we were able
to observe the changes of the server behavior and corresponding
malware behavior. Also, in comparison with the simple Internet
connected sandbox, the proposed sandbox could improve observ-
ability of the malware sandbox analysis, and revealed more be-
havior of malware.

The rest of this paper is organized as follows: In Section 2, we
describe related works. In Section 3, we first explain several im-
portant properties of malware sandbox analysis and then explain
the proposed sandbox analysis method. In Section 4, we explain
the experiments for the evaluation of the proposed method. In
Section 5, we discuss the challenge of proposed method. In Sec-
tion 6, we give conclusions and future works.

2. Related Works

Malware sandbox analysis has been studied intensively in re-
cent years. The previous studies of the malware sandbox analysis
can be categorized into two approaches in terms of their Internet
connectivity. One is a totally isolated sandbox and the other is a
sandbox with the Internet connection. Examples of the former ap-
proach are Norman Sandbox [25], and [12], [14]. The limitation

of this approach is that it is difficult to emulate remote hosts in the
real Internet as malware make various kinds of communications.
Especially, when they talk to one of their servers, such as C&C
server and file servers, they can use arbitrary (even customized)
protocols for data transmission and authentication, which makes
the emulation increasingly challenging. The other approach is
to carefully connect the sandbox with the real Internet. Exam-
ples of Internet-connected sandbox are CWSandbox [18], [20],
Anubis [3], [19], Joebox [23], and [2], [16], [17].

The above literatures mainly focus on how to observe behav-
iors of a malware sample itself and therefore do not deeply dis-
cuss the issue of how the sample is influenced by the variety of
responses from the remote servers such as C&C servers and mal-
ware download servers which are controlled by attackers. When
viewed from this perspective, the analysis with totally isolated
sandbox is not desirable because it cannot indeed observe the be-
havior of the remote servers in the Internet. By contrast, the anal-
ysis with the Internet-connected sandbox can observe how mal-
ware sample interact and get influenced by the remote servers.
However, since we do not know when these servers send mean-
ingful responses to the sample executed in the sandbox, we need
to continue executing it to observe these responses. Other related
technology aiming at a similar goal is to explore multiple execu-
tion paths. In Ref. [14], multiple execution paths of the malware
sample can be observed by controlling the conditional branches.
However, even exploring multiple execution paths cannot reveal
additional functionalities of malware that are added by the in-
teraction with the remote servers. In this paper, we propose a
sandbox analysis using dummy client for solving this problem.

There are some related works which use a dummy client.
Caballero et al. [5] performed a measurement study of the pay-
per-install (PPI) market by infiltrating four PPI services in or-
der to gather and classify the resulting malware executable files
distributed by the services. They build and use a dummy client
called “milker” in order to milk programs that the PPI services
distributed. Their approach leverages techniques for automatic
binary reuse [6], [13] which extract specific function defined by
an analyst from an executable. Cho et al. [9] proposed a tech-
nique to infer complete protocol state machines and applied it to
the analysis of botnet C&C protocols. They build a bot emulator
which interacts with the C&C servers, reverse-engineer the mes-
sage formats and their semantic content using automatic protocol
reverse engineering [7], and extract encryption/decryption mod-
ules from the bot binary [6].

3. Malware Sandbox Analysis using Dummy
Client

3.1 Properties
First, we show three important properties of malware sandbox

analysis [17].
• Observability

Observability is a property of malware sandbox analysis in
terms of observing malware behaviors in consideration. For those
who are writing removal tools or AV signature may focus on the
internal behaviors such as changes of registry keys and creation
and deletion of files. Network administrator may be interested in

c© 2012 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.20 No.4

Fig. 1 Overview of proposed system.

their network behavior for writing an IDS signature. In any way,
the sandbox analysis should be able to provide sufficient informa-
tion to the analyst.
• Containment

Containment represents two sub-properties. One is the prop-
erty for preventing the executed sample from attacking or infect-
ing a remote host outside the sandbox. We term it as containment
of outgoing attacks. The other is the property for suppressing a
leakage of important information of the analysis system itself as
they can be used against the system (i.e., sandbox detection). We
term it as containment of system information.
• Efficiency

Efficiency is a property of malware sandbox analysis in terms
of constantly providing analysis result with sufficient information
in reasonable time.

