
IPSJ Transactions on Programming Vol.5 No.4 17–26 (Sep. 2012)

Regular Paper

May & Must-Equivalence of Shared Variable
Parallel Programs in Game Semantics

KeisukeWatanabe1,†1 Susumu Nishimura1,a)

Received: February 13, 2012, Accepted: April 26, 2012

Abstract: We present a game semantics for an Algol-like language with shared variable parallelism. On contrary to
deterministic sequential programs, whose semantics can be characterized by observing termination behaviors, it is cru-
cial for parallel programs to observe not only termination but also divergence, because of nondeterministic scheduling
of parallel processes. In order to give a more appropriate foundation for modeling parallelism, we base our devel-
opment on Harmer’s game semantics, which concerns not only may-convergence but also must-convergence for a
nondeterministic programming language EIA. The game semantics for the Algol-like parallel language is shown to
be fully abstract, which indicates that the parallel command of our Algol-like language adds no extra power than non-
determinism provided by EIA. We also sketch how the equivalence of two parallel programs can be reasoned about
based on the game semantical interpretation.

Keywords: shared-variable parallelism, may & must-convergence, full abstraction, game semantics

1. Introduction

Programming multiprocessors is a much more challenging task
than programming uniprocessors. Parallel programs running on
commodity shared memory multiprocessors are inherently non-
deterministic and their access to memory is asynchronous due to
preemptive scheduling. It is a central concern of parallel pro-
gramming how one can rightly keep the integrity of shared re-
sources against the asynchrony [1].

In this paper, we propose a game semantics for shared vari-
able parallel programs. Game semantics has been successfully
applied to modeling deterministic languages such as PCF and
Idealized Algol (IA) [2], [3], [4]. In game semantics, program
execution is modeled by a game consisting of two participants,
called opponent and player, representing the environment and the
program, respectively. The semantics of a given program is spec-
ified by a game strategy, a collection of possible alternating op-
ponent/player moves.

There are some studies on the game theoretical analysis for
shared memory parallel programs [5], [6], but they are devoted to
the so-called angelic parallelism based on may-equivalence. Two
programs are regarded as may-equivalent if one program may-
converges (i.e., it has a choice of terminating evaluation path)
then so does the other, in any context.

May-equivalence is unsatisfactory for the purpose of modeling
shared variable parallel programs, however. For instance, con-
sider the following parallel program.

1 Department of Mathematics, Faculty of Science, Kyoto University,
Kyoto 606–8502, Japan

†1 Presently with Tezukayama Junior and Senior High School
a) susumu@math.kyoto-u.ac.jp

parallel b = 0, f0 = 0, f1 = 0, v0 = 0, v1 = 0 in⎧⎪⎪⎨⎪⎪⎩ f0 := 1; while ! f1 � 0 do skip;
v0 :=!b; b := 1−!b; f0 := 0

⎫⎪⎪⎬⎪⎪⎭∥∥∥∥∥∥∥
⎧⎪⎪⎨⎪⎪⎩ f1 := 1; while ! f0 � 0 do skip;
v1 :=!b; b := 1−!b; f1 := 0

⎫⎪⎪⎬⎪⎪⎭
This program executes two parallel processes (delimited by ‖) that
share common local variables b, f0, f1, v0, v1. It is intended to set
the variables v0 and v1 either 0 or 1 exclusively, using the variable
b for a shared binary counter. Each parallel process spin locks

over f0 or f1 in order to acquire the shared resource b. We can
see that, whenever the program gracefully terminates (e.g., when
the entire execution of one parallel process precedes the other’s),
we will have the intended result. Thus this parallel program is
may-equivalent to a program that nondeterministically executes
either v0 := 0; v1 := 1 or v1 := 0; v0 := 1.

However, there are many other possibilities of interleaving that
cause divergence. For instance, the program does not converge
with the following infinite sequence:

f0 := 1, f1 := 1, ! f0 = 1, ! f1 = 1, ! f0 = 1, ! f0 = 1, . . . ,

which repeats ! f1 = 1 (reading value 1 from f1) and ! f0 = 1 alter-
natingly. (The underlines are put to distinguish different execu-
tion threads.)

This explains why may-equivalence is not satisfactory: May-
equivalence can only guarantee two may-equivalent parallel pro-
grams to agree when they both happen to terminate, but it does
not exclude the possibility that one terminates whereas the other
diverges, due to nondeterminism caused by asynchronous parallel
execution.

In this paper, we present a game semantics for a parallel pro-
gramming language, for which we define contextual equivalence

c© 2012 Information Processing Society of Japan 17

IPSJ Transactions on Programming Vol.5 No.4 17–26 (Sep. 2012)

by means of may&must-equivalence. Two programs are regarded
as equal if they are may-equivalent and as well one’s guarantee of
termination implies the other’s.

For this, we base our development on the game semantic
framework for EIA, an extension of IA with erratic finite nonde-
terminism [7], [8]. We give a game semantics for a programming
language that further supports shared variable parallelism and
show the full abstraction result. Interestingly, this result indicates
that the parallel construct adds no extra expressive power other
than provided by the erratic nondeterminism. We also briefly dis-
cuss how the contextual (in)equivalence for a certain fragment
of the programming language can be argued on regular language
models, in much the same way as done for a fragment of IA [9].

1.1 Related Work
Process calculi [10], [11] have been successful in describing

and analyzing the complex behavior of the systems of concurrent
processes that communicate via (perhaps asynchronous) message
passing over channels. A major concern in the studies of those
calculi is whether the given systems of concurrent processes ex-
hibit the same behavior, even if they are supposed to be nontermi-
nating. In contrast to this, in the present paper we are concerned
with semantical analysis of parallel protocols (e.g., those for mu-
tual exclusion) which are implemented by means of asynchronous
shared variables. We would like to argue if a given implementa-
tion of a parallel protocol successfully gives the intended result
on termination. For this, we will argue the contextual equality of
programs by observing the (may&must) termination.

There are some preceding studies on the semantics of shared
variable parallel programs. Brookes has given a fully abstract
semantics based on transition traces [12]. Ghica, Murawski, et
al. [5], [6] have given a fully abstract game model for an Algol-
like shared variable parallel programming language. These only
concern may-equivalence of parallel programs, however. To our
knowledge, there have been no studies of game theoretical anal-
ysis that argue may&must-equivalence properties of shared vari-
able parallel programs.

The game semantics given in Refs. [5], [6] is quite different
from ours in modeling parallel interleaving. Ours conservatively
extends Harmer’s game semantics for nondeterminism [8], in
which opponent (resp., player) makes moves at odd (resp., even)
positions in each game play, whereas theirs abandons this parity
constraint in order to allow more flexible interleaving. Each of
the two approaches has its own merits and demerits. It seems dif-
ficult to extend their game semantics to include divergence prop-
erty as done in Harmer’s game semantics, in which the parity
constraint provides a sharp distinction between even-length ter-
minating game plays and odd-length diverging ones. On the other
hand, our parallel extension requires a technical refinement and a
syntactic constraint to the parallel programming language, in or-
der to achieve appropriate modeling of interleaving (Section 4.2).
We hope that our proposal gives a different perspective on the
topic and that it will give rise to a compromised solution in a fu-
ture.
Outline. The rest of the paper is structured as follows. Section 2
defines the syntax and the operational semantics of an Algol-like

programming language with parallel extension. Giving the nota-
tional and conceptual backgrounds for Harmer’s game model for
nondeterminism [8] in Section 3, we develop a game semantics
for parallelism and show the full abstraction result in Section 4.
Section 5 discusses how contextual (in)equalities of parallel pro-
grams can be checked in the game semantic model. Finally Sec-
tion 6 concludes the paper.

