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Abstract: In this study, we propose a new method to predict three-way interactions among proteins based on corre-
lation coefficient of protein expression profiles. Although three-way interactions have not been studied well, this kind
of interactions are important to understand the system of life. Previous studies reported the three-way interactions that
based on switching mechanisms, in which a property or an expression level of a protein switches the mechanism of
interactions between other two proteins. In this paper, we proposed a new method to predict three-way interactions
based on the model in which A and B work together to effect on the expression level of C. We present the algorithm to
predict the combinations of three proteins that have the three-way interaction, and evaluate it using our real proteome
data.
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1. Introduction

Interactions among proteins have been regarded as a key is-
sue to understanding the systems of living creatures, because they
consist of vast assortment of proteins and their bodies are main-
tained by the complex interactions among these proteins. Al-
though there is considerable knowledge about the interactions
among proteins, it is still not enough to construct a global image
of biological activities.

Many studies have been conducted to investigate pairwise in-
teractions between two genes or two proteins. In case of genes,
correlation coefficients of the expression levels in microarray ex-
pression profiles are often used for this purpose. As for pair-
wise protein protein interactions (PPIs), many methods have
been proposed because a variety of data are available to pre-
dict direct interactions of proteins. The most direct approach
to tackle PPIs is to identify their evidence of PPIs through in

vitro or in vivo experiments, such as the yeast two-hybrid [1] or
tandem affinity purification methods [2]. Pairwise interactions
can also be predicted using public databases. Several studies
use sequence data such as the method based on conservation of
gene neighborhoods [3], the Rosetta Stone method [4], [5], and
the sequence-based co-evolution method [6]. Many advanced
methods are proposed [7], [8], [9] that utilize public data such
as 3D-structures, domains, motifs, pathways, and phylogenetic
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profiles. These methods and their results are available on the
Web [10], [11], [12], [13], [14].

To infer more complex interactions, studies to identify inter-
action networks from expression data exist, such as the Boolean
network model [15], [16] and the Bayesian network model [17].
Note that in many cases, these models treat gene interaction net-
works, but it is surely possible to treat protein networks. These
studies infer a network that representing causal relationships
among proteins, including the interactions among more than two
proteins. However, the inferred networks include both two-way
and more than three-way interactions so that the combinatorial
effects that emerge only when the related proteins gather cannot
be retrieved separately. Note that this property also appears in
the multiple linear regression analysis, which is one of the basic
statistical analyses to retrieve the relation among more than three
variables. Another drawback of the Boolean and Bayesian net-
work model is that, to infer reliable interaction networks, these
methods require large samples of expression data.

Only a few studies have been conducted so far on three-way
interactions. Zhang, et al. studied the interaction among a triplet
of genes by comparing the correlation coefficients of genes A

and B in two cases, when another gene C expresses and when
it does not express [18]. Kayano, et al. used expression profiles
and genotype data to detect the switching of the correlation sign,
i.e., positive and negative correlations, occurred according to the
genotype [19]. Their three-way interactions are pure three-way
interactions separated from the two-way interaction effect, but
they are quite limited because they detect the interaction of two
genes based on an interaction that is switched by another binary
state property.

In this paper, we present another method to infer three-way in-
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Fig. 1 Process of 2D electrophoresis to obtain expression profiles.

teractions among proteins from expression profiles. Our method
is based on the PPI model in which a pair of proteins A and B

work together to effect the expression level of C, and the amount
of the effect is proportional to the number of A-B pairs that works
together with C.

The remainder of this paper is organized as follows. In Sec-
tion 2, we describe the protein interaction model used in our
method and present the basic idea to retrieve the combinatorial
effect among the three proteins. In Section 3, we describe the sta-
tistical operations to estimate the size of the combinatorial effect.
In Section 4, we evaluate our method by applying it to real pro-
tein expression profiles, and finally, in Section 5 we conclude our
study.