3.2 Proposed Method
In this section, we explain our proposal, namely a sandbox

analysis method using a dummy client. In our method, at first
we execute a malware sample in the sandbox that is connected to
the real Internet and the Internet Emulator. The Internet Emula-
tor consists of many dummy servers and hosts with emulated/real
vulnerable services, called Honeypots in the Sandbox (HitS).
Secondly, we inspect the traffic observed in the sandbox and fil-
ter out high-risk communications such as port scanning, remote
exploitations, and DoS. The rest of the traffic data is then used
by the dummy client to interact with the remote servers. Then
the dummy client continually interacts with the remote servers
instead of the sample itself and effectively collects the responses
from the servers. The accumulated server responses are fed back
to the Internet Emulator in the sandbox and will be used for im-
proving observability of malware sandbox analysis. For exam-
ple, when next time a malware sample is analyzed and the remote
servers cannot be connected, the dummy server can emulate the

remote servers by sending the collected responses. As another ex-
ample, when a new response from the remote servers is observed,
we can re-analyze the malware sample which accesses the cor-
responding server and the response are fed back to the sample
in order to observe its corresponding reactions. The advantage
of the proposed method is that we can increase observability of
the malware behavior by continuously monitoring many remote
servers in parallel while not decreasing the efficiency too greatly
by using light-weighted dummy clients instead of observing the
interactions by live malware themselves. Besides that, since we
can closely inspect the malware traffic and filter out potentially
dangerous traffic before replaying it by the dummy client, con-
tainment of the outgoing attacks is also expected to improve.

First, we show the overview of the proposed sandbox method
in Fig. 1. In the figure, the solid arrows indicate the communi-
cations by the analyzed malware sample and the dummy client,
and the dotted arrows indicate communications by the sandbox
system for its operation. The proposed sandbox consists of two
units: Sandbox Unit and Dummy Client Unit. Sandbox Unit is
where malware sample is actually executed and analyzed. This
unit consists of five components, namely, victim host, Internet
Emulator, access controller, analysis manager, and data spool.
Dummy Client Unit is where the dummy clients are generated
and executed. This unit contains two components: dummy client
generator and dummy clients. Each component is described in
Section 3.3. Also, the implementation of each component is de-
scribed in Section 3.5.1.

3.3 Components
• Victim Host

The victim host is a host on which a malware sample is firstly
executed to be observed. It is important that the security of the
victim host is properly configured so that the executed malware
makes further actions for us to observe.

c© 2012 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.20 No.4

• Access Controller
The access controller controls the traffic from the victim host.

It receives all packets from the victim host and redirects them to
either the Internet Emulator or the real Internet according to the
filtering rules. The filtering rules are generated by the analysis
manager.
• Internet Emulator

The Internet Emulator provides various network services to the
victim host. The Internet Emulator consists of various dummy
servers such as HTTP, SMTP, FTP, NTP, IRC, DNS, and Feed-
back servers. Feedback Server is the server to emulate behav-
iors of remote servers which malware interacts by sending the
collected server responses. Beside those servers, it also deploys
hosts with unpatched vulnerable services called a Honeypot-in-
the-Sandbox (HitS). Suspicious traffic from the malware sample
can be tested with HitS to see if it actually compromises it or not.
• Analysis Manager

The analysis manager is the core component that manages the
entire analysis procedures. Based on a simple config file, it loads
and refreshes OS image of the victim host, boots up and shuts
down the victim host, executes malware sample in the victim host,
receives and inspects all traffic logs and internal logs, sends all
traffic logs to the dummy client generator, and finally outputs the
analysis results to the analyst.
• Dummy Client Generator

The dummy client generator receives traffic logs from the anal-
ysis manager, inspects them, and generates a dummy client.
• Dummy Client

The dummy client is executed in the environments with the
real Internet connection and emulates malware communications.
When the dummy client received server responses, the responses
are stored in the data spool.
• Data Spool

The data spool is the component which stores server responses
collected by the dummy clients. The stored server responses are
loaded by the Internet Emulator and sent back to malware exe-
cuted in the victim host from dummy servers.

3.4 Analysis Procedure
The following is the brief procedure of the proposed sandbox

analysis.
(1) The analyst inputs a malware sample and the configura-

tions (OS image of the victim host, filtering rules for ac-
cess controller, etc.) to the system.

(2) The analysis manager reflects the configurations to the ac-
cess controller and Internet Emulator and boots up the vic-
tim host.

(3) The victim host executes the malware sample. All traffic
from the victim host is first sent to the access controller,
and the access controller redirects the traffic to either the
real Internet or the Internet Emulator according to the fil-
tering rules.

(4) After certain instructed time has passed, the victim host
sends all traffic logs and internal monitoring logs to the
analysis manager. Also, the Internet Emulator sends its
logs to the analysis manager.

(5) The analysis manager receives all logs from the victim
host and the Internet Emulator, shuts down and refreshes
the victim host, and sends traffic logs to the dummy client
generator.

(6) The dummy client generator inspects the received traf-
fic logs to eliminate high risk communications, such as
port scanning and remote exploitation, and generates the
dummy client which emulates remaining communica-
tions. How to generate the dummy client is described in
Section 3.5.2.

(7) The dummy client is executed in the environment with the
real Internet connection. It repeats malware communica-
tion with the remote servers in the Internet and keeps col-
lecting server responses and stores it in the data spool.