2. An Algol-like Language with Parallelism

We define an Algol-like language, called EIApar, for shared
variable parallel programming. This extends EIA [7], [8], a non-
deterministic variant of Idealized Algol, with a few parallel con-
structs.

The types of the language EIApar are defined as:

T ::= nat | com | var | T→ T,

where nat, com, and var are base types representing natural
numbers, commands, and mutable variables, respectively.

The syntax of the terms of the language is defined by the fol-
lowing grammar.

M ::= x | n | M � M | λxT.M | MM | fixT M | skip

| seqT M M | ifzT M then M else M | assign M M

| deref M | cas M M M | mkvar M M M

| newvar x = n in M | M or M

| parallel x1=k1, . . . , xm=km in M‖M finally M (m ≥ 0)

The terms are either PCF terms (natural numbers, λ-terms, and
general recursion), Algol terms (commands including those for
mutable variables), erratic nondeterminism (or), or parallel con-
structs. We write � to stand for binary operations on natural num-
bers.

We write a type judgment as Γ � M : T, where Γ is a typing

context, a finite mapping from identifiers to types. In particular,
a typing context Γ is called a var-context if every identifier in Γ
is assigned the type var. The typing rules for EIApar are given in
Fig. 1.

In what follows, we will occasionally write !M for deref M

and M := N for assign M N. Also, some type annotations may
be omitted unless ambiguity can arise.

The operational semantics for EIApar is defined in the style
of small-step operational semantics. We define canonical forms,
ranged over by V , as a subset of terms:

V ::= n | λxT.M | skip | v | mkvar M N L,

where v ranges over identifiers of type var.
A store s is a mapping from identifiers of type var to natural

numbers. We write 〈M, s〉 −→ 〈M′, s′〉 for the 1-step reduction,
which corresponds to a single atomic computation that updates s

to s′ as the side effect. We define the 1-step reduction relation as
in Fig. 2. Every reduction is defined relative to evaluation con-

text E, where E is a term containing a single hole []. We write
E[M] for the term obtained by filling the hole in E with term M.

We write 〈M, s〉 −→∗ 〈M′, s′〉 for the reflexive transitive clo-
sure of 1-step reductions. We say the evaluation of a program

c© 2012 Information Processing Society of Japan 18

IPSJ Transactions on Programming Vol.5 No.4 17–26 (Sep. 2012)

Γ, x : T,Γ′ � x : T Γ � n : nat
Γ � M : nat Γ � N : nat
Γ � M � N : nat

Γ, x : T1 � M : T2

Γ � λxT1 .M : T1 → T2

Γ � M1 : T1 → T2 Γ � M2 : T1

Γ � M1 M2 : T2

Γ � M : T→ T
Γ � fixT M : T

Γ � skip : com

Γ � M1 : com Γ � M2 : T T ∈ {nat, com}
Γ � seqT M1 M2 : T

Γ � M : nat Γ � M1 : T Γ � M2 : T T ∈ {nat, com}
Γ � ifzT M then M1 else M2 : T

Γ � M : var Γ � N : nat
Γ � assign M N : com

Γ � M : var
Γ � deref M : nat

Γ � L : var Γ � M : nat Γ � N : nat
Γ � cas L M N : nat

Γ � M : nat→ com Γ � N : nat Γ � L : nat→ nat→ nat
Γ � mkvar M N L : var

Γ, x : var � M : com

Γ � newvar x = n in M : com

Γ � M1 : nat Γ � M2 : nat

Γ � M1 or M2 : nat

x1 : var, . . . , xm : var � Pi : com (i = 1, 2) Γ, x1 : var, . . . , xm : var � Q : com

Γ � parallel x1 = k1, . . . , xm = km in P1‖P2 finally Q : com

Fig. 1 Typing rules.

E := [] | E � M | n � E | EN | seq E M | ifz E then M else N

| assign M E | assign E n | deref E | cas L E N | cas L m E | cas E m n

〈E[m � n], s〉 −→ 〈E[n′], s〉, where n′ = m � n 〈E[
(
λxT.M

)
N], s〉 −→ 〈E[M[N/x]], s〉

〈E[ifzT 0 then M else N], s〉 −→ 〈E[M], s〉 〈E[ifzT n + 1 then M else N], s〉 −→ 〈E[N], s〉
〈E[fixT M], s〉 −→ 〈E[M(fixT M)], s〉 〈E[seqT skip M], s〉 −→ 〈E[M], s〉
〈E[assign v n, s〉] −→ 〈E[skip], 〈s | v �→ n〉〉 〈E[deref v], s〉 −→ 〈E[s(v)], s〉
〈E[cas v m n], s〉 −→ 〈E[n], 〈s | v �→ n〉〉, where s(v) = m

〈E[cas v m n], s〉 −→ 〈E[s(v)], s〉, where s(v) � m

〈E[assign (mkvar M N L) n], s〉 −→ 〈E[Mn], s〉 〈E[deref (mkvar M N L)], s〉 −→ 〈E[N], s〉
〈E[cas (mkvar M N L) m n], s〉 −→ 〈E[Lmn], s〉
〈E[M or N], s〉 −→ 〈E[M], s〉 〈E[M or N], s〉 −→ 〈E[N], s〉
〈E[newvar x = n in skip], s〉 −→ 〈E[skip], s〉

〈C, 〈s | x �→ n〉〉 −→ 〈C′, s′〉
〈E[newvar x = n in C], s〉 −→ 〈E[newvar x = s′(x) in C′], 〈s′ | x �→ s(x)〉〉

〈E[parallel x1 = k1, . . . , xm = km in skip‖skip finally Q], s〉
−→ 〈E[newvar x1 = k1 in · · · newvar xm = km in Q], s〉

〈Pj, 〈s | xi �→ ki〉〉 −→ 〈P′j, s′〉 P′1− j = P1− j j = 0 or 1

〈E[parallel x1 = k1, . . . , xm = km in P0‖P1 finally Q], s〉
−→ 〈E[parallel x1 = s′(x1), . . . , xm = s′(xm) in P′0‖P′1 finally Q], s〉

Fig. 2 Evaluation context and 1-step reduction rules.

M may-converges at initial state s, if 〈M, s〉 −→∗ 〈V, s′〉 holds
for some canonical form V and state s′. Also, we say the eval-
uation of a program M at the initial state s must-converges, if
there is a sufficiently large number m such that no 1-step reduc-
tion sequence starting from 〈M, s〉 is longer than m. In particular
when M is a closed term, we write M ⇓may to mean that M may-
converges to some canonical value V and also write M ⇓must to
mean that M must-converges (for arbitrary initial state).

A contextual preorder on terms is defined by means of both
may- and must-convergences. We define M �may N iffC[M] ⇓may

implies C[N] ⇓may; M �must N iffC[M] ⇓must implies C[N] ⇓must;
M �m&m N iff M �may N and M �must N.

