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Salient Object Detection
Based on Direct Density-Ratio Estimation

M Y1,2,a) M M2,b) M S3,c)

Abstract: Detection of salient objects in images has been an active area of research in the computer vision community.
However, existing approaches tend to perform poorly in noisy environments because probability density estimation in-
volved in the evaluation of visual saliency is not reliable. Recently, a novel machine learning approach that directly
estimates the ratio of probability densities was demonstrated to be a promising alternative to density estimation. In
this paper, we propose a salient object detection method based on direct density-ratio estimation, and demonstrate its
usefulness in experiments.

Keywords: salient object detection, direct density-ratio estimation, relative density-ratio estimation, Shannon entropy,
density estimation

1. Introduction
Detecting salient objects in images has been extensively in-

vestigated in many computer vision applications, ranging from
general object detection in web images [2], over image thumb-
nails [10], to computing a joint focus of attention in human robot
interaction [11]. Here, a salient object indicates a region in an
image that visually stands out from its surroundings and is likely
to attract human attention, as illustrated in Fig. 1. A key prop-
erty that makes an object salient is the visual difference from the
background.

Methods of salient object detection can be divided into the
top-down approach based on supervised learning [2], [9] and the
bottom-up approach based on unsupervised learning [3], [6]. So
far, various top-down methods have been proposed, for example,
Alexe et al. combined multi-scale saliency, color contrast, edge
density, and super-pixels in a Bayesian framework [2], and Liu
et al. combined multi-scale contrast, center-surround histograms,
and color spatial-distributions with conditional random fields [9].
However, the performance of the top-down approach depends
heavily on the quality and quantity of ground truth data used for
supervised learning, and gathering a large number of high-quality
training data is costly. Furthermore, adding a new object category
is not straightforward and human subjectivity often causes ambi-
guity.

On the other hand, the bottom-up approach can be easily ap-
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plied in an on-line fashion with no labeling cost. A seminal work
by Itti et al. [6] is based on a feature integration theory in cog-
nitive science [13]. This method identifies salient objects based
on conspicuity maps that are generated from the spatial contrast
of features such as the luminance value, edge intensity, and gra-
dient orientation. While many computational models have been
developed and their applications have been explored based on this
structure [3], [4], [15], fusion of feature channels remains some-
what arbitrary. Furthermore, the performance of the bottom-up
approach depends on the characteristics of image features—if
features are sensitive to environmental and observational noise,
lighting conditions and system-specific noise can cause severe
performance degradation.

The above approaches are mostly motivated biologically. On
the other hand, several recent approaches attempted to model
saliency computationally and mathematically. For example,
Kadir et al. have introduced entropy-based saliency [7], and Hou
and Zhang have computed the incremental coding length to mea-
sure the perspective entropy gain [5]. However, entropy-based
methods tend to identify objects with various structures as salient,
which is not always appropriate in practice.

In this paper, we propose a new method to detect salient objects
in images that is robust against noise incurred by various envi-
ronmental and observational factors. Our approach is based on
the standard structure of cognitive visual attention models [13],
where several feature channels are investigated in parallel and the
conspicuity maps are fused to a single saliency map. We choose
the lightness, edge intensity, and color as feature channels be-
cause they are basic features of the human attention system [16].

Our saliency computation consists of two steps: First, we sam-
ple low-dimensional features such as intensities and colors in
different scales. Then, in the second step, the center-surround
contrast is evaluated with a machine learning technique. More
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Fig. 1 Examples of salient objects in images [9].��������������		
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Fig. 2 Relation between visual saliency in an image and probability density ratios for low-dimensional
features (e.g., color).

specifically, two probability densities pc(x) and ps(x) of visual
feature occurrences are considered for a center region and a sur-
round region, and a divergence between these densities is approx-
imated by the state-of-the-art machine learning method called di-
rect density-ratio estimation [12]: the ratio of probability densi-
ties pc(x)/ps(x) is directly estimated without separate density es-
timation of pc(x) and ps(x). Because density estimation is known
to be a hard task [14], avoiding density estimation and directly
estimating the density ratio would be more promising. Through
experiments, we demonstrate that the use of direct density-ratio
estimation allows robust computation of visual saliency in vari-
ous scales and disengages us from the need of preparing massive
ground truth data.

2. Problem Formulation
In this section, we formulate our salient object detection prob-

lem based on density ratios.
Let x be a low-dimensional feature (e.g., lightness, color, and

edge) extracted from an image. Our task is to detect whether there

exists a salient object based on center-surround contrast based on
the low-dimensional feature. A naive approach to this problem
would be to first estimate the center and surround probability den-
sity functions for low-dimensional features separately, and then
evaluating the difference between center and surround regions by
comparing the estimated probability density functions.