3.5 Implementation
We show the overview of the implementation of the proposed

sandbox analysis system in Fig. 2. In the figure, the solid arrows
indicate the communication by the analyzed malware and the dot-
ted arrows indicates communication by the sandbox system for its
operation.
3.5.1 Components

We implemented the entire system in a single real machine ex-
cept the environment for the dummy client to be executed. We
used a virtual machine by VMware Player 3.1.4 with Windows
XP Professional SP1 running, as the victim host. The host OS
is Ubuntu 11.04, on which the analysis manager, the access con-
troller, the Internet Emulator, the dummy client generator are im-
plemented. The network between the victim host and the host
OS is realized by a virtual private network provided by VMware
Player. Each component is implemented as follows:
• Victim Host

The victim host is implemented as a virtual machine running
Windows XP SP1. To avoid VMware detection, we changed the
default port number of VMware Server’s Console and MAC ad-
dress of the virtual NIC. Presently, basic monitoring tools such
as Regmon [22] and Filemon [22] are installed in the victim host.
We can also deploy other monitoring tools such as InCtrl [24] or
techniques like API hooking [11]. Also, the victim host is con-
figured to automatically download and execute a Windows batch
file command.bat from the analysis manager upon each boot-up
using SSH. The batch file contains the further instructions to be
followed by the victim host:

(1) Downloading the malware sample
(2) Starting designated monitoring tools
(3) Executing the sample
(4) Sending the monitoring results to the manager after des-

ignated time period
As the command.bat file can be modified by the analysis man-
ager, the procedure of the victim host can be easily controlled by
the manager remotely.
• Internet Emulator

The Internet Emulator consists of two subcomponents: dummy
servers and HitS. Both of them run on the host OS of the sys-
tem. The dummy DNS, IRC, HTTP, HTTPS, NTP, SMTP, FTP,
ECHO, and Feedback servers are implemented as light-weighted

c© 2012 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.20 No.4

Fig. 2 Implementation of proposed system.

simplified server scripts by Perl to emulate the network services
in the real Internet. When received A record query from a mal-
ware, the DNS server checks whether the responses from the
server of the queried domain name has stored in the data spool
or not. If the responses exist, the dummy DNS server returns
IP address from the specific range. Otherwise, the dummy DNS
server works as the DNS proxy. In addition, IP addresses which
the dummy DNS server returns are unique during the same anal-
ysis pass. The Feedback server is the server to send the collected
server responses to malware. When malware attempts to access
the remote servers, the Feedback server obtains the domain name
of the server by issuing a DNS query for the PTR record, and
checks whether the server can be accessed. If the server can be
accessed, the Feedback server works as the proxy server. Oth-
erwise, the Feedback server searches the server responses corre-
spond to the domain name, received data, and collected time in
the data spool. The Feedback server has two response modes.
One is the latest response mode and the other is the unique re-
sponse mode. In the latest response mode, the Feedback server
searches the latest collected server response and sends it to the
malware. Also, the Feedback server can send the response col-
lected at specific time. We can analyze the latest malware be-
haviors by using the latest response mode. Also we can analyze
how the malware works at the specific time. In the unique re-
sponse mode, in the case of HTTP protocol, the Feedback server
searches and lists the unique responses and sends these responses
to malware by rotation, and in the case of IRC protocol, the
Feedback server searches the latest collected response and unique
PRIVMSGs, and sends them to malware. We can analyze the
malware various behaviors corresponding to the responses effi-
ciently by using the unique response mode. In addition, in the
case of IRC protocol, the Feedback server replace nickname ap-
propriately.

HitS is dedicated to inspect the connections initiated by the
sample to see if they contain any harmful attacks. In order to do
it, HitS is designed to run emulated/real vulnerable network ser-
vices for the sample to exploit, like a honeypot. Our current im-
plementation uses a low-interaction honeypot program Nepenthes
v0.2.2 [1] and Dionaea [21] as it can emulate multiple vulnerable
services. We can also deploy a virtual/real machine running a
full vulnerable OS to detect zero-day exploits although such an
implementation is our future work.
• Access Controller

The access controller is implemented by iptables, a packet fil-
tering application program. Before analysis, a shell script, called
firewall.sh, is generated and executed by the analysis manager to
apply newly generated filtering rules. All traffic from the victim
host is redirected to either the real Internet or the Internet Emula-
tor according to the filtering rules. For the connections to the In-
ternet Emulator, we change their destination IP addresses to that
of the host OS by REDIRECT target of PREROUTING chain in
iptables so that they are sent to the servers running on the host.
• Analysis Manager

The analysis manager loads the configuration, and based on it,
changes the configuration of the Internet Emulator and generates
a Windows batch file command.bat and a shell script firewall.sh.
• Dummy Client Generator

The dummy client generator inspects the traffic logs and re-
moves high risk communications, and generates the dummy
client which replays the communications. There are several
choices of how to replay these communications. For example,
we can generate a dummy client for each malware sample to em-
ulate its communications to remote servers. This way, we can col-
lect the server responses corresponding to each malware. How-
ever, when the different malware accesses the same server with
the same query, redundant data are saved in the data spool, and

c© 2012 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.20 No.4

quantity of data increases. Therefore, for efficiency, we imple-
mented a method to generate a single dummy client that emulates
all unique communications observed by the execution of all mal-
ware samples.