The language EIApar extends Idealized Algol with some non-
sequential language constructs, erratic nondeterminism M1 or M2

(which nondeterministically chooses one out of the two, as intro-
duced in EIA [7], [8]), and the parallelism.

The newvar construct introduces a mutable local variable and
its scope. The local variables can be accessed by atomic opera-
tions: read, write, and compare-and-set (CAS). The value stored
in a variable v is read by deref v and is updated by assign v n with
a new value n. A CAS operation cas v old new is a memory op-
eration supported by most modern CPU architectures for mutual
exclusion and it atomically executes like a program:

newvar t in
(
t :=!v; if !t = old then v := new; new else !t

)
.

In words, it updates variable v with the value new only if v stores
the presupposed value old; otherwise it leaves the variable v un-
touched. In both cases, it returns the value of v at the moment

c© 2012 Information Processing Society of Japan 19

IPSJ Transactions on Programming Vol.5 No.4 17–26 (Sep. 2012)

of finishing the operation. Notice that the above successive se-
quence of memory operations are executed as a single atomic op-
eration that is uninterruptible.

In addition to local variables, the language also provides bad-
variables (mkvar), whose response to each variable access op-
eration can be arbitrarily defined. Bad-variables are needed to
establish the full abstraction result [3], [4], [8].

The parallelism in EIApar is expressed by a parallel execution
command parallel x1 = k1, . . . , xm = km in P0‖P1 finally Q, where
two commands *1 P0 and P1 run in parallel with interleaved ac-
cess to the shared variables x1, . . . , xm. The wrap-up command

Q is executed immediately after both parallel processes have ter-
minated. One should notice that, due to the typing constraint in
Fig. 1, each parallel process Pi is prohibited to access identifiers
in the context Γ and is allowed to refer to only those locally de-
clared shared variables x1, . . . , xm. In process calculi, the com-
mand would be roughly expressed by a term (ν�x)((P0 | P1); Q),
where �x is the set of channels representing the declared set of
shared variables, and no channels other than �x is free in P0 or P1.
Thus the channels �x are shared by P0, P1, and Q but not by the
surrounding context; The channels other than �x are shared by Q

and the surrounding context, but not by P0 or P1. (This peculiar
form of parallel command is due to some technical reason, which
we will discuss later in Section 4.)

The typing constraint above prohibits us from writing
parametrized parallel programs, e.g., procedures. This does not
rule out parametrized parallel programs all together, however.
Given a parametrized program, we can still reason about it by
instantiating every parameter with a particular instance.

Further, though the shared variables are not directly accessible
from outside the local scope, their values can be made accessible
via the wrap-up command Q, e.g.,

w : var � parallel v = 0 in v :=!v + 1‖v :=!v + 1 finally w :=!v

where the wrap-up command w :=!v saves the value of the shared
variable v in w for possible future uses in the surrounding context.

3. Games for Nondeterminism

This section provides the background matters on the game the-
oretic accounts needed in the following sections. Here we only
give a digest of the whole details, mostly following Harmer’s the-
sis [8], which is based on Hyland-Ong style dialogue games [2].
See Refs. [4], [13] for more general accounts on the game seman-
tics.

In the rest of this paper, we use the following notations for fi-
nite strings (or sequences) over some alphabet. An empty string
is denoted by ε. Given two strings s and t, we write st or s · t
for the concatenation and s � t for the prefix ordering, meaning
that s · u = t for some u. We also write s � K for the restriction

of s to a set K of alphabets, i.e., the substring of s consisting of
all occurrences of alphabets in K. Given a set T of finite strings,
T even (resp., T odd) denotes the subset of T containing solely the
even (resp., odd) length strings.

*1 It is easy to allow arbitrary number of processes running in parallel, but
for simplicity we only consider execution of two parallel processes in
this paper.

3.1 Arenas
An arena A is a triple 〈MA, λA, �A〉 where
• MA is a set of moves.
• λA : MA → {O,P} × {Q,A}, called labeling function, as-

signs each move m ∈ MA its attributes, either opponent(O) or
player(P) and either question(Q) or answer(A). For brevity,
let us write λOP

A (m) (resp., λQA
A (m)) for the opponent/player

(resp., question/answer) attribution of the move m.
• �A is a binary relation on MA × MA, called enabling, satisfy-

ing
(e1) (n �A m ∧ n � m) =⇒ λOP

A (n) � λOP
A (m)

(e2) m �A m =⇒ (λA(m) = (O,Q) ∧ (n � m =⇒ n �A m))
(e3) (n �A m ∧ λQA

A (m) = A) =⇒ λQA
A (n) = Q

When n � m, where n � m, we say n justifies m. Justification
relation strictly alternates opponent/player (e1) and every move
that justify an answer move must be a question move (e3). A
move m satisfying m �A m is called an initial move. Every initial
move m must be a question played by the opponent and is never
justified by other moves (e2).

For notational convenience, given an arena A, we write λA

for the labeling function whose opponent/player attribution is
swapped, i.e., λ

OP
A (m) = O iff λOP

A (m) = P for every move m.
Also, we write Q(A) for the set of question moves in A and Aq(A)
for the set of answer moves responding to the question move q.

A justified string in an arena A is a sequence of moves, in
which every non-initial move m has a pointer to an earlier oc-
currence of a justifying move n (i.e., n � m), written like
· · · n · · · m�� · · · . Also, an initial move n is said to heredi-

tarily justify m, if there is a chain of justification pointers starting
from m and reaching n. We write s � n for the subsequence of s

consisting of all those occurrences of moves hereditarily justified
by n.

In our game based model, every opponent move must be im-
mediately followed by a player move, if any. We call a justified
string s a legal play iff s is a string like o1 p1o2 p2 · · · that strictly
alternates opponent moves oi’s and player moves pi’s. The set of
legal plays in arena A is denoted by LA.

Here we give a few basic arenas.
• The arena 1 = 〈∅, ∅, ∅〉 is a trivial arena whose only legal

play is an empty sequence.
• The arena N of natural numbers consists of MN = {q} ∪ {n |

n = 0, 1, 2, . . . }, λN(q) = (O,Q), λN(n) = (P,A), and q �N q
and q �N n for all n.

• The arena C of commands consists of MC = {run, done},
λC(run) = (O,Q), λC(done) = (P,A), and run �C run and
run �C done.

In the arena N of natural numbers, a legal play, say, q · 8
��

models an interaction where the opponent first asks for a natural
number and the player answers 8 as a response. In the arena C,
a legal play run · done��

models a similar interaction, but the
player answers done to the opponent’s question run, just signal-
ing the termination of the execution of command.

Existing arenas can be combined to form new arenas. Be-
low we write [λA, λB] for the copairing function over the disjoint
sum MA + MB of moves from two given arenas A and B, that
is, [λA, λB](m) = λA(m) (resp., [λA, λB](m) = λB(m)) if m is an

c© 2012 Information Processing Society of Japan 20

IPSJ Transactions on Programming Vol.5 No.4 17–26 (Sep. 2012)

injected move of A (resp., B).
• A product arena, written A×B, is a triple 〈MA×B, λA×B, �A×B〉,

where MA×B = MA + MB, λA×B = [λA, λB], and n �A×B m iff
n �A m ∨ n �B m.
Note that empty arena 1 is the unit of the product construc-
tion.