2. Estimating Total Interaction Effect among
Three Proteins

2.1 Expression Profile
An expression profile is the data that consists of expression

levels ei j of proteins i ∈ I included in a biological sample
j ∈ J, where I is the set of proteins and J is the set of sam-
ples. Because we also refer to proteins as A, B, C, and so
on, the expression level of protein A in sample j is denoted by
eA j. Expression profiles are frequently used in biological anal-
ysis since several high-throughput experiments to obtain expres-
sion profiles became popular. For proteins, experiments such as
2D-electrophoresis, protein chips, and mass spectrometry based
methods are available. Typically, the number of proteins included
in a profile range from several hundreds to thousands. Note that in
this study, we apply our method to protein expression profiles be-
cause our interaction model supposes a relationship among pro-
teins. However, it is possible to apply our proposed method to
gene expression profiles. For genes, the microarray technique is
the most popular method of obtaining expression profiles, where
thousands to tens of thousands of genes are treated simultane-
ously. The number of samples is usually several tens, and at most
hundreds.

For example, Fig. 1 illustrates the process of a 2D electrophore-

Fig. 2 Input data format.

sis based experiment [20] from which we obtained the expression
profiles used in the evaluation part of this paper. First, we obtain
a 2D electrophoresis image from each target sample through bio-
logical experimental processes. Second, we identify areas where
proteins are separated using image processing software, and we
compute the expression level of each spot. Third, we match the
spots of the same protein in the images. Finally, we normalize
the values of expression levels using a normalization method as
a preprocessing step to the data mining that follows. As a result,
we obtain a set of protein expression values for each protein in
each sample, called expression profiles, as shown in Fig. 2.

2.2 Basic Strategy to Predict Interactions
The PPI model that we propose in this study is shown in Fig. 3.

Three proteins, A, B, and C, would be committed in this model.
Proteins of A and B each directly or indirectly interact with C, but
if both A and B are expressed together, they have a significantly
larger effect on C. In this study, we call the two-way effect the
sole effect, i.e., the effect of protein A on C and B on C. The
three-way effect on C that emerges only when two proteins A and
B express together is called as the combinatorial effect. Then, we
call the composition of the two sole effects and the combinatorial
effect as the total effect. From our expression dataset, we aim to
retrieve the combinatorial effect of A and B, which is not seen if A
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and B could exist independently. To measure this combinatorial
effect, we first estimated the total effect of A and B on C, and then
we subtracted the two sole effects of A and B from the total effect.

Our algorithm to estimate the combinatorial effect level is
based on the correlation coefficient. The outline of our algorithm
is shown in Fig. 4. For a triplet of proteins, A, B and C, the fol-
lowing four steps are used. 1) First we compute the two sole
effect levels. The sole effect level between two proteins is simply
computed as the correlation coefficient between them. We denote
the sole effect level from A to C by α, and that from B to C by β,
respectively. That is, α = cor(A,C) and β = cor(B,C), where the
function cor denotes the correlation coefficient. 2) Second, we
estimate the total effect level t using the algorithm described in
Section 2.3. 3) Third, we perform a statistical simulation to com-
pute the total effect level under the two assumptions that the two
sole effect levels are α and β, respectively, and no combinatorial
effect exists among the triplet. Note that as α and β, we use the
sole effect levels obtained from the target triplet A, B, and C in
the real data. Through a sufficient number of repetitions, the sim-
ulation generates the distribution S . The detail of the simulation
is explained in Section 3.1. Because S represents the distribution
of total effect levels under no combinatorial effect, the location
of t on S shows how rare the computed total effect level t is, and
it directly indicates the combinatorial effect level. 4) Fourth, we
measure the probability of the value t occurring with respect to S ,
as the statistical z value. The z value is defined as z = (t−u)

σ
, where

μ is the average and σ is the standard deviation of S . This z value
is the estimated strength of the combinatorial effect of the target

Fig. 3 Interaction model for three proteins A, B, and C.

Fig. 4 Outline of algorithm.

triplet A, B, and C; if z is high, then the combinatorial effect level
among them is also high.

To complete our algorithm, in Section 2.3, we show the algo-
rithm to estimate the total effect level t. In Section 3.1 we provide
the detailed algorithm of the statistical simulation.