The process of the dummy client generator is described in Sec-
tion 3.5.2.
3.5.2 Generating Dummy Client

Generating a dummy client that emulates communications ob-
served by malware sandbox analysis is done as follows:

(1) The dummy client generator divides the traffic logs into
all TCP and UDP sessions. A session means a series of
packets exchanged between a port of the victim host and
a port of a remote host in the analysis.

(2) Each reconstructed session is closely inspected in the fol-
lowing rules to eliminate high risk communications. We
call the rules Attack Filtering Rules.

i. Do not allow any session whose source IP address is
spoofed.

ii. Do not allow any session that is determined to be a port
scan by the inspection. Likewise, do not allow any ses-
sion that is determined to be a part of a DoS attack by
the inspection. In order to detect a DoS attack, it counts
the number of sessions initiated by the victim host for
the same destination IP address and port. If more than
a threshold number ThDoS of sessions are initiated, we
consider it as a DoS attack. In order to detect a port scan,
it counts the number of unique IP addresses accessed by
the victim host on each destination port without DNS
name resolution. We consider a port is scanned if more
than a threshold number Thps of distinct IP addresses
are accessed on that port by the victim host.

iii. Do not allow any session that caused a successful ex-
ploitation of the vulnerabilities in HitS.

iv. Do not allow any session whose application protocol is
not authorized. The recognition of application proto-
col is based on the message flow analysis. Namely, we
check if certain messages that characterize the applica-
tion protocol, such as methods in HTTP and commands
in IRC, are transmitted in the legitimate order of the pro-
tocol.

(3) The dummy client generator extracts the payload from
each of all sessions which passed the above rules. The
extracted payload is appended information of destination
(e.g., domain name or destination IP address, destination
port, protocol) and stored in the host OS.

(4) Each session is inspected under the following rules to in-
crease efficiency. We call the rules Duplication Reduction

Rules.
i. Leave only one session if there are two or more sessions

which send the same payload to the same server.
ii. Delete a session whose payload is included in other ses-

sion.
iii. Leave only one session if there are two or more sessions

which join the same IRC server with different IRC nick
names. The reason of to use this filtering rule is that
malware often communicates with IRC server by a ran-

dom nickname, and if emulate each of all sessions, the
number of emulate sessions will greatly increase.

iv. Leave only one session if there are two or more sessions
that send the same HTTP GET queries with different the
arguments to the same server. The reason of to use this
filtering rule is that malware sends the information about
infected host and own id and etc. by using arguments of
HTTP GET query, and if emulate each of all sessions,
the number of emulate sessions will greatly increase.

(5) The dummy client generator generates the dummy client
which replays the remaining communications. The
dummy client emulates the communication with remote
servers in the following procedures:

i. The dummy client loads the destination information
(i.e., domain name or destination IP address, destination
port, protocol) of each session.

ii. If the destination information includes a domain name,
the dummy client resolves the domain name and obtains
the corresponding destination IP address.

iii. If the protocol is TCP, the dummy client tries to connect
to the destination IP address on the destination port by
3-way handshake. When the connection is established,
the dummy client sends the first packet to the destina-
tion. If the protocol is UDP, the dummy client simply
sends the first packet to the destination IP address on the
destination port.

iv. The dummy client waits for a response from the desti-
nation. When receives the response, the dummy client
stores it in the data spool.

v. If the packet to be sent to the destination is still left and
no response for the previous packet has arrived for a
certain period of time, the dummy client sends the next
packet to the destination.

vi. After having sent all packets, the dummy client waits
for the response from the server unless it is closed a
session by the server and stores the received response
in the data spool. In addition, in the case of the IRC
protocol, the dummy client automatically replies PONG
command when received PING command from the IRC
server for that not to be closed session by the server.

4. Experiment

We conducted experiments to evaluate the proposed method
using 7,184 malware samples captured in the wild by low-
interaction honeypot (Nepenthes and Dionaea) and high-
interaction honeypot and client honeypot and so on. The number
of the names of the samples obtained from Symantec was 557.
We divided the samples in two sample sets randomly. Then,
we used one for creating dummy client and used the other for
comparison. We call the former set training set and the later set
test set. Table 1 is a list of the top 20 virus names of samples in
the each set.

The experiment has twofold purpose. First, we confirm
whether we can observe the behaviors of remote servers by us-
ing the dummy client. Second, we confirm that we can improve
the observability of the proposed sandbox than a simple Internet-

c© 2012 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.20 No.4

Table 1 Top 20 names of samples in each set obtained from symantec.

Table 2 Configuration of proposed sandbox.

connected sandbox.