• An arrow arena, written A ⇒ B, is a triple 〈MA⇒B, λA⇒B,

�A⇒B〉, where MA⇒B = MA + MB, λA⇒B = [λA, λB], and
n �A⇒B m iff n �B m∨ (n � m∧ n �A m) ∨(n �B n∧m �A m).

For example, the following legal play in arena N1 ⇒ N2 ⇒ C

run · q1
�� · n1

�� · q2
�� · n2

�� · done��

models an execution of a command that terminates after eval-
uating its first natural number argument and then the second one.
(Subscripts are attached to distinguish different copies of the
same arena and the corresponding moves.) Notice that the op-
ponent/player moves in the contravariant arena N are switched.
This is better illustrated in the following vertical representation.

In what follows, justification pointers are omitted, as long as
they can be inferred with no ambiguity.

3.2 Strategies
A strategy σ in arena A is a pair (Tσ,Dσ) of subsets of legal

plays. Tσ is a subset of Leven
A , called traces, satisfying (t1) ε ∈ Tσ

and (t2) sab ∈ Tσ =⇒ s ∈ Tσ. That is, Tσ is an even-
length prefix closed subset of Leven

A , by which it is specified how
player can respond to each opponent’s move. Below we write
dom(σ) for {sa ∈ Lodd

A | ∃b.sab ∈ Tσ} and contingency clo-

sure cc(σ) for Tσ ∪ dom(σ). For every sa ∈ Lodd
A , we define

rngσ(sa) = {b | sab ∈ Tσ}.
The remaining component Dσ, called divergences, is a subset

of Lodd
A satisfying the following properties.

(d1) (s ∈ Tσ ∧ sa ∈ LA ∧ sa � dom(σ)) =⇒ ∃d ∈ Dσ.d � sa,
(d2) sa ∈ Dσ =⇒ s ∈ Tσ, and
(d3) For every sa ∈ dom(σ) such that rngσ(sa) has an infinite

cardinality, ∃d ∈ Dσ.d � sa.
When a subsequence sa ∈ Dσ has seen in a game play, it

means that the corresponding program execution must have di-
verged. (Every divergence must be reached by a trace (d2).) We
only consider finitely branching strategies, i.e., infinitely many
player’s choices indicate divergence (d3). Also, if an odd-length
legal play sa does not allow player to respond, i.e., sa � dom(σ),
it must be a divergence, called uninteresting divergence (d1).

A play s ∈ Tσ is called complete if every question move in
s has been answered by an answer move. The set of complete
traces in σ is denoted by comp(σ).

In practice, we will consider a further confined class of strate-
gies satisfying (Player) visibility and bracketing conditions. See
Refs. [7], [8] for the precise definition for these conditions.

3.3 Composing Strategies
For any strategies σ : A⇒ B and τ : B⇒ C, we write σ; τ for

the composition of the two strategies. The composition σ; τ gives
rise to a strategy in the arena A ⇒ C, where the interactions on
the arena B have been hidden.

A legal interaction of arenas A, B, and C is a finite string u of
the moves from the three arenas, where u has justification point-
ers as specified in A ⇒ B and B⇒ C. We denote the set of legal
interactions by int(A, B,C).

Given u ∈ int(A, B,C), we write u � B,C for a legal play in the
arena B ⇒ C obtained by removing all A moves and those rele-
vant pointers that justify A moves. Similarly, we write u � A, B

for the corresponding legal play in the arena A ⇒ B. We also
write u � A,C for a legal play in the arena A⇒ C obtained by re-
moving all B moves and relevant pointers but with one exception:
whenever u = · · · c · · · b

�� · · · a
�� · · · for some a ∈ MA,

b ∈ MB, c ∈ MC , we replace the two justification pointers by
a single pointer from a to c.

When two strategies σ : A ⇒ B and τ : B ⇒ C are com-
posed, the resulting traces are those obtained by hiding all the
B-moves occurring in the interaction of the two strategies. That
is, the traces are defined by:

Tσ;τ = {u � A,C | u ∈ Tσ ‖ Tτ} ,

where Tσ ‖ Tτ = {u ∈ int(A, B,C) | u � A, B ∈ Tσ ∧ u � B,C ∈
Tτ}.

For the divergence, there are three different possible patterns.
A divergence is triggered either by a move of σ, by a move of
τ, or by a livelock caused by infinite chattering, i.e., an infinite
sequence of interaction between σ and τ that contains infinitely
many moves of B but only finite observable moves of A and C.

Suppose u∞ is a string of an infinite length. Let us write
u′ �fin u∞ to mean that u′ is a finite prefix of u∞. An infinite

interaction u∞ is an infinite string whose every finite prefix is
contained in int(A, B,C). The set of infinite interactions is de-
noted by int∞(A, B,C).

The set of divergences is defined as a union of three subsets
with the restriction to the moves of A and C:

Dσ;τ = {u � A,C | u ∈ Tσ�Dτ ∪ Dσ�Tτ ∪ Tσ�Tτ},

where the first and second ones are finitely generated divergences:

Tσ�Dτ = {u ∈ int(A, B,C) | u � A, B ∈ Tσ ∧ u � B,C ∈ Dτ},
Dσ�Tτ = {u ∈ int(A, B,C) | u � A, B ∈ Dσ ∧ u � B,C ∈ Tτ},

and the last one is infinitely generated divergences:

Tσ�Tτ = {u∞ ∈ int∞(A, B,C) | u∞ � A,C ∈ LA⇒C∧
∀u′ �fin u∞.(u′ � A, B ∈ cc(σ) ∧ u′ � B,C ∈ cc(τ))}.

3.4 The Category of Games
For every non-empty legal play sm ∈ LA, let us define current

thread �sm� by sm � n, where n is the initial move that hereditar-
ily justifies m. In words, n is the move that initiates the (single)
parallel thread and �sm� comprises of the moves that are relevant
to the thread execution.

c© 2012 Information Processing Society of Japan 21

IPSJ Transactions on Programming Vol.5 No.4 17–26 (Sep. 2012)

We are concerned with a collection of interleaved execution
paths of multiple parallel threads, where executions of threads
are independent of each other. Such a collection can be identified
by a class of single-threaded strategy. A strategy σ = (Tσ,Dσ) is
called single-threaded if it satisfies the following conditions.
• For every sab ∈ Tσ, b is justified by a move in �sa�,
• For every sab, t ∈ Tσ, if ta ∈ Lodd

A and �sa� = �ta�, then
tab ∈ Tσ and tab has justification pointer from b to an ear-
lier occurrence of move such that �sab� = �tab�,

• ∀s ∈ Tσ.(sa ∈ Dσ =⇒ ∃d � sa.�d� ∈ Dσ), and
• ∀s ∈ Tσ.(�sa� ∈ Dσ =⇒ ∃d � sa.d ∈ Dσ).
Given strategies σ and τ, the lower ordering ≤	 for traces, the

upper ordering ≤
 for divergences, and the convex ordering ≤� for
both are defined by:
• σ ≤	 τ iff Tσ ⊆ Tτ.
• σ ≤
 τ iff ∀e ∈ Dτ.∃d ∈ Dσ.d � e and ∀sab.(sab ∈

Tτ ∧ sab � Tσ =⇒ ∃d ∈ Dσ.d � sab).
• σ ≤� τ iff σ ≤	 τ ∧ σ ≤
 τ.
The ordering σ ≤� τ should be read: τ is more likely to ter-

minate than σ. Let us write σ =� τ for the derived equality, i.e.,
σ =� τ iff σ ≤� τ and τ ≤� σ.

