
IPSJ SIG Technical Report

ⓒ2012 Information Processing Society of Japan 1

Retrieving Similar Source Codes by Control Structure Metrics

Yoshihisa Udagawa†1

In this paper, we present an approach to improve source code retrieval using the structure of control statements. We develop a
lexical parser and extract structural information, which is then converted into a document vector used for information retrieval.
We show that the number of control statements largely depends on cyclomatic complexity. Next we employ a difference
measurement, which is the Euclidean distance between two vectors, to improve the vector space model used for retrieving source
codes. Finally, we conduct two types of experiments using the open source Struts 2 Core. In the first experiment, we use the
try-catch and synchronized statements as keys, and examine the quality of the code retrieved with respect to exceptions and
thread control. In the second experiment, we retrieve code on the basis of similarity and difference measurements. In both
experiments, several sets of source codes that are presumably maintained in a consistent manner are retrieved.

1. Introduction

 Numerous open source programs are available [1][13][14] for

the development of Web applications for industrial use and for

educational purposes in advanced programming courses.

However, many valuable programming techniques available in

open-source programs remain unexploited. The aim of our work

is to search for excellent source codes that have a given control

structure. Specifically, we develop sophisticated techniques to

retrieve similar source codes using the structural information of

control structures, including conditional, iteration, and

exception handling statements.

Various techniques have been proposed to collect similar

source codes, especially in the field of software clone detection.

These techniques can be classified into four categories:

(A) Text-based comparison

 This approach compares source codes in the same partition.

Marcus et al. [8] compare pieces of text identifiers using a latent

semantic indexing technique developed for information retrieval.

The key idea of this approach is to identify source-code

fragments using similar names or identifiers.

(B) Token comparison

 In this approach, before comparison, tokens of identifiers

(data type names, variable names, etc.) are replaced by special

tokens, and then similar subsequences of tokens are identified

[6]. Because the encoding of tokens abstracts from their

concrete values, code fragments that are different only in

parameter naming can be detected. McCreight [11] and Baker

[2] show that a suffix tree of tokens can be built in linear time

and space with respect to the input length. This tree results in

fair performance when comparing large-scale source codes.

(C) Metrics comparison
This approach characterizes code fragments using different

metrics, and compares these metric vectors instead of directly

comparing the code [9]. To detect similar codes, the Euclidean

distance for these metric vectors is used. In addition, metrics

comparison techniques are proposed for detecting duplicated

Web pages [7].

(D) Structure-based comparison

 †1 Tokyo Polytechnic University

 This approach applies pattern matching and complex

algorithms on abstract syntax trees or dependency graphs.

Baxter et al. propose a method using abstract syntax trees for

detecting exact and near-miss program source fragments [3].

Horwitz et al. propose a method that generates a slice of an

entire program in a system dependence graph [4]. However, the

processing of structure-based comparison is computationally

more expensive. Thus these techniques do not scale to large

code bases. Jiang et al. developed an algorithm that

characterizes a sub-tree using a vector, whose elements

represent the number of occurrences of a specific tree pattern in

the sub-tree. Specifically, they propose an algorithm that

characterizes sub-trees using numerical vectors, and clusters

these vectors based on their Euclidean distances [5].

Our approach is a combination of the structure-based

comparison and metrics comparison. First, we developed a

lexical parser and extracted structures of source codes for

control statements, such as if-else, for and try-catch. Then, we

inputted the extracted structural information to the vector space

model and computed a similarity measure, which was used to

find similar methods in Java. Next, we applied our retrieval

methods to the source codes of Struts 2 Core. Struts 2 Core was

selected because it is widely used to develop Web applications

for both industrial and educational use, and its size is

appropriate for this case study.

The rest of this paper is organized as follows. In Section 2, we

present an overview of our approach. Specifically, we describe

the system we developed, the structure metrics used, and the

statistical results of the structure metrics obtained from the

Struts 2 Core source codes. In Section 3, we discuss how source

code can be retrieved using a specific control structure. In

Section 4, we discuss a similarity-retrieval approach based on a

vector space model that uses the structure metrics. Section 5

concludes the paper.

2. Overview

2.1 Complexity metrics and control structure
 To characterize the different facets of software complexity,

several metrics can be used, such as file level metrics,

object-oriented metrics, and complexity metrics for program

Vol.2012-IS-121 No.3
2012/9/10

IPSJ SIG Technical Report

ⓒ2012 Information Processing Society of Japan 2

modules. Cyclomatic complexity [10] is defined on the basis

of graph-theoretic properties, i.e. , "Edges - Nodes + Connected

Components," and is widely used to estimate the difficulty

associated with testing or planning a testing strategy.