4.1 Procedure
In order to evaluate the proposed method, we prepared two

sandboxes for comparison: the proposed sandbox with accu-
mulated server responses collected by dummy clients and an
Internet-connected sandbox. We call the former sandbox pro-
posed sandbox and the latter Internet-connected sandbox. We
show the configuration of the proposed sandbox in Table 2. Each
sandbox is implemented on a single real machine with the same
specification: Intel XEON 2.66 GHz × 4 with a main memory
of 4 GB, and we implemented Internet-connected sandbox by re-
moving Dummy Client Unit and Feedback server in the proposed
sandbox.

The analysis by the proposed sandbox was done as follows:
(1) (First Analysis) First, we analyzed the training set in the

Internet connected sandbox from Aug. 5 to Aug. 9, 2011.
(2) (Collection of Server Responses) Then, we generated a

dummy client with the observed traffic logs, and executed
the dummy client to collect the sever responses. The
dummy client accessed each of the remote servers every
hour from Sep. 6 to Oct. 25, 2011.

(3) (Second Analysis) Finally, we analyzed test set in the
proposed sandbox and in the Internet-connected sandbox
from Nov. 10 to Nov. 15, 2011.

4.2 Results
(1) First Analysis
Out of the 3,592 samples, 2,322 samples attempted to connect

to remote hosts with 4,848,791 sessions consisting of 4,848,791
TCP sessions and 463 UDP sessions (except for DNS queries).

Among them, 4,846,095 sessions (99.94%) were filtered out by
Attack Filtering Rules. Most of the filtered sessions were con-
sidered as port scans. The remaining 2,696 sessions were again
reduced to 242 sessions by Duplication Reduction Rules. Most of
the session reduction was due to duplicated IRC sessions. Like-
wise, the number of destinations the samples attempted to con-
nect was 4,617,688. Here, a destination means either a desti-
nation IP address or a domain name of the destined host. The
number of destinations was reduced to 148 by Attack Filtering
Rules. After all, 242 different types of sessions consisting of 224
HTTP sessions and 18 IRC sessions to 148 distinct destinations
were selected to be replayed by the dummy client to obtain server
responses.

(2) Collection of Server Responses
We ran the dummy client from Sep. 6 to Oct 25, 2011 to collect

responses from the servers. The client accessed the 148 destina-
tions by replaying the 242 different types of sessions every hour.
Results are as follows:

A) For 70 types of replayed sessions, the client always re-
ceived the same response with the same content every
hour.

B) For 23 types of replayed sessions, the client received no
response during the experiment.

C) For 37 types of replayed sessions, the client received ei-
ther a response with the same content or no response.

D) For 112 types of replayed sessions, responses from the
server changed during the experiment.

In Case (C), connectibility of the servers changes depending on
when the client accesses the servers. In Case (D), responses from
the servers changes depending on when the client accesses the
servers. Thus, the result of normal sandbox analysis of malware
which attempt to access the remote servers with these sessions
may be influenced by analysis time. Here, the change of the re-
sponse means that the hash value of received HTTP content is
changed or the IRC PRIVMSG is changed.

Windows Executable Files
Figure 3 shows the number of new Windows executable files

collected by the dummy client over time. Here, we count only
new executables based on their hash values. From the figure,
we confirmed that the dummy client could continuously receive
a number of new Windows executable files. As downloaded exe-
cutables can be used for further malicious activities, it is impor-
tant to observe such a behavior.

IRC PRIVMSG
Figure 4 shows the number of new IRC PRIVMSG col-

lected by the dummy client over time. From the figures,
we confirmed that the dummy client could continuously re-
ceive a number of new PRIVMSGs from the IRC-based C&C
servers. As PRIVMSG is often used as a C&C command be-
tween a bot and its herder, it is important to observe such
commands. For example, there are messages such as “!get
http://netnetnet1.com/sd7.txt”, which seems to be a command for
downloading a file. Actually, in the sandbox analysis, after hav-
ing received such a message, the malware accessed the URL and
downloaded an executable file.

c© 2012 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.20 No.4

Fig. 3 Number of newly observed windows executable files.

Fig. 4 Number of newly observed PRIVMSG.

Table 3 Comparison of proposed sandbox and internet-connected sandbox.

c© 2012 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.20 No.4

(3) Second Analysis
Table 3 shows the comparison between the analysis results of

the proposed sandbox and the Internet-connected sandbox. In Ta-
ble 3, almost all items increased by the proposed sandbox. Es-
pecially, numbers of samples that used HTTP POST, samples
that received executable file by HTTP GET, samples that used
SMTP, samples that used DNS MX-record queries and PTR-
record queries, unique queried domain names, and samples that
performed port scan greatly increased. These results indicate an
improved observability of malware behaviors by the proposed
sandbox. In the proposed sandbox, 1,347 malware samples at-
tempted to connect the 19 remote servers whose responses have
been collected by the dummy client. And, out of the 19 remote
servers, 8 servers could not be accessed in the second analy-
sis, thus the Feedback server replied to it using the collected re-
sponses. We consider that this is one of the main reasons for this
improvement.

The above results demonstrate that the proposed sandbox has
certain level of feasibility to observe malware behavior corre-
sponding to the behavior of remote servers.