However, since non-parametric density estimation is known to
be a hard problem [14], this naive approach to salient object de-
tection may not be effective. Instead, directly estimating the ra-
tio of probability densities without going through density estima-
tion would be more promising [12]. Following this discussion,
we decided to base our algorithm on the density ratio for low-
dimensional feature x defined by

w(x) =
pc(x)
ps(x)

,

where pc(x) and ps(x) are the probability density functions for
center and surround low-dimensional features, respectively. We
define our saliency score S based on the density ratio w by
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Fig. 3 Center-surround region and down sampling.

S =

N∑

n=1

w(xn),

where xn and N are respectively the n-th extracted low-
dimensional feature and the number of extracted low-dimensional
features. Based on the score S , we detect saliency by threshold-
ing:


S ≤ µ → no salient object exists,

otherwise → a salient object exists,

where µ (≥ 0) is a predetermined threshold.
The above formulation is summarized in Fig. 2, which illus-

trates the relation between visual saliency in an image and the
density ratio for low-dimensional features (e.g., color). The vi-
sual saliency of the center-surround region in the left-hand side of
Fig. 2 is high, yielding the sum of density-ratio values to be large.
On the other hand, the visual saliency of the center-surround re-
gion in the right-hand side of Fig. 2 is low, resulting in a small
density-ratio values.

In practice, it may be difficult to determine the size of center-
surround regions to properly detect salient objects without any
preconditions. We decided to consider a hierarchy of center-
surround regions with the region size decreased by factor 1/

√
2

(see Fig. 3). This hierarchical structure makes it possible to de-
tect salient objects in different scales from micro to macro levels.
The score S h of the h-th hierarchy is calculated as

S h =

N∑

n=1

wh(xn),

where wh is the density ratio estimated in the h-th hierarchy. Fi-
nally, the total score S is defined by combining score S h calcu-
lated in each hierarchy as

S =

H∑

h=1

S h,

where H is the number of hierarchies.
If there are multiple types of low-dimensional features (e.g.,

lightness, color, and edge), we consider their linear combination:

S =

H∑

h=1

(
S l

h + S c
h + S e

h

)
,

where S l
h, S c

h, and S e
h are respectively the scores of lightness,
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Fig. 4 Schematic overview of our saliency detection system.

color, and edge in the h-th hierarchy. Finally, we build a saliency
map by calculating the total score S exhaustively at all position in
the image. The above formulation is summarized in Fig. 4, which
denotes the schematic overview of our saliency detection system.

The remaining question in the proposed procedure is how to
estimate the density ratio function for low-dimensional features
in each hierarchy:

w(x) =
pc(x)
ps(x)

.

This is discussed in the next section.

3. Direct Density-Ratio Estimation
As described in Section 2, we use density ratio estimates for

salient object detection. In this section, we show how the density
ratio is directly estimated without going through density estima-
tion.

3.1 Formulation of Density Ratio Estimation
Suppose we are given a set of Nc samples extracted from a cen-

ter region that are drawn independently from a probability distri-
bution Pc with density pc:

χc :=
{
xc

i |xc
i ∈ <d

}Nc

i=1
i.i.d
∼ Pc.

We also suppose that another set of Ns samples extracted from
a surround region that are drawn independently from (possibly)
another probability distribution Ps with density ps:

χs :=
{
xs

j|xs
j ∈ <d

}Ns

j=1
i.i.d
∼ Ps.
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The goal of density ratio estimation is to estimate the density ratio
function

w(x) :=
pc(x)
ps(x)

from the samples χc and χs, where we assume ps(x) > 0 for all
x.

3.2 Unconstrained Least-Squares Approach to Density Ra-
tio Estimation

Here, we review a density-ratio estimation method called un-
constrained Least-Squares Importance Fitting (uLSIF) [8].