2.3 Estimating the Total Effect Level t
We estimate the total effect level t by means of the correlation

coefficient. According to our protein interaction model, the num-
ber of A and B working units indicates the total effect level. If we
can assume that the same amount (in expression level) of A and
B forms a working unit, we need to consider only min(eA j, eB j)
for the number of working units in sample j. However, this is
not correct because the expression level per molecule is different
among proteins. Thus, we should find the optimum ratio between
the expression levels of A and B, i.e., the point at which they
have the largest effect on C. Figure 5 illustrates this problem. In
Fig. 5 (a), the number of working units is not correctly expected
because the optimum ratio of A and B is not achieved. As a result,
min(eA j, eB j) and C do not result in a high correlation. However,
if the ratio of A and B is optimal, the correlation value is good as
shown in Fig. 5 (b), and the number of working units will fit for
C, resulting in a high correlation coefficient.

If there is no interaction among A, B, and C, then the correla-
tion coefficient of the working units and C would not be high. To
compute the optimum ratio of A and B, we attempt to compute
every possible ratio of A and B and choose the best one, i.e., we
choose the ratio that provides the highest correlation coefficient.

Now we describe our data mining process to find all possible
ratios of A and B. See Fig. 6 for the range of the ratio. For a ra-
tio k, we define the number of working units in each sample j as
MkA,B = {e(min)

j |e(min)
j = min(keA j, eB j), j ∈ J}. Then, we compute

the correlation coefficient of MkA,B and C for several possible k,
where k is a real number. To show an important property, let kmin

be the minimum ratio of the expression values of A and B among
every sample, i.e., kmin = min j∈J(eB j/eA j). Then, note that, if
k ≤ kmin, the correlation coefficient between MkA,B and C takes
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Fig. 5 Optimum ratio between proteins A and B.

Fig. 6 Range of the ratio to be considered.

the same value because the values of MkA,B are always chosen
from A in every sample. Similarly, let kmax be the maximum ra-
tio, i.e., kmax = maxj∈J(eB j/eA j), then the correlation coefficient
always takes the same value if k ≥ kmax. This indicates that we
should use values of k between kmin and kmax. To examine the val-
ues of possible correlation coefficients between MkA,B and C, we
try every possible value of k = eA j/eB j( j ∈ J) and take the maxi-
mum correlation coefficient. If |J| is too large, we can uniformly
skip several values of k to reduce the computational load.

In summary, for a protein expression data set including |I| pro-
teins and |J| samples, we compute the correlation coefficients be-
tween MkjA,B and C for every distinct k j = eB j/eA j( j ∈ J), and
find the minimum value. This is the total effect level among A, B,
and C denoted by t. Formally,

Total Effect Level t = max
j

{
cor

(
MkjAB,C

)}

= max
j

{
cor

(
min

(
k jA, B

)
,C

)}

= max
j

{
cor

(
min

(
eB j

eA j
A, B

)
,C

)}
.

3. Estimating Combinatorial Effects Using
Statistical Distribution

3.1 Computing the Distribution S: Total Interaction Level
without Combinatorial Effects

In this section, we present the algorithm and the statistical
model to compute the distribution S . for a particular combination
of proteins A, B, and C, where S is assumed to be the statistical

distribution of the total effect levels. This is under the assumption
that there is no combinatorial effect among A, B, and C. In other
words, we assume only the two sole effects α and β over A, B,
and C, and do not consider any other effect among them.

Note that in our simulation, we use the normal distribution for
A, B, and C as the most general distribution. Furthermore, as
shown in Section 4, a considerable number of proteins follow the
normal distribution in the protein expression profiles used in our
evaluation.

To meet the above constraints, we first generate the artificial
distribution of A, B, and C by generating expression values as
random variables following the normal distribution with a com-
mon average and a standard deviation. That is, μA = μB = μC

and σA = σB = σC , where we let μA and σA be the averages
and the standard deviations of protein A, respectively. We dis-
cuss the validity of this condition in Section 3.2. In addition,
because of the constraint of sole effects, the distributions should
hold cor(A,C) = α and cor(B,C) = β. To make the correlation
coefficients of A-C α, we repeat the exchange of two expression
values of A (i.e., we exchange the expression values of two sam-
ples) as long as the correlation coefficient of A-C approaches α.
The same step is repeated for B until the correlation coefficient of
B-C reaches β.