Cyclomatic complexity is approximately equal to the number of

control statements or decision points (if-then-else, for loop,

while loop, etc.) contained in a program. This metric does not

consider the function of the control statements. Thus, when

retrieving source codes with the same control structure, using

this approximation metric is considered an oversimplification.

2.2 Tools Developed

 Figure 1 illustrates a high-level architecture of the tools we

developed. The structure extraction tool is implemented in

C-language and is used to extract control structures of Java

programs placed in a given directory. The structure extraction

tool extracts code structures from every method of a class in

Java. Then, these extracted structures are inputted to the statistic

tool, structure analysis tool, and retrieval tool, which are written

in VB. Finally, the outputs of these modules are fed into the

source code viewer. In our current implementation, the tools

written in VB and the source code viewer are manually

connected.

2.3 Struts 2 Core and its file metrics

 In general, a framework automates common tasks, and

thereby providing a user platform that simplifies web

development. The Struts 2 Core framework implements the

model-view-controller (MVC) design pattern. Table 1

summarizes the package structure of Struts 2 Core.

In the MVC design pattern, the controller receives inputs and

then maps user requests to appropriate actions. In Struts 2 Core,

the classes in the dispatcher package perform the tasks of the

controller. The model in MVC is responsible for maintaining the

data of the application or business logic. It also validates data

entered by the user. The maintained data is returned to the

controller. The action component class in the components

package mainly implements the model in MVC. When the

controller triggers the view in MVC, it presents the data in a

particular format. In Struts 2 Core the view is mostly

implemented by the classes in the freemarker, jsp, and velocity

packages.

We can estimate the volume of the source codes using file

metrics. Table 2 summarizes Typical file metrics for important

packages. Struts 2 Core consists of 46,100 lines in source code.

As for the number of lines, Struts 2 Core is a middle scale

application in industry. The number of Java files differs from the

number of declared classes because some java files include

definitions of inner classes and anonymous classes.

Figure 1. High-level architecture of tools developed

Table 1. Package structure of Struts 2 Core

Figure 2. Control structure of the maximum nesting level 7

Vol.2012-IS-121 No.3
2012/9/10

IPSJ SIG Technical Report

ⓒ2012 Information Processing Society of Japan 3

2.4 Structural metrics of Struts 2 Core

 We used the structure extraction tool and extracted

approximately 12,700 lines of code of control structures. Table 3

summarizes the statistics of the extracted control structures. The

statistics indicates that the top six extracted statements are if,

else, try, catch, for, and else-if statements. Note that only two

do-while statements are used in the Struts 2 Core source codes.

Table 4 lists the top six methods in terms of cyclomatic

complexity. Cyclomatic complexity is approximately

proportional to the number of control statements. From Table 4

we see that the if statements are the main contributors of

cyclomatic complexity. In software engineering, it is

recommended to maintain cyclomatic complexity under 10.

Thus, it is suggested that complex methods are recommended to

be separated into two or more methods. The simplification of

complex methods is beyond the scope of this study and thus not

addressed here.

A maximum nesting level of 7, with cyclomatic complexity

13, is recorded in the getMapping method in the

PrefixBasedActionMapper.java file in the org.apache.struts2.

dispatcher.mapper directory. Figure 2 illustrates the extracted

control structure of the getMapping method.

3. Code Retrieval Using a Specific Control
 Structure

3.1 Try-catch-finally statement

For developers and students, the fastest way to learn how to

accomplish a programming task is to look at an example of a

similar implementation. During maintenance tasks, engineers

spend the majority of their time identifying code statements

related to a bug, and finding similar codes that may cause the

same bug. Code retrieval methods allow engineers to explore

source codes in a quicker and deeper manner.

Table 2. Typical file metrics for important packages

Table 3. Statistics of the extracted control structures

Table 4. The top six methods complexity

Vol.2012-IS-121 No.3
2012/9/10

IPSJ SIG Technical Report

ⓒ2012 Information Processing Society of Japan 4

In Java, exceptional events are handled by the try, catch, and

finally statements. These statements contribute to improve the

quality of a software system. We have identified 96 methods that

contain the try statement. However, only five of these methods

contain one try statement with three or four catch statements and

no finally statements. These methods are summarized in Table 5.

The first method, InitOperations::initLogging, is shown in

Figure 3. Because each of the first three methods in Table 5

contains three catch statements having the same structure, they

should be maintained consistently. The last two methods have

similar structures and throw exceptions to the

ConfigurationException() method, but the types of exceptions

thrown are slightly different. These structures are informative

for engineers maintaining source codes, and students studying

exception handling.