We have a symmetric monoidal category G, whose objects are
arenas and arrows are strategies in arrow arenas (i.e., an arrow
A → B is a strategy in the arena A ⇒ B) satisfying the visibility
and bracketing conditions. The identity arrow idA : A → A is
the copycat strategy, in which every opponent move is immedi-
ately copied by a player move. Formally, idA is a strategy that
has empty divergences and has traces:

TidA= {s ∈ Leven
A⇒A |∀s′ ∈Leven

A1⇒A2
.s′ � s implies s′ � A1= s′ � A2},

where s′ � Ai (i = 1, 2) denotes a restriction of s′ to a subse-
quence of moves in the arena Ai.

We give the game theoretic model in a cartesian closed cate-
gory C, which is a lluf subcategory of G obtained by restricting
arrows to those single-threaded strategies modulo =�. The cat-
egory C is also CPO-enriched w.r.t. the ordering ≤�. In what
follows, we denote the product of two arrows f : A → B and
g : A→ C by 〈 f , g〉 : A→ B×C. Also, given f : B× A→ C, we
write ΛA(f) : B → A ⇒ C for the mapping corresponding to the
currying natural isomorphism.

Finally to note, it is known that single-threaded strategies have
a bijective correspondence with so-called well-opened strategies
up to =�. A strategy σ is called well-opened iff its traces are well-
opened, i.e., every s ∈ Tσ has exactly one initial move. The bijec-
tive correspondence is established by a pair of mappings WO (−)

and ST (−) such that σ =� ST (WO (σ)) and WO (ST (υ)) =� υ for
every single-threaded strategy σ and well-opened strategy υ [8].

By this, we can uniquely identify a single-threaded strategy
σ by a pair (T,D) of well-opened traces T and interesting di-
vergences D. The corresponding single-threaded strategy can be
obtained as ST ((T,D′)), where D′ is the superset of D containing
all uninteresting divergences induced by (d1).

4. The Game Semantics and Full Abstraction

We present a game semantics for the language EIApar and show
the full abstraction result. To avoid verbosity, we will concentrate

mostly on the modeling of parallelism and related matters with-
out giving the details of the proof. Interested readers are deferred
to the first author’s thesis [14].

4.1 Modeling Memory Access
Let us first define the arena Var of stores, corresponding to the

type var.
• MVar = {rd} ∪ {wrn | n ≥ 0} ∪ {casm,n | m, n ≥ 0} ∪ {n | n ≥

0} ∪ {ok},
• λVar(rd) = λVar(wrn) = λVar(casm,n) = (O,Q) and λVar(n) =
λVar(ok) = (P,A), and

• For every m, n, k, rd �Var rd, rd �Var n, wrn �Var wrn,
wrn �Var ok, casm,n �Var casm,n, and casm,n �Var k.

Each memory operation can be modeled as interaction with the
arena Var. The CAS operation is modeled by

[[cas L M N]] =
〈
[[L]], [[M]], [[N]]

〉
; cas,

where cas : Var × N1 × N2 ⇒ N3 is the corresponding strategy
that has no divergences and traces {q3 ·q1 ·m1 ·q2 ·n2 ·casm,n · l · l3 |
l,m, n ≥ 0}. Each play first asks the second argument M for a
number m, then asks the third argument N for a number n, and
finally returns the number l returned by interacting with the store
by issuing the CAS operation casm,n to the store. The models of
remaining memory operations are standard. The read operation is
modeled by [[deref M]] = [[M]]; deref, where deref : Var⇒ N
is the strategy with traces {q · rd · n · n | n ≥ 0}. The write op-
eration is modeled by [[assign M N]] =

〈
[[M]], [[N]]

〉
; assign,

where assign : Var × N ⇒ C is the strategy with traces
{run · q · n · wrn · ok · done | n ≥ 0}.

Notice that memory access operations have been modeled as if
they were interacting with a volatile memory: A read on a store
can return an arbitrary value rather than the one stored by the last
write or CAS. In the following, we say that a legal play in Var is
a successful write by n if it has the form either wrn ·ok or casm,n ·n
(n,m ≥ 0).

We define celli as the strategy in Var for a single memory
cell that initially stores the value i and constrains the moves sub-
ject to the causality implied by the order of memory operations.
Formally, celli is a strategy such that Dcelli = ∅ and every trace
s · a · b ∈ Tcelli satisfies either of the following conditions.

(i) a = wrn and b = ok.
(ii) a = rd and b = i, if s contains no successful write.

(iii) a = rd and b = n, if the last successful write in s is by n.
(iv) a = casm,n and b = n, if either s contains no successful

write and m = i or the last successful write in s is by m.
(v) a = casm,n and b = i, if s contains no successful write and

m � i.
(vi) a = casm,n and b = k, if the last successful write in s is by

k and m � k.
Newvar. The local variable scoping can be modeled in the stan-
dard way [3], by constraining game interaction in the arena Var
subject to the cell strategy.

Given Γ = x1 : T1, . . . , xk : Tk, let us write [[Γ]] for the object
[[T1]] × · · · × [[Tk]], where each [[Ti]] is the arena corresponding to
Ti, and ![[Γ]] for the unique arrow [[Γ]] → 1. Writing CellΓ,n for
the arrow ![[Γ]]; celln : [[Γ]] → Var, we can model the newvar

c© 2012 Information Processing Society of Japan 22

IPSJ Transactions on Programming Vol.5 No.4 17–26 (Sep. 2012)

(a) Wait-notify lifting (b) Interleaved play

Fig. 3 Interleaving by wait-notify lifting.

construct as follows.

[[Γ � newvar x = n in M]] =

ST
(
〈id[[Γ]], CellΓ,n〉; WO

(
Λ−1

Var([[λxvar.M]])
))

4.2 Modeling Parallelism
Let us consider the game semantics for the parallel command.

For simplicity, we only consider parallel commands with a single
shared variable. The general cases can be easily derived.

Two processes running in parallel can interleave only between
their atomic variable accesses: Once a process issued a memory
operation, another process has to wait for the operation to finish.
For example, let us try to model the interleaved execution of a
parallel program:

parallel v = 0 in (v := 1; v := 2)‖(v :=!v + 1).

The parallel processes have traces: Tσ1 = {run ·wr1 ·ok ·wr2 ·ok ·
done} and Tσ2 = {run ·rd ·n ·wrn+1 ·ok ·done | n ≥ 0}. One might
expect to have the following play as the result of interleaving:

where the underlines are put to distinguish moves from differ-
ent parallel threads. However, the above interleaving is not legal,
since run2 is an opponent move but it occurs in a player position.
This violates the parity condition that opponent/player alternate.

To solve this problem, we insert auxiliary wait/notif moves
between each successive atomic memory operations in each game
play, as shown in Fig. 3 (a), so that they can be interleaved with-
out breaking the parity condition.

We call this construction of strategies wait-notify lifting. The
lifted strategies allow us to interleave atomic memory operations
without violating parity condition, as shown in Fig. 3 (b). Parallel
processes can switch contexts wherever a wait move is immedi-
ately followed by a notif move: Each wait move signals that
the current process yields its shared variable access to the other
running process and each notif move indicates that the current
process is notified to be able to resume its shared variable access.