In this manner, we obtain the random normal distribution of A,
B, and C where cor(A,C) = α and cor(B,C) = β. By applying
the algorithm presented in Section 2.3 to these artificial distribu-
tions, we obtain the total effect level under the assumption of the
no combinatorial effect. With a sufficient number of repetitions
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Fig. 7 Distribution table of S : Precomputed through computer simulation for a pair of α and β. The upper
value is the average, and the lower value is the standard deviation.

Fig. 8 Distribution S with average variation.

of this process, i.e., distribution generation of A, B, and C, and
total effect level computation, we finally obtain the distribution
S , which represents the probability of the total effect levels under
the assumption of the no combinatorial effect.

Computing the distribution S for every combination of pro-
teins, however, requires considerable computational run time. To
reduce the computational time, we prepare, in advance of the
computation of total effect levels, the distribution table with the
average and the standard deviation of the distribution S for each
of the values of α and β. In this study we computed the table with
the interval of α and β 0.05, as shown in Fig. 7. From the table,
we use the values of α and β nearest to the value of the given
triplet as the approximate value.

3.2 Discussions of the Distribution S
Now we describe the distribution S varies when the averages

and the standard deviations of A, B and C vary, and we conclude
that using the common average and the standard deviation in com-
puting the distribution S is appropriate.

We first note that μC and σC have no effect on the distribu-
tion S , because the correlation coefficient is the same even when
we add or multiply a constant to all the expression values of C.
Therefore, we concentrate on the averages and the standard devi-
ations of A and B.

Without loss of generality, we can fix μB and σB and vary μA

and σA. Figure 8 shows the distribution S where σA and σB are
fixed at 1, μB at 10, and μA varies between 10 and 30. This re-
sult is obtained through the computation described in Section 3.1
where α and β are both 0.4, the number of trials is 10,000,000
times. This result clearly shows that the correlation coefficient
between MkA,B and C takes a lower value as the difference be-
tween μA and μB increases, and it takes the highest value when
μA = μB.

Regarding the variation of σA, in our method, we select the
best correlation coefficient between MkA,B and C among several
possible ratios k. This indicates that if σA and σB differ, such as
in the case where σB = pσA, then the average μB = pμA has the
same total effect level as in the case where μA = μB and σA = σB.

c© 2012 Information Processing Society of Japan 38



IPSJ Transactions on Bioinformatics Vol.5 34–43 (June 2012)

(Note that μA and σA are both multiplied by p when all the ex-
pression levels are multiplied by p.) This indicates that the case
of μA = μB and σA = σB takes the maximum value of total effect
levels.

The above discussion shows that the precomputed distribution
table, shown in Fig. 7, gives the largest estimated values of S for
each α and β. Therefore, in our method, the combinatorial effect
cannot be overestimated, i.e., it is always estimated at less than or
equal to the true value.

Note that in the simulation, we can use any value of μA =

μB = μC and σA = σB = σC , because the obtained z values
are independent of these values as long as μA = μB = μC and
σA = σB = σC .

However, the distribution S does not necessarily follow a nor-
mal distribution, although the curve of S is similar to the normal
distribution curve. However, this does not violate the validity of
our algorithm, because the z-value is generally used for a single-
peak mountain shape distribution, even if it is not exactly the nor-
mal distribution.

4. Evaluation

4.1 Experiment
We evaluate the proposed method by applying it to real pro-

tein expression profiles obtained by a 2D electrophoresis-based
experiment [20]. We implemented the proposed method in the
C++ language. The input data set includes 195 samples and 879
proteins, and the data is processed by global normalization [21]
in advance.

Because our method uses the normal distribution for expres-
sion levels of A, B, and C, we first confirm whether the expression
data follows the normal distribution. For each protein, we omit
values that depart from the average by more than 2.5 times the
standard deviation as outliers. We apply the Jarque-Bera test [22]
to judge whether the expression of each protein follows the nor-
mal distribution. The result shows that 454 out of the 879 proteins
follow a normal distribution with the significance level of 5%. In
the following evaluation, we use these 454 proteins.

To maintain the reliability of the results, we performed several
manipulations over the expression data. First, we omitted out-
liers of expression levels by ignoring values that are greater than
2.5 times the standard deviation from the average. Second, we
omitted the combination of A, B, and C if the number of non-null
expression values is less than 80% of all the expression values of
A, B, and C. Finally, for the scale k that gives the best correla-
tion coefficient between MkA,B and C, if more than 70% of the
values in MkA,B are chosen from either kA or B, we exclude the
combination of A, B, and C.

