
IPSJ Transactions on Programming Vol.5 No.3 29–39 (Aug. 2012)

Regular Paper

Proposal of GC Time Reduction Algorithm
for Large Java Object Cache

YasushiMiyata1,a) Motoki Obata1 Tomoya Ohta1 Hiroyasu Nishiyama1

Received: December 16, 2011, Accepted: April 6, 2012

Abstract: Server memory size is continuously growing. To accelerate business data processing of Java-based enter-
prise systems, the use of large memory is required. One example of such use is the object cache for accelerating read
access of a large volume of data. However, Java incorporates a garbage collection (GC) mechanism for reclaiming
unused objects. A typical GC algorithm requires finding references from old objects to young objects for identifying
unused objects. This means that enlarging the heap memory increases the time for finding references. We propose
a GC time reduction algorithm for large object cache systems, which eliminates the need for finding the references
from a specific object cache region. This algorithm premises to treat cached objects as immutable objects that only
allow READ and REMOVE operations. It also divides the object cache in two regions. The first is a closed region,
which contains only immutable objects. The other is an unclosed region, which contains mutable objects that have
survived GC. Filling an unclosed region changes the region to closed. When modifying an immutable object, the
object is copied to the unclosed region and the modification is applied to the copied object. This restricts references
from the object cache region to the region for young objects and excludes changes to the objects in the closed region.
Experimental evaluation showed that the proposed algorithm can reduce GC time by 1/4 and improve throughput by
40% compared to traditional generational GC algorithms.

Keywords: Java, garbage collection, object cache, memory management, copy on write

1. Introduction

Recently, the amount of memory on enterprise server systems
has been continuously increasing. Acceleration of business data
processing by using a large amount of memory is required. Be-
cause memory access speed is dramatically higher compared with
a disk drive, business processing can be accelerated using mem-
ory as a cache for frequently referenced data. Java [1] *1 is com-
monly used for developing enterprise systems because of its pro-
ductivities in rich libraries and securities of bytecode interpreters
to execute Java programs. Therefore, the use of a large mem-
ory as a cache is effective for accelerating business data process-
ing. There are two kinds of memory caches. One is an object
cache [2], which is allocated as a part of the heap memory for Java
applications. The other is a server style memory cache, which is
managed in different processes from Java applications. If a Java
application uses a server style memory cache. The business data
processing flow is as follows [3]:
(1) The Java application sends a business data key to the mem-

ory cache.
(2) The memory cache sends the data corresponding to the key

to the Java application.
(3) The Java application deserializes the received data to the in-

ternal object format.

1 Yokohama Research Laboratory, Hitachi, Ltd., Yokohama, Kanagawa
244–0817, Japan

a) yasushi.miyata.bz@hitachi.com
*1 Java is a trademark or registered trademark of Oracle, Inc. in the US and

other countries.

(4) The Java application executes business data processing with
objects received in step (3).

This business data processing flow sends/receives/converts the
data between a Java application and a memory cache. These over-
heads result in performance degradation. In contrast, an object
cache holds data as an object that can be referenced directly from
a Java application. The Java application can invoke the access
interface directly for operating data. This reduces the overhead
of sending/receiving/converting the data to/from/into internal ob-
ject formats. In common implementation of object caches for a
language like Java, data are generally maintained on heap mem-
ory. In addition, object-oriented language usually adopts garbage
collection (GC) as a means for an automatic memory manage-
ment. Many GC implementations pause business data processing
before collecting garbage objects. If it spends more time on GC
processing, the performance of business data processing deteri-
orates. Generational GC [4], which is usually adopted as a GC
algorithm, manages a Java heap memory in two regions. One is a
new region for maintaining newly generated data. The other is an
old region for maintaining the data that are live during a specified
period. A garbage collector pauses a Java program and collects
dead objects. A generational garbage collector effectively col-
lects garbage by frequently collecting dead objects in the new re-
gion because a new region is expected to contain a relatively large
portion of garbage objects. However, finding references from all
data on the heap memory to the new region is necessary to find
garbage data. If the heap memory contains many objects, the
GC time increases by increasing the time for finding references.

c© 2012 Information Processing Society of Japan 29

IPSJ Transactions on Programming Vol.5 No.3 29–39 (Aug. 2012)