Suppose that σ : Var⇒ C is a strategy that models one of par-
allel processes that share a single variable. The wait-notify lifting

of σ, written WN(σ), is a strategy in Var⇒ CWN , where CWN is
a new arena that extends C with moves wait and notif.
• MCWN = {run, done, wait, notif},
• λCWN (m) = (O,Q) iff m ∈ {run, notif}, λCWN (m) = (P,A) iff

m ∈ {done, wait}, and
• run �CWN run, notif �CWN notif, run �CWN done,
run �CWN wait, notif �CWN wait, and notif �CWN done.

The trace part TWN(σ) of the lifted strategy is defined as the
least even-length prefix closed set that satisfies the following con-
ditions.
• run · q1 · a1 · · · qi · ai · qi+1 · ai+1 · · · · · · ak−1 · qk ∈ Tσ implies
run · q1 · a1 · wait · notif · · · qi · ai · wait · notif · qi+1 ·
ai+1 · · · · wait · notif · ak−1 · qk ∈ TWN(σ), where each qi · ai

is a legal play in Var and the last qk is either rd, wrn, casm,n

or done.
• Every answer move (i.e., wait or done) has a justification

pointer to the last preceding occurrence of question move
(i.e., run or notif).

The divergences DWN(σ) consists of those obtained by inter-
spersing wait · notif in the plays from Dσ (similarly as above)
and also uninteresting divergences deduced by (d1).

To interleave strategies τ1, τ2 : Var ⇒ C, representing two
processes running in parallel, wherever context switching is al-
lowed, we define the “interleaved” strategy IL(τ1, τ2) : Var ⇒ C
as:

IL(τ1, τ2) =

ΔVar; ST
(
(WN(WO (τ1)) ×WN(WO (τ2)); pmerge

)
,

where ΔA = 〈idA, idA〉 is the usual diagonal strategy A⇒ A × A

and pmerge is a strategy for generating all possible interleaving.
The strategy pmerge : CWN

1 × CWN
2 ⇒ C is generated by the

pair (T, ∅) of well-opened traces and (empty) divergences such
that

T = {s1 � s2 | si ∈ runi · (waiti · notifi)
∗ · donei (i = 1, 2)},

where s1 � s2 denotes bigram shuffle, the set of possible in-
terleaving of two strings at their even positions (i.e., w � ε =
ε � w = {w}, (a · b · w) � (a′ · b′ · w′) = {a · b · s | s ∈ w �
(a′ · b′ · w′)} ∪ {a′ · b′ · s | s ∈ (a · b · w) � w′}, and a � b = ∅).
Parallel. The parallel command is then modeled by the inter-
leaved execution of parallel processes, followed by the execution
of the wrap-up command Q.

c© 2012 Information Processing Society of Japan 23

IPSJ Transactions on Programming Vol.5 No.4 17–26 (Sep. 2012)

[[Γ � parallel x = k in P1‖P2 finally Q : com]] =

ST
(
〈id[[Γ]], CellΓ,k〉; WO

(〈
![[Γ]] × idVar; IL([[P1]], [[P2]]),

Λ−1
Var

(
[[λxvar.Q]]

)〉
; seqC

))
.

4.3 Full Abstraction
The full abstraction result for our parallel language EIApar

is obtained basically by a similar discussion on single-threaded
strategies in Ref. [8], but we have to be careful about the compo-
sitionality of parallel commands.

A bare parallel command P1‖P2, which simply executes in par-
allel with sharing all the local variables in the context, would not
compose with other language constructs to give a correct game
model. That means, the following standard lemma would not

hold.
Substitution lemma If Γ, x : T2 � M : T1 and Γ � N : T2 are

well-typed terms then so is Γ � M[N/x] : T1 and [[M[N/x]]]
= 〈id[[Γ]], [[N]]〉; [[M]].

For example, let us consider a bare parallel command v : var, c :
com � c‖c : com. Since the abstracted command c carries no con-
crete information how it will access the shared variable vwhen in-
stantiated, there is no chance of interleaving variable accesses and
so the program will be modeled as equal to v : var, c : com � c; c :
com. However, substituting v :=!v + 1 to c in both programs, we
obtain two instances of programs v : var, c : com � v :=!v+1‖v :=
!v + 1 : com and v : var, c : com � v :=!v + 1; v :=!v + 1 : com,
which should apparently be modeled as different programs.

The problem is that, when parallel processes contain references
to those other than the shared variables, instantiations to those ref-
erences may add extra accesses to the shared variables, but these
extra accesses cannot be properly interleaved because no concrete
information about instantiation is available for the identifiers yet
to be instantiated. So we delimit the scope of each parallel com-
mand with a designated list of shared variables, disallowing refer-
ences to other identifiers. With this syntactic constraints, simple
induction suffices for proving the substitution lemma.
4.3.1 Soundness

The soundness theorem can be proved in a similar way of
Refs. [7], [8], by showing that the consistency and adequacy prop-
erties.

Proposition 4.1 (consistency) Suppose that M is a closed
term of type com. If M ⇓may then run · done ∈ T[[M]] and if
M ⇓must then run � D[[M]].

Proposition 4.2 (adequacy) Suppose that M is a closed term
of type com. If run ·done ∈ T[[M]] then M ⇓may and if run � D[[M]]

then M ⇓must.
The consistency can be proved by induction on the length of

reduction sequences. The adequacy follows from the fact that ev-
ery program satisfies the computability predicate [8], but we have
to alter the original definition of the predicate to incorporate the
interleaved execution of parallel processes.

Theorem 4.3 (soundness) If M and N are closed terms of
EIApar such that [[M]] ≤� [[N]] then M �m&m N.

4.3.2 Definability and Full Abstraction
For the converse of the soundness theorem, we have to show

that a certain class of strategies are definable in EIApar terms.
Proposition 4.4 Suppose that σ : [[Γ]] ⇒ [[T]] is a compact

strategy satisfying visibility and bracketing conditions. Then, σ
is definable in EIApar without parallel constructs.

This result can be shown in a similar way to Ref. [8]. The only
difference is that we need to take care of CAS operations, but this
has only a minor impact on the entire proof.

Here we notice that parallel constructs are not needed to show
the definability result. This implies that the erratic nondetermin-
ism already has the enough power for expressing the shared vari-
able parallelism in EIApar *2.

The full abstraction result follows from the definability result,
as usual, for a certain quotient model, called intrinsic collapse.
Given two strategies f , g : A → B, let us define a preorder f � g
holds iff ‘ f ’; t ≤� ‘g’; t for every testing strategy t : A ⇒ B→ C,
where ‘ f ’ : 1 → A ⇒ B denotes the obvious currying of
f : 1 × A → B. We write f � g for the derived equivalence
relation, i.e, f � g iff f � g and g � f . Let us write E[[M]] for the
intrinsic quotient of M, i.e., the equivalence class that contains
[[M]] in C/ �.

The intrinsic quotient model is intended to distinguish pro-
grams by testing their termination behavior under arbitrary con-
text of type com. There are three possible outcomes of testing:
definite termination (i.e., run · done ∈ Tτ and Dτ = ∅), both of
possible termination and possible divergence (i.e., run·done ∈ Tτ
and run ∈ Dτ), and definite divergence (i.e., Tτ = ∅ and
run ∈ Dτ).