4.2 Results
The histogram of the retrieved combinations with a z value of

more than 7 is shown in Fig. 9. Figure 10 is the histogram ex-
panded from Fig. 9. Figure 11 shows the histogram of the case
where we assume that there is no combinatorial effect, which is
calculated by accumulating the normal distribution trials for the
same number of combinations as in the input data. From the com-
parison of these histograms, the real data has a significantly larger

Fig. 9 Histogram of retrieved combinations.

Fig. 10 Histogram of retrieved combinations (expanded).

Fig. 11 Histogram of normal distribution.

z value than in the case that assumes no combinatorial effects.
These results infer that the real data input includes a significant
number of combinations that have the combinatorial effect.

Figure 12 shows the scatter plots of the best-score combination
as a typical example. The vertical axis represents the expression
level of C, and the horizontal axis represents the expression lev-
els of A, B, and MkA,B. In this case, the correlation coefficient of
A-C is 0.0449609, B-C is 0.0233452, and MkA,B-C is 0.450916.
The correlation coefficients of A-C and B-C are quite low, but the
value is significantly high for MkA,B-C, which results in a very
high z value of 12.35. We confirmed that similar to the values in
this example, the majority of high z value combinations do not
have large correlation coefficients of MkA,B-C.

4.3 Effect of Outliers
It is well known that outliers significantly affect correlation

coefficients. Because our method is based on correlation coef-
ficients, the results are also significantly affected by outliers. In
this section, we show the effect of outliers and the necessity of
normality filtering as a preprocess for our algorithm.

We first show a typical example of the outlier effect. Fig-
ure 13 shows the three distributions of a protein combination,
i.e., (a)MkA,B −C, (b)A−C and (c)B−C distributions of a protein
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Fig. 12 Distribution of top rank combination.

Fig. 13 Type-1 outlier.

combination A, B and C. Figure 13 (c) shows a significant outlier
that reduces β(= cor(B,C)). With this incorrect value of β, the
combinatorial effect among them is estimated to be significantly
larger than the true value. This type of “false positive” can be
excluded by, for example, removing outlier samples that deviate
from the average by 2.5σ as we did in the evaluation.

Furthermore, we found another type of a false-positive as il-
lustrated in Fig. 14. In the (b)A-C distribution, many samples
are assembled on the leftside and several outlier-like samples are
sparsely plotted on the rightside. Because these values are not
considered to be in MkA,B, the combinatorial effect is not appro-
priately estimated. That is, this type of false positives occur due
to their abnormal distributions. In fact, the number of this type
of false positives is large; the ratio of false positive distributions
are shown in Fig. 15. This Figure shows the histogram of z val-
ues without applying the normality test filter. Here, we judged
whether each high z value combination was a false positive. Al-
though the judgment is done subjectively, it is apparent that sig-

Fig. 14 Type-2 outlier.

nificant ratios of the high z value combinations have poor distri-
butions and are judged as false positives. Thus, this type of false
positives should be excluded.

For this purpose, in our algorithm, we applied filtering with
the normality test. (As described in Section 4.1, we selected 454
out of 879 proteins using the Jarque-Bera test.) As a result, the
filtered results shown in Figs. 9 and 10 include very few false pos-
itive distributions. From the above results, we concluded that the
normality test filter has a significant effect in excluding false pos-
itive distributions.

We further note that limiting the range of k is also a method
of excluding outlier effects, although the effect is much less than
that of the normal distribution test.

4.4 Validation
As a result of applying our proposed method to a real protein

expression dataset obtained by a 2D-electrophoresis proteomic
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Fig. 15 Histogram without normality test filter.

Table 1 Combination predicting an interaction network as a combinatorial effects.