Therefore, to accelerate a Java program that uses a large memory,
reduction in the GC time for the heap memory for a large object
cache is needed. We reveal the reason for increased GC time and
propose an algorithm for reducing the time for generational GC
with a large object cache. The rest of this paper is organized as
follows. Section 2 presents acceleration methods for data pro-
cessing with an object cache and reveals the reason of increasing
GC time depending on the enlargement of the heap memory for an
object cache. Section 3 presents the GC time reduction algorithm
that incorporates novel data management method for cached data.
Section 4 shows the evaluation results regarding the GC time of
a Java virtual machine (VM) with our proposed GC algorithm.
Section 5 describes related works, and Section 6 concludes the
paper.

2. GC Time for Object Cache

In this section, we present accelerating algorithms for data pro-
cessing with a large Java object cache and describe the reason of
increasing GC time with the large object cache.

2.1 Accessing Data in Object Cache
An object cache enables cached data to be maintained as an

object format. A Key-Value Store (KVS)-like interface is com-
monly used for accessing data. A KVS interface consists of basic
data access methods; “PUT” for storing, “GET” for drawing, and
“REMOVE” for deleting objects. An application applies opera-
tions on data obtained by the KVS interface: READ for reading
or WRITE for updating its contents.

A Java application can execute READ/WRITE operations di-
rectly on data with no copying or moving of data because the data
are maintained in a Java heap memory. Consistency of the data
must be maintained for WRITE operations when the same data
is accessed by multiple activities as in multi-threaded environ-
ments. One method for achieving this is Java threads obtaining
a lock for accessing the data and preventing other Java threads
from executing the WRITE operation. By using simple locking
operations, other Java threads cannot execute the WRITE oper-
ation to the locked data and that performs READ operations on
the object must wait for the release of the lock. This degrades
performance of the data processing speed. On the other hand, the
Copy on Read and Committed (CORC) method [5] does not lock
targets but copies data to the local area for each Java thread and
performs READ/WRITE operations without waiting for the lock
to be released.

When a Java thread obtains data with the CORC method, it
copies them to the local memory area. Then, the Java thread ex-
ecutes the WRITE operation on the replicated data. When a Java
thread puts the replicated data back into the cache, it copies the
data and replaces them with those cached on an object cache.
A Java thread can ensure consistency with other threads because
each Java thread writes the data in their local memory area. How-
ever, the CORC method must copy data even where the Java
thread executes only the READ operation on data. The CORC
method cannot take advantage of executing READ operations di-
rectly on data in an object cache. In addition, the replicated data
fills the Java heap memory and triggers GC because the replicated

data usually become unnecessary after READ operation. There
are more READ operations than WRITE operations in common
business data processing. Therefore, acceleration of data process-
ing to execute direct READ operations on an object cache is more
important than that of WRITE operations. In other words, execut-
ing READ operations directly and WRITE operations on repli-
cated data is appropriate for data consistency. The Copy on Write
(COW) method [5] fills these requirements.

In the COW method, each Java thread obtains data and ex-
ecutes READ operations directly without copying. If a Java
thread executes a WRITE operation, the data are copied before
the WRITE operation, and the WRITE operation is executed on
replicated data. When a Java thread puts the data into an object
cache, the data in the object cache are replaced with those cached
on the object cache just like with the CORC method. Therefore,
the COW method achieves consistency with direct READ opera-
tions. Because of this, data processing with the COW method can
be accelerated without the overhead of moving or coping data.

2.2 Increase in GC Time According to Heap Memory En-
largement

A generational GC algorithm finds the existence of references
from data in an old region to data in collected region. Because
this GC algorithm needs to follow references between data, find-
ing references from data in an object cache is also necessary.

Finding references from all data in an old region increases GC
time. Card-Marking [6] with the write barrier can reduce regions
necessary for finding references. Card-Marking divides a Java
heap memory into several fixed-sized regions, as shown in Fig. 1.
Each region maintains information about references from their
regions to the garbage collected region (GC Target). Each region
is called a “Card”. The Card holds “Card Info,” which represents
the existence of references from data in the “Card” to the garbage
collected region. This Card Info is updated when the write barrier
detects the update of a reference in the Card.