Theorem 4.5 (full abstraction) For every closed terms M

and N of EIApar, E[[M]] � E[[N]] iff M �m&m N.

5. Checking Contextual Equivalence of Paral-
lel Programs

In this section, we will argue how the equivalence of paral-
lel programs can be determined in the game model. Unfortu-
nately the equivalence of programs is known to be an undecid-
able problem for the full IA language, but it becomes decidable
when restricted to certain classes of sublanguages [15]. Follow-
ing Ref. [9], we will consider a sublanguage that restricts the full
language EIApar to the second-order (i.e., only first-order types
occur in terms and typing contexts), finitary (i.e., only finitely
many varieties of moves are observed) *3, and iterative (i.e., recur-
sion is only available in iterative form whilenz M do C, which re-
peatedly executes command C until M evaluates to 0) fragments.
Then the program equivalence can be argued as the equality over
regular languages, as done by Ghica and McCusker for IA [9].

In what follows, we will use the following notations for regu-
lar languages. In addition to the usual regular expressions (null
language φ, null string ε, single alphabet a, concatenation R · R′,
union R + R′, and Kleene closure R∗), we may use the following
several extensions:

∑
i∈I Ri denotes a finite union over a finite in-

dex set I; R ∩ R′ denotes intersection, the set of common strings

*2 We do not insist that every form of parallelism is expressible by nonde-
terminism. Recall that the parallel construct in EIApar is subject to the
syntactic constraint discussed above.

*3 In this section, we assume a finite set of natural numbers, say, the set of
numbers representable in a machine word.

c© 2012 Information Processing Society of Japan 24

IPSJ Transactions on Programming Vol.5 No.4 17–26 (Sep. 2012)

contained in both languages; R1 � R2 denotes the bigram shuffle
(Section 4.2) of two regular languages; Hiding operator R � B re-
moves any occurrences of alphabets contained in B; Broadening
operator R̃ intersperses any alphabets other than those occurring
in the language of R at arbitrary positions of strings.

In this section, we identify the strategy τ of a program P by
a pair (TP,DP) of extended regular expressions, where the even-
length prefixes of TP specifies the well-opened traces of τ and
DP specifies the interesting divergences. Furthermore, following
Ref. [9], we will systematically annotate game moves with super-
scripted labels as (−)〈�〉. For example, the trace part of the game
interpretation [[c : var0 → var1 → com, v0 : var, v1 : var �
c v0 v1 : com]] is expressed by the regular expression V :

V =run〈c〉·
(∑

j∈{0,1}

∑
q∈Q(Var)

∑
a∈Aq(Var)

q〈 jc〉·q〈v j〉·a〈v j〉·a〈 jc〉
)∗·done〈c〉,

where m〈c〉 stands for the C moves of c and m〈 jc〉 for the Var
moves of c accessing the (j + 1)-th argument. Similarly, m〈v j〉

stands for the moves for accessing identifier v j.
Recall the parallel program we considered in Introduction. The

implementation I in the EIApar syntax is given as below.

I ≡ parallel b = 0, f0 = 0, f1 = 0, v0 = 0, v1 = 0

in P0‖P1 finally c v0 v1,

where Pi ≡ fi := 1; (whilenz ! f1−i do skip); vi :=!b; b := 1−!b;
fi := 0, for each i = 0, 1. Here the wrap-up command c v0 v1 in-
tends an execution of an arbitrary command that processes on the
shared variables v0 and v1.

Let us show that I is an incorrect implementation by discrim-
inating it from the following specification program S , which
makes use of nondeterminism to express the original intention
of the program.

S ≡ newvar v0 = 0, v1 = 0

in
(
((v0 := 0; v1 := 1) or (v1 := 0; v0 := 1)); c v0 v1

)
The trace part of the while loop in each parallel thread Pi is

characterized by the regular language run · Li · done where

Li =
(∑

n�0

(rd〈 f1−i〉 · n〈 f1−i〉)
)∗ · rd〈 f1−i〉 · 0〈 f1−i〉,

which models an iterated read access to the variable f1−i until
0 is returned as the result. No divergence is witnessed at this
moment, as the arena Var itself poses no causality between indi-
vidual memory operations and thus there is no evidence of diver-
gence.

Each thread Pi has the traces run · Ti · done where

Ti = wr
〈 fi〉
1 · ok〈 fi〉 · Li

·
∑
n,m

(
rd〈b〉 · n〈b〉 · wr〈vi〉n · ok〈vi〉 · rd〈b〉 · m〈b〉 · wr〈b〉1−m · ok〈b〉

)
· wr〈 fi〉0 · ok〈vi〉,

and thus the traces of the implementation I is given by:

TI =
((
run · (T0 � T1) · V · done)
∩ γ̃b

0 ∩ γ̃ f0
0 ∩ γ̃ f1

0 ∩ γ̃v00 ∩ γ̃v10

)
� U′,

where U′ = {m〈v〉 | m ∈ MVar, v ∈ {b, f0, f1, v0, v1}} and γv0 denotes
the regular language of the strategy cell0, whose every move is
annotated with 〈v〉.

By a similar discussion, we can express the traces of the spec-
ification program S by the regular expression:

TS =

((
run ·

(∑
i∈{0,1}

wr
〈vi〉
0 · ok〈vi〉 · wr〈v1−i〉

1 · ok〈v1−i〉)

· V · done
)
∩ γ̃v00 ∩ γ̃v10

)
� U,

where U = {m〈v〉 | m ∈ MVar, v ∈ {v0, v1}}.
It is easy to see that TS and TI denote the same language, since

every subsequence of variable access in each language that pre-
cedes V leaves the variable v0 and v1 assigned with values 0 and 1
(in this or reversed order) when the sequence is restricted w.r.t. the
cell strategies. This implies that I is may-equivalent to S .

However, they are not may&must-equivalent. The language
T0 � T1 contains arbitrarily long sequences:

wr
〈 f0〉
1 · ok〈 f0〉 · wr〈 f1〉1 · ok〈 f1〉 · rd〈 fi1 〉 · 1〈 fi1 〉 · rd〈 fi2 〉 · 1〈 fi2 〉 · · ·

where ik’s are either 0 or 1. This means that a divergence is gen-
erated by infinite chattering when the cell strategy is composed
with the interleaved strategy of parallel processes. Thus I and S

are discriminated by divergences, DI = run and DS = φ.
In general, discriminating divergences is not sufficient for re-

futing may&must-equivalence, since strategies should be distin-
guished upto intrinsic collapse (Theorem 4.5). Murawski [15]
has shown that the equivalence modulo intrinsic collapse can
be effectively judged in terms of winning region of reachability
games. The winning region (for player) in a strategy τ is the
set of odd-length legal plays from which the player can, against
any proceeding counter moves by opponent, make choices of
moves to construct a complete play that has no diverging pre-
fixes. Formally, it is an infinite union of

⋃∞
i=0 Wi, where W0 =

{s · o | ∃p.s · o · p ∈ comp(τ) and ∀d ∈ Dτ.d �� s · o} and
Wi+1 = Wi ∪ {s · o | ∃p.∀o′.s · o · p · o′ ∈ Wi} (i ≥ 0). Then,
M1 �must M2 iff, for every s ∈ (T2 ∪ D2) \ (T1 ∪ D1) where
(Ti,Di) = [[Mi]] (i = 1, 2), there exists an odd-length prefix s′ of
s that is not in the winning region of [[M1]].