Let us model the density ratio function w(x) by the following
kernel model:

w̃(x) =

Nc∑

i=1

αiK(x,xc
i ) = α′k(x)

where

α := (α1, α2, . . . , αNc )
′

are parameters to be learned from data samples, •′ denotes the
transpose of a matrix or a vector,

k(x) :=
(
K(x,xc

1),K(x,xc
2), . . . ,K(x,xc

Nc
)
)′

are kernel basis functions. A popular choice of the kernel is the
Gaussian function:

K(x,y) = exp
(
− ||x − y||2

2σ2

)
, (1)

where σ > 0 is the Gaussian width.
We determine the parameter α in the model w̃(x) so that the

following squared-error J0 is minimized:

J0 :=
1
2

∫ (
w̃(x) − w(x)

)2
ps(x)dx

=
1
2

∫
w̃(x)2 ps(x)dx −

∫
w̃(x)pc(x)dx

+
1
2

∫
w(x)2 ps(x)dx, (2)

where the last term is a constant and therefore can be safely ig-
nored. Let us denote the first two terms by J:

J(α) :=
1
2

∫
w̃(x)2 ps(x)dx −

∫
w̃(x)pc(x)dx

=
1
2
α′Hα − h′α,

where H is the Nc × Nc matrix defined by

H :=
∫

k(x)k(x)′ps(x)dx,

and h is the Nc-dimensional vector defined by

h :=
∫

k(x)pc(x)dx.

3.3 Empirical Approximation
Since J contains the expectation over unknown densities ps(x)

and pc(x), we approximate the expectations by empirical aver-
ages. Then we obtain

Ĵ(α) :=
1

2Ns

Ns∑

j=1

w̃(xs
j)

2 − 1
Nc

Nc∑

i=1

w̃(xc
i )

=
1
2
α′Ĥα −α′ĥ,

where Ĥ is the Nc × Nc matrix defined by

Ĥ :=
1
Ns

Ns∑

j=1

k(xs
j)k(xs

j)
′,

and ĥ is the Nc-dimensional vector defined by

ĥ :=
1

Nc

Nc∑

i=1

k(xc
i ).

By including a regularization term, the uLSIF optimization prob-
lem is formulated as

α̂ := argmin
α

[
1
2
α′Ĥα −α′ĥ +

λ

2
α′α

]
,

where α′α/2 is a regularizer and λ(≥ 0) is the regularization pa-
rameter that controls the strength of regularization. By taking the
derivative of the above objective function with respect to the pa-
rameter α and equating it to zero, we can analytically obtain the
solution α̂ as

α̂ = (Ĥ + λINc )
−1ĥ,

where IN is the N-dimensional identity matrix. Finally, a density
ratio estimator ŵ(x) is given by

ŵ(x) := α̂′k(x).

Thanks to the simple analytic-form expression, uLSIF is compu-
tationally more efficient than alternative density-ratio estimators
which involve non-linear optimization [12].

3.4 Model Selection by Cross-Validation
The practical performance of uLSIF depends on the choice of

the kernel function (e.g., the kernel width σ in the case of Gaus-
sian kernel Eq.(1)) and the regularization parameter λ. Model
selection of uLSIF is possible based on cross-validation with re-
spect to the error criterion J defined by Eq.(2).

More specifically, each of the sample sets χc = {xc
i }Nc

i=1 and
χs = {xs

j}Ns
j=1 is divided into L disjoint sets {χl

c}Ll=1 and {χl
s}Ll=1.

Then an uLSIF solution w̃l(x) is obtained using χc\χl
c and χs\χl

s

(i.e., all samples without χl
c and χl

s), and its J-value for the hold-
out samples χl

c and χl
s is computed as

Ĵl
CV :=

1
2|χl

s|
∑

xs∈χl
s

w̃l(xs)2 − 1
|χl

c|
∑

xc∈χl
c

w̃l(xc),

where |χ| denotes the number of elements in the set χ. This pro-
cedure is repeated for l = 1, . . . , L, and the average of Ĵl

CV over
all l is computed as
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Fig. 5 Precision-recall curves.

ĴCV :=
1
L

L∑

l=1

Ĵl
CV.

Finally, the model (the kernel width σ and the regularization pa-
rameter λ in the current setup) that minimizes Ĵl

CV is chosen as
the most suitable one.

3.5 Relative Density-Ratio Estimation
Depending on the condition of the denominator density ps(x),

the density-ratio value pc(x)/ps(x) can be unbounded (i.e., it
can be infinity). This is actually problematic because the non-
parametric convergence rate of uLSIF is governed by the sup-
norm of the true density-ratio function [17]:

max
x

pc(x)
ps(x)

.

To overcome this problem, relative density-ratio estimation
[17] was introduced. The β-relative density ratio is defined by

pc(x)
βpc(x) + (1 − β)ps(x)

.