5. Discussion

Although the proposed sandbox showed a possibility to work
for observing malware behavior according to server behavior,
there are several limitations that need to be discussed:

5.1 Detection of Dummy Client by Remote Servers
In this implementation, the dummy client simply replays the

same communication observed in the sandbox. Such a simple
replay can be easily defeated by the attacker. The attacker can in-
clude sensitive information (source IP address, timestamp, other
internal system parameter, or their hash values) into URL param-
eters, and reject queries with bad parameters. Moreover, if the
remote servers change responses according to URL parameters,
we can’t get the all responses because we eliminate some ses-
sions by applying Duplication Reduction Rules. In addition, the
attacker can adopt SSL or any other kind of protocols that are
highly interactive. In order to deal with these interactive proto-
cols, we also need to make our dummy client more interactive.
In order to obtain necessary information for more complete em-
ulation of server-client interactions, we will need to look into the
internal behavior of the malware samples by techniques like API
hooking.

In addition, in the experiment, the dummy client used the same
IP address for accessing the remote servers. Therefore, the at-
tacker can detect the dummy client by looking at the frequently
used IP addresses of the clients connecting their servers. There-
fore, to avoid this network-based detection of dummy client, we
should frequently change the IP address of the client. Another
solution is to use anonymity networks like The Onion Router
(Tor) [10]. Tor relays a multi-layered encrypted message among
its Onion Routers for sender/receiver anonymity. Namely, by us-
ing TOR, a dummy client can connect to the remote servers with-
out revealing its IP address. However, we need to consider care-
fully from the viewpoint of attackers. Although TOR reasonably
provides sender anonymity, there are several techniques for the

receiver to determine if the sender is using TOR [8], [26]. If a
normal malware victim hardly uses TOR, the very usage of TOR
can raise an attacker’s suspicion. A similar discussion applies in
the case of an anonymous proxy [4].

5.2 Determining Changes of Server Behavior
In the proposed method, it is important to determine whether

remote servers have changed its behavior in order to emulate re-
mote servers effectively. However, it is not a trivial issue. There
are indeed some parts of the server responses that changes every
time a client accesses it such as a time stamp. We need to au-
tomatically distinguish these changes from those caused by the
attacker’s behavior in order to efficiently perform the feedback
analysis. Moreover, the attacker can disturb our decision by in-
tentionally randomizing responses of his server or introducing a
challenge-response protocol to avoid a replayed query. However,
we should remark that for stable connection attackers sometimes
use a paid server hosting service that supports only a standard
protocol and in that case, such customized protocols cannot be
used. In fact, we confirmed that some of the remote servers we
observed were hosted by a paid service and they used only a reg-
ular HTTP protocol and thus our method worked effectively.

5.3 Filtering High-Risk Communications
In our proposed method, the dummy client keeps replaying the

observed malware traffic. It means that the client might mistak-
enly keep replaying a high-risk communications, such as remote
exploits and DoS, to innocent hosts. In addition, although we
don’t filter HTTP traffic in the experiments, there are various ex-
ploits by using HTTP query such as SQL injection, RFI, and com-
ment spamming. Therefore, the filtering of high-risk communi-
cation is a critical issue in our proposal. Besides the presented
filtering rules, we can also estimate the likeliness of the remote
server to be an attacker’s server in various ways. One possible
solution is to use a blacklist of malicious servers. More detailed
discussion on the attack filtering is our future work.

6. Conclusion

We proposed a novel sandbox analysis method using a dummy
client, an automatically generated script to interact with the re-
mote servers instead of the actual sample. In the proposed
method, at first we execute a malware sample in the sandbox.
Secondly, we inspect the malware traffic observed in the sandbox
and filter out high-risk communications. The rest of the traffic
data is then used by the dummy client to interact with the remote
servers. Then the dummy client continually interacts with the re-
mote servers instead of the sample itself and effectively collects
the responses from the servers. The collected server responses are
then fed back to the Internet Emulator in the sandbox and will be
used for improving observability of malware sandbox analysis.
The experiment using in-the-wild samples showed a possibility
that the server response collections and feedback analysis can re-
veal more behavior of malware.

c© 2012 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.20 No.4

References

[1] Baecher, P., Koetter, M., Holz, T., Dornseif, M. and Freiling, F.C.:
The Nepenthes Platform: An Efficient Approach to Collect Malware,
Proc. 9th International Conference on Recent Advances in Intrusion
Detection (RAID 2006), pp.165–184 (2006).

[2] Bailey, M., Oberheide, J., Andersen, J., Mao, Z.M., Jahanian, F. and
Nazario, J.: Automated Classification and Analysis of Internet Mal-
ware, Proc. 10th International Conference on Recent Advances in In-
trusion Detection (RAID 2007), pp.178–197 (2007).

[3] Bayer, U., Kruegel, C. and Kirda, E.: TTAnalyze: A Tool for Analyz-
ing Malware, Proc. 15th Annual Conference of the European Institute
for Computer Antivirus Research (EICAR) (2006).