Applying this to our example, we can see that S ��must I, be-
cause we have run ∈ (T[[I]]∪D[[I]])\ (T[[S]]∪D[[S]]) but run, which
is the sole odd-length prefix of itself, is in the winning region of
[[S]].

In order to give a correct parallel implementation, which is
may&must-equivalent to S , we may use CAS operations for mu-
tual exclusion. Let us define a program I′ that is obtained from I

by replacing each of its subcommand Pi with P′i , where

P′i ≡ newvar t = 0 in (t :=!b; vi := cas b !t (1−!t)).

By a similar discussion as above, we can show that the regular
language model of this implementation I′ has no divergences and
has traces:

TI′ =

(((
run · (T ′0 � T ′1) · done)
∩ γ̃b

0 ∩ γ̃ f0
0 ∩ γ̃ f1

0 ∩ γ̃v00 ∩ γ̃v10

))
� U′,

c© 2012 Information Processing Society of Japan 25

IPSJ Transactions on Programming Vol.5 No.4 17–26 (Sep. 2012)

where T ′i =
∑
n,m

(
rd〈b〉 · n〈b〉 · cas〈b〉n,1−n ·m〈b〉 · wr〈vi〉m · ok〈vi〉

)
for each

i = 0, 1.
This language of traces is equal to that of S ’s, since, for every

possible interleaving expressed by T ′0 � T ′1, the process Pi that
first executes the CAS operation witnesses the moves cas〈b〉0,1 ·1〈b〉 ·
wr
〈vi〉
1 ·ok〈vi〉 while the other witnesses cas〈b〉1,0 ·0〈b〉 ·wr〈v1−i〉

0 ·ok〈v1−i〉.
Since both P′0 and P′1 have no divergences and their traces are all
finite, DI′ = φ. Therefore we conclude that S �m&m I′.

6. Conclusion

We proposed a fully abstract game semantics for an Algol-like
shared variable parallel programming language. In contrast to ex-
isting proposals, our game semantics observes divergence as well
as termination and thus is more appropriate for detecting possible
unpreferable behavior of parallel programs. Our game semantics
is built on the work for erratic nondeterminism [7], [8], and the
full abstraction result indicates that the parallel command adds
no extra power than erratic nondeterminism.

We believe that the procedure for checking the may&must-
equivalence of parallel programs can be automated, as done in
Ref. [9]. We hope to report some progress on this topic elsewhere
in the future.

A more challenging research topic would be a development of
parallel semantics for the so called relaxed (weak) memory mod-
els, in which memory operations may be reordered for the sake
of higher performance [16]. Although the strong memory model
is assumed thoughout the paper, the game semantical approach
might contribute to deeper understanding of the relaxed memory
models, by appropriately interpreting the relaxed constraint by
nondeterminism.

Acknowledgments We would like to thank the reviewer,
whose comments and suggestions were valuable for improvement
of the paper.

References

[1] Herlihy, M. and Shavit, N.: The Art of Multiprocessor Programming,
Morgan Kaufmann (2008).

[2] Hyland, J.M.E. and Ong, C.-H.L.: On Full Abstraction for PCF: I,
II, and III, Information and Computation, Vol.163, No.2, pp.285–408
(2000).

[3] Abramsky, S. and McCusker, G.: Linearity, Sharing and State: A
Fully Abstract Game Semantics for Idealized Algol with Active Ex-
pressions, Algol-like Languages, O’Hearn, P.W. and Tennent, R.D.
(Eds.), Progress in Theoretical Computer Science, Vol.2, pp.297–329,
Birkhäuser (1997).

[4] Abramsky, S. and McCusker, G.: Game Semantics, Computational
Logic: Proc. 1997 Marktoberdorf Summer School, Schwichtenberg,
H. and Berger, U. (Eds.), pp.1–56, Springer-Verlag (1999).

[5] Ghica, D.R. and Murawski, A.S.: Angelic Semantics of Fine-Grained
Concurrency, Annals of Pure and Applied Logic, Vol.151, No.2-3,
pp.89–114 (2008).

[6] Ghica, D.R., Murawski, A.S. and Ong, C.-H.L.: Syntactic Control
of Concurrency, Theor. Comput. Sci., Vol.350, No.2-3, pp.234–251
(2006).

[7] Harmer, R. and McCusker, G.: A Fully Abstract Game Semantics for
Finite Nondeterminism, Proc. 14th Annual IEEE Symposium on Logic
in Computer Science, pp.422–430, IEEE Computer Society (1999).

[8] Harmer, R.: Games and Full Abstraction for Nondeterministic Lan-
guages, PhD Thesis, University of London (1999).

[9] Ghica, D.R. and McCusker, G.: The Regular-Language Semantics of
Second-Order Idealized ALGOL, Theor. Comput. Sci., Vol.309, No.1–
3, pp.469–502 (2003).

[10] Hoare, C.A.R.: Communicating Sequential Processes, Prentice Hall
(1985).

[11] Milner, R.: Communicating and Mobile Systems: The π-calculus,
Cambridge University Press (1999).

[12] Brookes, S.: Full Abstraction for a Shared Variable Parallel Language,
Proc. 8th Annual IEEE Symposium on Logic in Computer Science,
pp.98–109, IEEE Computer Society (1993).

[13] Abramsky, S.: Algorithmic Game Semantics: A Tutorial Introduction,
Proof and System Reliability, Schichtenberg, H. and Steinbruggen, R.
(Eds.), pp.21–47, Kluwer Academic (2001).

[14] Watanabe, K.: Full Abstraction for an Algol-Like Language with
Shared Variable Parallelism, Master’s thesis, Dept. Math., Fac-
ulty of Sci., Kyoto University (2012). available from 〈http://www.
math.kyoto-u.ac.jp/˜susumu/papers/watanabe2012msc/〉.

[15] Murawski, A.: Reachability Games and Game Semantics: Compar-
ing Nondeterministic Programs, Proc. 23rd Annual IEEE Symposium
on Logic in Computer Science, pp.353–363, IEEE Computer Society
Press (2008).

[16] Sorin, D.J., Hill, M.D. and Wood, D.A.: A Primer on Memory Consis-
tency and Cache Coherence, Morgan & Claypool (2011).

Keisuke Watanabe graduated from Di-
vision of Mathematics and Mathematical
Analysis, Kyoto University and received
his master’s degree from Kyoto University
in 2012. From 2012 spring, he works as
a math teacher at Tezukayama Junior and
Senior High School.

Susumu Nishimura received his bache-
lor’s degree from Kyoto University in
1992. He received his master’s and doc-
tor’s degrees from Faculty of Science,
Kyoto University in 1994 and 1996, re-
spectively. Since then, he worked as a re-
search associate in RIMS, Kyoto Univer-
sity. Since 2003, he was appointed as an

associate professor of the same university, at Graduate School of
Science. His research interest is program transformation and, in
general, theory of programming languages. He is a member of
Japan Society for Software Science and Technology.

c© 2012 Information Processing Society of Japan 26