The garbage collector finds a Card that has references to the
garbage collected region by using the Card Info. Only data in the
Card are needed to be checked to find references. This finding
method reduces GC time because it must check fewer regions.
However, the garbage collector must check all Card Info to detect
the existence of references from all data to the garbage collected
region. Thus, the time for detecting all Card Info should increase
with increased amount of memory. To confirm this increase, we
examined the time reduction effect of Card-Marking with a large
Java heap memory.

We conducted an experimental study of the generational GC

Fig. 1 Partitioning of data region for Generational GC.

c© 2012 Information Processing Society of Japan 30

IPSJ Transactions on Programming Vol.5 No.3 29–39 (Aug. 2012)

Fig. 2 GC time according to heap memory size.

time for collecting garbage periodically by finding data refer-
ences. Figure 2 shows that the GC time for a collected region
increases with an increasing amount of data in an old region. This
result was obtained as follows. We first filled an old region with
dummy data. We then filled a collected region with garbage data,
which was not referenced from an old region. Then, the total GC
time was obtained for the GC process. There was no update of
the data in the old region and no moving of data from the col-
lected region to the old one. The GC time for detecting the Card
Info and collecting the garbage in the collected region is shown
in Fig. 2.

Figure 2 also shows that GC time increased in almost direct
proportion to the amount of data in the old region. As a result, it
took about 0.02 seconds in 4 GB region and about 0.4 seconds in
the 100 GB region. In addition, the card size was set to 512 bytes
in this Java VM (Ver. JDK 1.6). Therefore, the garbage collec-
tor had to find 8 million cards for the 4 GB memory region or
200 million cards for the 100 GB memory region. In contrast, the
time for collecting garbage data in the collected region remained
the same because the memory size of that region was the same.
Therefore, it is expected that the increase in the number of cards
that must be checked to find references is the central reason for
the increase in GC time.

3. Reducing GC Time of Object Cache

In this section, we first discuss the implementation of the COW
method described in Section 2. Next, we define the access inter-
face of the object cache. Then, we propose GC time reduction
method that contains memory management method for a Java ob-
ject cache for our GC algorithm and describe the implementation.
Finally, we summarize our GC time reduction algorithm with a
Java object cache.

3.1 Accelerating Data Processing with Copy on Write
The COW method is effective for consistently accelerating di-

rect access to data in an object cache. It must detect the WRITE
operation for the data in an object cache. There are two methods
for detecting WRITE operations: proxy and write-protect. The
proxy method adds the logic for detecting READ/WRITE oper-
ations to the data access process, and the write-protect method
protects memory access from the WRITE operations and detects
if an exception comes up in the attempted WRITE access.

The proxy method detects the access type of READ/WRITE
operations by accessing data through a proxy object. Figure 3
shows an example of a proxy object. The proxy object has a refer-
ence to concrete data and provides the same data access interfaces

Fig. 3 Definition of proxy object.

as the referenced object. This proxy object delegates operations
applied to concrete data after accepting an operation to referenced
data. In the READ operation, a proxy object simply delegates the
READ operation to concrete data. In the WRITE operation, a
proxy object copies concrete data to the local area of the thread
and delegates the WRITE operation against the replicated data.
Since the decision needed before the actual operation is simple,
performance degradation is expected to be small because opti-
mizations, such as in-line expansion, are assumed. However, the
amount of used memory increases because this proxy method re-
quires proxy objects against concrete data.

The write-protect method sets the memory region for cached
data to read only and the exception handler is executed in the
WRITE operation. This exception identifies the concrete data for
the WRITE operation and copies the concrete data to the destina-
tion. After copying, the write-protect method executes a WRITE
operation against the replicated data. This method executes the
exception handler. Therefore, performance degradation increases
compared to the proxy method. In contrast, the amount of mem-
ory usage does not increase because there is no need for extra data
such as proxy objects.

Reducing the overhead caused by interruptions in processing
is difficult. However, the proxy object for the same data struc-
ture, the instance generated from the same class, can be reused.
Therefore, memory usage should be minimized. As a result, we
used a proxy method that can achieve high-speed COW with little
increase in memory usage.