Z-value
Combination of proteins Correlation coefficient
(A,B, and C proteins) MkA,B-C A-C B-C

7.669534
A: carbonic anhydrase 2 (CA2)
B: vimentin (VIM) 0.306103 0.0189431 0.0439853
C: heat shock 60 kDa protein 1 (HSPD1)

Fig. 16 Building of an interaction network with a combination of proteins (A, B, and C) retrieved from
our proposed methods using the base of four available public repositories for PPIs. Carbonic
anhydrase 2 (CA2) as protein A and vimentin (VIM) as protein B have an independent and di-
rect interaction with dynein light chain 8 (DYNLL1) as protein X. In addition, DYNLL1 in-
directly interacts with heat shock 60 kDa protein 1 (HSPD1) as protein C on intervening with
heat shock cognate 71 kDa protein (HSPA8) and heat shock protein 70 (HSPA1A). Experi-
mental confirmation methods of PPI were mass spectrometry with (a, b, c, and e)or without
co-immunoprecipitation (d).

analysis and cutting off more than 7.0 of z values, we obtained
107 combinations of all three known proteins, which were esti-
mated to show the combinatorial effects. To predict the retrieved
combinatorial effects among the three proteins, we validated the
interaction network of these proteins by using four available pub-
lic PPI repositories: the Biomolecular Object Network Databank
(BOND) [11], the IntAct database [12], the Molecular INTerac-
tions (MINT) database [13], and the Human Protein Reference
Database (HPRD) [14]. First, we assumed that proteins A and B

directly associated with each other and a complex of proteins A

and B directly or indirectly interacted with protein C. In this case,
in all the databases, there were no data sets that directly detected
interaction relationships between proteins A and B. Hence, we
could not find features of the combinatorial effects. Next, we hy-
pothesized that each of the proteins A and B directly interacts with
protein X as the fourth protein but A and B have no direct interac-

tion each other, and protein X directly or indirectly interacts with
protein C. In this situation, we discovered one combination with
Dynein light chain 8 (DYNLL1) as protein X as a candidate, in
which carbonic anhydrase 2 (CA2) as protein A, vimentin (VIM)
as protein B, and heat shock 60 kDa protein 1 (HSPD1) as pro-
tein C were included as shown as Table 1. Figure 16 shows an
interaction network built with these proteins retrieved from our
proposed method along with the PPI repositories. The predicted
interaction network comprises a total of five proteins, in which
PPIs were identified using the yeast two-hybrid system and mass
spectrometry with co-immunoprecipitation. Published literature
reveals that the identified interaction networks may be involved in
the apoptotic pathway [24], [25], [26]. Thus, this result suggests
that the retrieved combinatorial effect derived from applying our
proposed method to a real protein expression data set can predict
a network topology. Furthermore, our proposed method tends to
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be able to help for deducing an interaction network of proteins
that cannot predict in the observed biology.

4.5 Discussion
In this study, we demonstrated an example of predicting an

interaction network by applying our proposed method to a pro-
teomic dataset. One of the difficulties in evaluating our method
is that we could not know whether other combinations of three
known proteins are false positives, because the interactions
recorded in all public databases represent only part of the pri-
mary literature. From the same reason, it is currently difficult for
us to expect known typical three-way interactions to be retrieved
with our method. Nevertheless, further investigation with more
data sources is expected to confirm the accuracy of our proposed
method.

5. Conclusion

In this paper, we proposed a method to retrieve three-way in-
teractions among three proteins by using correlation coefficients.
Our method estimates the combinatorial effect level by subtract-
ing two sole effects A-C and B-C from the total effect. Because
our method uses correlation coefficients, we can predict three-
way interactions by using a smaller number of samples campared
with Bayesian or Boolean networks.

We applied the proposed method into a real protein-expression
data set [20], From the result, we inferred that several hundreds
of combinations have the three-way interaction. Note that it is
currently difficult to precisely confirm the accuracy of our result
because various types of indirect interactions are possible among
proteins, and only some of interactions are currently reported in
the literature. However, by identifying a combination of three
proteins having a combinatorial interaction, we showed the valid-
ity of the proposed method in helping to explore protein interac-
tions.

Note that the cells contain various types of protein interaction
networks: binary interactions, pathways, complex, and network
topology [23]. Analysis of protein interaction networks can un-
cover unforeseen biological functions of known proteins. There-
fore, predicting PPIs by proposing computational models is im-
portant for understanding cellular roles of proteins in the cell.

In future, to increase the accuracy and the validity of the pro-
posed method, we plan to identify more combinations of proteins
in which three-way interactions are identified.
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