[4] Brozycki, J.: Detecting Anonymous Proxy Usage (2008), available
from 〈http://www.sans.edu/student-files/presentations/
detecting anonymous proxies handouts.pdf〉.

[5] Canallero, J., Grier, C., Kreibich, C. and Paxson, V.: Measuring Pay-
per-Install: The Commoditization of Malware Distribution, Proc. 20th
USENIX Security Symposium (2011).

[6] Caballero, J., Johnson, N.M., McCamant, S. and Song, D.: Binary
code extraction and interface identification for security applications,
Proc. 17th Annual Network and Distributed System Security Sympo-
sium (NDSS 2010) (2010).

[7] Caballero, J., Poosankam, P., Kreibich, C. and Song, D.: Dispatcher:
Enabling active botnet infiltration using automatic protocol reverse-
engineering, Proc. 16th ACM Conference on Computer and Commu-
nications Security (CCS 2009), pp.621–634 (2009).

[8] Chakravarty, S., Stavrou, A. and Keromytis, A.D.: Identifying Proxy
Nodes in a Tor Anonymization Circuit, Proc. 2008 IEEE International
Conference on Signal Image Technology and Internet Based Systems,
pp.633–639 (2008).

[9] Cho, C.Y., Babic, D., Shin, E.C.R. and Song, D.: Inference and Anal-
ysis of Formal Models of Botnet Command and Control Protocols,
Proc. 17th ACM Conference on Computer and Communication Secu-
rity (CCS2010), pp.426–439 (2010).

[10] Dingledine, R., Mathewson, N. and Syverson, P.: Tor: The Second-
Generation Onion Router, Proc. 13th USENIX Security Symposium,
pp.303–320 (2004).

[11] Father, H.: Hooking Windows API – Technics of Hooking API Func-
tions on Windows, CodeBreakers Journal, Vol.1, No.2 (2004).

[12] Inoue, D., Yoshioka, K., Eto, M., Hoshizawa, Y. and Nakao, K.: Mal-
ware Behavior Analysis in Isolated Miniature Network for Revealing
Malware’s Network Activity, IEEE International Conference on Com-
munications (ICC 2008), pp.1715–1721 (2008).

[13] Kolbitsch, C., Holz, T., Kruegel, C. and Kirda, E.: Inspector GAdget:
Automated Extraction of Proprietary Gadgets from Malware Binaries,
Proc. IEEE Symposium on Security and Privacy (May 2010).

[14] Moser, A., Kruegel, C. and Kirda, E.: Exploring Multiple Execution
Paths for Malware Analysis, IEEE Symposium on Security and Pri-
vacy, pp.231–245 (2007).

[15] Miwa, S., Miyachi, T., Eto, M., Yoshizumi, M. and Shinoda, Y.: De-
sign and Implementation of an Isolated Sandbox with Mimetic Inter-
net Used to Analyze Malwares, Proc. DETER Community Workshop
on Cyber Security Experimentation and Test (2007).

[16] Yoshioka, K., Kasama, T. and Matsumoto, T.: Sandbox Analysis with
Controlled Internet Connection for Observing Temporal Changes of
Malware Behavior, The 4th Joint Workshop on Information Security
(JWIS 2009) (2009).

[17] Yoshioka, K. and Matsumoto, T.: Multi-Pass Malware Sandbox Anal-
ysis with Controlled Internet Connection, IEICE Trans. Fundamen-
tals, Vol.E93-A, No.1, pp.210–218 (2010).

[18] Willems, C., Holz, T. and Freiling, F.: Toward Automated Dynamic
Malware Analysis Using CWSandbox, Security & Privacy Magazine,
Vol.5, No.2, pp.32–39, IEEE (2007).

[19] Anubis, available from 〈http://analysis.seclab.tuwien.ac.at/〉.
[20] CWSandbox, available from 〈http://www.cwsandbox.org/〉.
[21] dionaea – catches bugs, available from 〈http://dionaea.carnivore.it/〉.
[22] FileMon and RegMon for Windows, available from

〈http://technet.microsoft.com/en-us/sysinternals/〉.
[23] Joebox, available from 〈http://www.joebox.org/〉.
[24] InCTRL Reporting & Analysis, Measuretronix Ltd., available from

〈http://www.measuretronix.com/en/products/
inctrl-reporting-analysis〉.

[25] NORMAN Sandbox Information Center, available from
〈http://www.norman.com/microsites/nsic/〉.

[26] Tor or not Tor: How to tell if someone is coming from a Tor exit node,
in PHP, available from 〈http://www.irongeek.com/
i.php?page=security/detect-tor-exit-node-in-php〉.