This is reduced to the plain density ratio if β = 0, and it tends
to be smoother as β gets larger. More specifically, it can be con-
firmed that the β-relative density ratio is bounded above by 1/β
for β > 0, even when the plain density ratio pc(x)/ps(x) is un-
bounded. Thus, estimation of the relative density ratio is expected
to be more reliable than that of the plain density ratio.

The β-relative density ratio can be learned in the same way as
the plain density ratio. Indeed, the optimization problem of a rel-
ative variant of uLSIF, called RuLSIF, is given as the same form

as uLSIF; the only difference is the definition of the matrix Ĥ:

Ĥ =
β

Nc

Nc∑

i=1

k(xc
i )k(xc

i )′ +
1 − β

Ns

Ns∑

j=1

k(xs
j)k(xs

j)
′.

Thus, the RuLSIF solution can still be obtained analytically. Fur-
thermore, RuLSIF was proved to possess an even better non-
parametric convergence property than uLSIF [17]. For this rea-
son, we decided to use RuLSIF to compute our saliency score S ,
where we use all samples {xc

i }Nc
i=1 and {xs

j}Ns
j=1 to compute S .

4. Experiments
In this section, we experimentally compare the proposed

method with the method proposed by Kadir and Brady [7]
(K&B), on the MSRA salient object database [9].

In the K&B method, visual saliency S is defined as

S (r) = H(r) ·W(r), (3)

where H(r) denotes the Shannon entropy in the local region with
size r:

H(r) = −
∫

p(I, r) log p(I, r)dI.

Here, p(I, r) represents the probability density for low-
dimensional feature I (e.g., lightness, edge, and color). W(r) in
Eq.(3) is a weight function defined by

W(r) =
r2

2r − 1

∫ ∣∣∣∣∣
∂p(I, r)
∂r

∣∣∣∣∣ dI.

Fig. 1 shows some images in the database*1 and ground-truth
*1 As pointed out in Liu et al. [9], saliency detection for images with large

objects is too easy. Here, we choose 200 images from the database that
contain small objects of size less than 20% of the image size.
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Fig. 6 Experimental results on the MSRA dataset. Top rows: Original images. Middle rows: Saliency
maps obtained by the proposed method. Bottom rows: Saliency maps obtained by the K&B
method. The number below each image is the maximum F-score.
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Fig. 7 Examples where the proposed methods do not perform well. The proposed method is not suitable

for finding elongated salient regions.

saliency maps. In the proposed RuLSIF-based method, we fix the
parameters at Nc = 50, Ns = 50, H = 8, β = 0.1, and the sizes of
center and surround regions are 0.2 and 0.3 of the entire image.

The quality of an obtained saliency map is evaluated according
to Achanta et al. [1]: A binary map is constructed from an ob-
tained saliency map by varying a threshold on the intensity val-
ues in [0, 255]. Then each of these 256 maps is compared with
the ground-truth binary map and the precision and recall scores
are computed.

We compare precision-recall curves for each low-dimensional
feature (lightness, edge, and color) and for the combined feature
in Fig. 5. The graphs show that our method tends to outperform
the K&B method for each low-dimensional feature channel and
it more clearly outperforms the K&B method for the combined
feature.

Fig. 6 shows examples of saliency maps obtained by the pro-
posed approach and the K&B method; below each image, the
maximum F-score (i.e., the maximum of the harmonic mean of
precision and recall) is described. Overall, the proposed method
gives much better results both in visual quality and the F-score.

A potential weakness of the proposed method is that if a salient
object is highly elongated, its shape cannot be extracted sharply
(see Fig. 7). This weakness is caused by our search strategy that
density ratios between spherical regions are estimated. Indeed,
this weakness can be overcome by considering elongated regions
in the saliency search. However, this in turn increases the com-
putational cost significantly.

5. Conclusion
We presented a new approach to computing visual saliency

based on direct density-ratio estimation. Direct density-ratio esti-
mation is an emerging machine learning technique that allows us
to systematically avoid density estimation, which is known to be
a hard task. Based on an estimated density ratio, we determined
the contrast of the center and the surround feature distributions
for lightness, edge, and color channels. Through experiments, we

demonstrated that our proposed approach outperforms the K&B
method which is based on probability density estimation.

We experimentally found that the proposed method cannot
sharply identify a salient object if its shape is elongated, which
is due to our search strategy that density ratios between spher-
ical regions are estimated. If elongated regions are used for
saliency search, this problem can be overcome in principle. Thus,
this weakness of the proposed method is not an essential limi-
tation. However, naively employing various elongated regions
in saliency search increases the computation cost significantly.
Thus, we will develop a computationally efficient way to handle
this problem in our future work.
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