3.2 Synchronized statement

Synchronized statements are only used in 11 methods. We

checked all source codes to confirm that HttpSession session is

synchronized with get, put, remove and check sessions. Figure

4 shows fragments of source codes used to obtain the attribute

of a session associated with a given key and place an attribute

with a given key (org.apache.struts2.dispatcher.SessionMap

class).

4. Code Retrieval Using Vector Space Model

4.1 Structural Metrics as Vector Components

 The vector space model [12] is an algebraic model for

representing text documents as vectors of identifiers or terms.

Given a set of documents D, a document dj in D is represented

as a vector of term weights:

where N is the total number of terms in document dj and wi, j is

the weight of the i-th term.

 A user query can be similarly converted into a vector q:

The similarity between document dj and query q can be

computed as the cosine of the angle between the two vectors dj

and q in the N-dimensional space:

Figure 3. Example of a method retrieved by specific

try-catch structures

Figure 4. Fragments of code using Synchronized statement

Table 5. Methods containing one try statement and three or four catch statements

Vol.2012-IS-121 No.3
2012/9/10

IPSJ SIG Technical Report

ⓒ2012 Information Processing Society of Japan 5

It is natural to assign structural metrics to the elements of a

document vector. For example, the getMapping method shown

in Figure 2 consists of seven if statements, one else statement,

tree else-if statements and two for statements. Thus, the

getMapping method is represented by the vector (0, 0, 0, 0, 7, 1,

3, 2, 0, 0). Each element of the vector corresponds to a

"synchronized," "try," "catch," etc. statement as shown in Table

1.

Although this idea is appealing, there is an essential defect.

For example, the similarity of vectors (0, 0, 0, 0, 7, 1, 3, 2, 0, 0)

and (0, 0, 0, 0, 14, 2, 6, 4, 0, 0) is 1.0, because the two vector

have the same direction. However, source codes composed of 7

if statements are obviously different from those composed of 14

if statements. This defect is often observed in vectors that

contain only a few elements with non-zero values.

The Euclidean distance between vectors q and d is the

distance of the vector | v |= | q – d |. In general, for an

N-dimensional space, the distance is defined by the magnitude

of the vectors and is computed in component form by the

following formula:

The magnitude, termed squared Euclidean distance, is

frequently used in various disciplines when the magnitude of

differences has to be compared. We use the distance as a

difference measure.

Figure 5 illustrates the concept of similarity and difference in

the context of vector algebra. Intuitively, while similarity

depends on the directions of two vectors, the difference depends

on the length of the vector resulting from the subtraction of the

two vectors. Because vectors represent simultaneously both

magnitude and direction, the similarity and difference measures

naturally characterize the vectors under consideration.

4.2 Results of Code Retrieval
Table 6 shows the top ten methods obtained by retrieving

source code that includes one try statement and one final

statement. The methods in Table 6 are sorted first by difference

and then similarity. By assigning higher priority to the

difference, only meaningful records are listed at the top

positions. The top four methods are comprised of almost

identical code segments, as shown in Figures 6, and 7.

The three init methods and the contextInitialized method throw

different handling exceptions, i.e., the init methods throw

ServletException (Figure 6), while contextInitialized does not

(Figure 7). The resulting exception triggers the investigation of

the code in more detail.

Table 6 also indicates other methods containing the same code

segments. In fact, the contents of the two end methods of

Submit.java and UIBean.java consist of almost the same

sequence of statements, as shown in Figures 8 and 9,

respectively. However, they differ in how they handle

exceptions, i.e., the former writes an error message in a log file,

while the latter throws an exception to StrutsException() that is

implemented in Strut 2 Core.

Figure 5. Concept of similarity and difference measures

Table 6. Methods including a try-final-statement obtained by source code retrieval

Figure 6. Init method in StrutsServlet.java

Vol.2012-IS-121 No.3
2012/9/10

IPSJ SIG Technical Report

ⓒ2012 Information Processing Society of Japan 6

Although syntax matching of control structures is employed,

our approach retrieves similar source code using a characteristic

structure as a query. Table 7 shows the top twelve methods

obtained by using a query vector with the components (0, 0, 0, 0,

11, 1, 0, 0, 0, 0), i.e., retrieving source code that includes eleven

if-statements and one else-statement.

Table 7. Methods including eleven if-statements and one else-statement obtained by source code retrieval

Figure 7. ContextInitialized method in StrutsListener.java

Figure 8. The end method in Submit.java

Figure 9. The end method in UIBean.java
Figure 10. The evaluateParams method in

UpDownSelect.java

Vol.2012-IS-121 No.3
2012/9/10

IPSJ SIG Technical Report

ⓒ2012 Information Processing Society of Japan 7

The evaluateParams method in UpDownSelect.java file is

shown in Figure 10, and the evaluateExtraParams method in

Form.java file is shown in Figure 11.