Takahiro Kasama received his B.E. and
M.E. degrees in Computer Engineering
from Yokohama National University in
2009 and 2011, respectively. He is cur-
rently a doctor course student at the Grad-
uate School of Environment and Informa-
tion Sciences, Yokohama National Uni-
versity. He is currently a researcher at the

National Institute of Information and Communications Technol-
ogy, Japan. His research interest covers a wide area of network
security including malware analysis. He received the Best Paper
Award at the Computer Security Symposium 2010 (CSS2010),
and the IPSJ Yamashita SIG Research Award in 2011.

Katsunari Yoshioka received his B.E.,
M.E. and Ph.D. degrees in Computer En-
gineering from Yokohama National Uni-
versity in 2000, 2002, 2005, respectively.
From 2005 to 2007, he was a Researcher
at the National Institute of Information
and Communications Technology, Japan.
Currently, he is an Associate Professor

for Division of Social Environment and Informatics, Graduate
School of Environment and Information Sciences, Yokohama Na-
tional University. His research interest covers a wide range of in-
formation security, including malware analysis, network monitor-
ing, intrusion detection, and information hiding. He was awarded
2009 Prizes for Science and Technology by The Commendation
for Science and Technology by the Minister of Education, Cul-
ture, Sports, Science and Technology.

Tsutomu Matsumoto is a Professor of
Division of Social Environment and Infor-
matics, Graduate School of Environment
and Information Sciences, Yokohama Na-
tional University. His current roles in-
clude an Associate Member of the Sci-
ence Council of Japan and a core member
of CRYPTREC — the Cryptography Re-

search and Evaluation Committees for governmental use of cryp-
tographic technology. Starting from design and analysis of vari-
ous cryptosystems and cryptographic protocols in the early 80’s,
he has opened up the field of security measuring for logical and
physical security mechanisms including human-machine cryp-
tography, information hiding, software security, biometric secu-
rity, side-channel security, and artifact-metrics. He got Doctor of
Engineering degree from the University of Tokyo in 1986. He re-
ceived the Achievement Award from IEICE in 1995, the DoCoMo
Mobile Science Award in 2006, the Culture of Security Award in
2008, and the Prize for Science and Technology, the Commenda-
tion by the Minister of Education, Culture, Sports, Science and
Technology in 2010.

c© 2012 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.20 No.4

Masaya Yamagata received his M.E. de-
gree from the Graduate School of Sci-
ence and Technology, Shinshu University,
Japan, in 1998. He joined NEC Corpo-
ration in 1998, and has been engaged in
research on network security mechanisms
such as firewalls, intrusion detection, and
role-based flow management.

Masashi Eto received his LL.B degree
from Keio University in 1999, received
the M.E. and Ph.D. degrees from Nara In-
stitute of Science and Technology (NIST)
in 2003, 2005, respectively. From 1999 to
2003, he was a system engineer at Nihon
Unisys, Ltd., Japan. He is currently a re-
searcher at National Institute of Informa-

tion and Communications Technology (NICT), Japan. His re-
search interests include network monitoring, intrusion detection,
malware analysis, and auto-configuration of the Internetworking.
He received the Best Paper Award at the 2007 Symposium on
Cryptography and Information Security (SCIS 2007).

Daisuke Inoue received his B.E. and
M.E. degrees in electrical and computer
engineering and Ph.D. degree in engi-
neering from Yokohama National Univer-
sity in 1998, 2000 and 2003, respectively.
He joined the Communications Research
Laboratory (CRL), Japan, in 2003. The
CRL was relaunched as the National In-

stitute of Information and Communications Technology (NICT)
in 2004, where he is the director of Cybersecurity Laboratory
in Network Security Research Institute. His research interests
include security and privacy technologies in wired and wireless
networks, incident analysis and response technologies based on
network monitoring and malware analysis. He received the best
paper award at the 2002 Symposium on Cryptography and In-
formation Security (SCIS 2002), the best paper award at the 2nd
and 3rd Joint Workshop on Information Security (JWIS 2007 and
2008), and the commendation for science and technology by the
minister of MEXT, Japan, in 2009.

Koji Nakao received his B.E. degree of
Mathematics from Waseda University, in
Japan, in 1979. Since joining KDDI in
1979, he has been engaged in the research
on communication protocol, and informa-
tion security technology for telecommuni-
cations in KDDI laboratory. After 2003,
he has moved to KDDI head office to con-

struct and manage its security systems. In 2004, he has started
to additionally work for NICT (National Information Commu-
nication Technologies). His present positions are “Information
Security Fellow” to manage all the security issues required in
KDDI and “Distinguished Researcher” to manage research ac-
tivities for network security technologies in NICT. He received
the IPSJ Research Award in 1992, METI Ministry Award and
KPMG Security Award in 2006, and Contribution Award (Japan
ITU), NICT Research Award, Best Paper Award (JWIS) and MIC
Bureau Award in 2007 and The Commendation for Science and
Technology by the Minister of Education, Culture, Sports, Sci-
ence and Technology (Prizes for Science and Technology: Re-
search Category) in 2009. He is a member of IPJS and IEICE.
He has also been a part-time instructor in Waseda University and
Nagoya University.

c© 2012 Information Processing Society of Japan