The evaluateParams method performs first

super.evaluateParams method for populating parameters, and

then addParameter method for maintaining a parameter list with

respect to each value of parameters. The other three methods of

No. 2, 6, and 12 in Table 7 consist of approximately the same

control statements. The five metods in the

org.apache.struts2.interceptor packge are implemented in a

similar manner including usage of proprietary method in the

package.

The results are of benefit to engineers and students to study

cording techniques in a given context. Because this approach

only uses source codes, in case technical documents are lost, the

results of retrieval provide effective measures for maintenance

engineer to collect source codes that should be considered in a

consistent manner.

5. Conclusions and Future Work

Open-source programs represent a tremendous resource of

exceptional code that could be used not only for educational

purposes but also for developing practical Web applications.

However, due to the vast amounts of available source codes, it is

difficult to find efficiently the code segments that we want.

Information retrieval techniques can help us extract potential

coding knowledge from source codes.

In this paper, we presented an approach that improves the

retrieval of source code using structural information of control

statements. We have conducted two types of experiments. In the

first, we retrieved the code using the characteristic structure as a

key. In the second we used a vector space model in which

structural metrics were assigned to each element of a vector. In

both experiments, our methods retrieved several sets of source

codes that are presumably maintained in a consistent manner.

A key contribution of our approach is the incorporation of a

difference measurement that improves the vector space model.

The difference measurement was proven especially effective in

distinguishing vectors that have the same direction but differ in

length.

The results are promising enough to warrant future research.

In this study, we focused only on structures of control

statements, and mapped them into a document vector in the

vector space model. In future work, we will work on improving

our methods by combining semantic information, such as

instantiation of a class and implementation of an abstract class,

etc. into structural information. We will also conduct

experiments on various types of open source programs available

on the Internet.

References
[1] Android open source project. 2012. http://source.android.com/.

[2] Baker, B.S. 1996. Parameterized pattern matching: algorithms and

applications. Journal Computer System Science 52, 1 (February

1996), 28-42.

[3] Baxter, I. D., Yahin, A., Moura, L. Sant'Anna, M., and Bier, L. 1998.

Clone detection using abstract syntax trees. Proc. of the 14th

International Conference on Software Maintenance (November

1998), pp.368-377.

[4] Horwitz, S., Reps, T. W., and Binkley, D. 1990. Interprocedural

slicing using dependence graphs, ACM Trans. on Programming

Lang. and Sys. 12, 1 (January 1990), pp.1-34.

[5] Jiang, L., Misherghi, G., Su, Z., and Glondu, S. 2007. DECKARD:

Scalable and accurate tree-based detection of code clones, Proc. of

the 29th international conference on Software Engineering (May

2007), 96-105.

[6] Kamiya, T., Kusumoto, S., and Inoue, K. 2002. CCFinder: A

multi-linguistic tokenbased code clone detection system for large

scale source code. IEEE Transactions on Software Engineering, 28,

7 (July 2002), 654-670.

[7] Di Lucca, G., Di Penta, M., Fasolino, A. 2002. An approach to

identify duplicated web pages. Proc. of the 26th international

Computer Software and Applications Conference (August 2002),

481-486.

Figure 11. The evaluateExtraParams method

in Form.java

Vol.2012-IS-121 No.3
2012/9/10

IPSJ SIG Technical Report

ⓒ2012 Information Processing Society of Japan 8

[8] Marcus, A., and Maletic, J. 2001. Identification of high-level

concept clones in source code. Proc. of the 16th international

Conference on Automated Software Engineering (November 2001),

107-114.

[9] Mayland, J., Leblanc, C., and Merlo, E.M. 1996. Experiment on the

automatic detection of function clones in a software system using

metrics, Proc. of the 12th International Conference on Software

Maintenance (November 1996), 244-253.

[10] McCabe, T.J. 1976. A complexity measure, IEEE Transactions on

software engineering, 2, 4 (December 1976), 308-320.

[11] McCreight, E. 1976. A space-economical suffix tree construction

algorithm. Journal of the ACM 23, 2 (April 1976), 262-272.

[12] Salton, G. and Buckley, C., 1988. Term-Weighting approaches in

automatic text retrieval, Information Processing and Management,

24, 5 (November 1988), 513-523.

[13] SourceForge. 2012. http://sourceforge.net/.

[14] Struts - The Apache Software Foundation. 2012.

http://struts.apache.org/.

Vol.2012-IS-121 No.3
2012/9/10