3.2 Data Access Interface for Java Object Cache
We assume that a Java object cache provides three basic inter-

faces:
• Put : registers data to an object cache with a key that identi-

fies the data.
• Get : retrieves data that correspond to a specified key from

an object cache.
• Remove : deletes data that corresponded to a specified key

from an object cache.
Each operation is performed on Java objects. Java objects are

usually composed of nested references. In this section, we first
describe data processing without nested references then describe
operations on data with nested references.
(1) Data Processing without Nested References
We assume data in an object cache are only modified by
PUT/GET/REMOVE interfaces. In other words, we ensure that
once an application puts data into an object cache, those data do

c© 2012 Information Processing Society of Japan 31

IPSJ Transactions on Programming Vol.5 No.3 29–39 (Aug. 2012)

Fig. 4 Put data in the object cache.

Fig. 5 Get and remove of the data in the object cache.

Fig. 6 Get and write of the multistage referenced data in the object cache.

not change if other interfaces have attempted to change them. To
achieve this, when an application puts data in an object cache, the
object is cloned and the cloned object is put in an object cache.
For example, when an application puts data A, shown in Fig. 4,
an object cache clones data A to A’ and puts A’ in an object cache
with the key information. This ensures that the original data A
can be directly accessed and the cloned data A’ is not modified.
Thus, cached data are not changed by applications.

An object cache has an advantage when there is less overhead
of READ operations because the object cache enables applica-
tions to perform direct READ operations to data in an object
cache. To attain this advantage and confine data processing to
PUT/GET/REMOVE, we adopted COW using the proxy method.
For example, when an application obtains data A’ with the key, as
shown in Fig. 5, the application obtains the proxy object Pa and
accesses data A’ through the proxy object Pa. When modifying
data A’, a WRITE operation to data A’ is detected and a clone
of data A’ is created. When removing data B, a REMOVE op-
eration is executed by specifying the key B and eliminating the
reference to data B. These protocols can prevent the cached data
from operations except PUT/GET/REMOVE.
(2) Accessing Data with Nested References
Operations on cached data with nested references must be con-
sidered. When a PUT operation registers data with nested refer-
ences, the registered object is treated as a root object. Objects
that are reachable from the root object are cloned and registered
in the cache. For example, when a PUT operation registers data B
shown in Fig. 4, the object cache generates clones of data B and
data C referenced by data B. After that, the object cache puts the
cloned data to the object cache region with the key information.
This operation enables an application to obtain data and refers all
data referenced by the source of the cached data.

We accomplished high-performance data access and consis-
tency at the same time by applying COW to data with nested ref-
erences. To achieve this, a proxy object’s operations are defined
to obtain the proxy object of referenced data when an application
obtains the referenced data from the source data, as shown line 3
of Fig. 3. For example, when an application refers data A’ through
proxy object Pa, which has nested references, as shown in Fig. 6.
The application must obtain the reference from data A’ to data B’
for accessing data B’. When proxy object Pa is accessed to ob-
tain the reference to data B’, proxy object Pb is returned to the
application. This application accesses data B’ through proxy ob-
ject Pb. When the application executes WRITE operations to data
B’, modification to object B’ is detected via proxy object B’ and
the clone of data B’ (B” is created). These operations enable effi-
cient read access without cloning, even if cached data have nested
references.

3.3 Region Management for Java Object Cache
As described in the previous section, data are only added by a

PUT operation into an object cache. In Section 2.2, we revealed
that GC time increases with an increasing number of the regions
to be detected if they are modified. The object cache defined in
this paper only allows the PUT operation for modifying or adding
data. Therefore, if we can restrict regions of the object cache for
which data are put in specific regions, GC can also restrict the
regions to find references. As a result, reduction in GC time can
be expected by restricting the regions for finding references.

To guarantee these region restrictions, we need to separately
manage the regions; one for putting cached data and another
for placing other data. However, the restriction for available re-
sources prohibits putting infinite data into an object cache. When
a certain amount of data is added to a specific cache region, the re-

c© 2012 Information Processing Society of Japan 32

IPSJ Transactions on Programming Vol.5 No.3 29–39 (Aug. 2012)

Fig. 7 Closed region and unclosed region.

Fig. 8 Closed region and unclosed region.

gion management system restricts the region for adding data then
adds a region for adding data. In other words, the object cache
expands regions in accordance with the increase in the amount
of data. Parts of the regions become puttable and others become
unputtable. The data management method for immutable regions
of our algorithm enables the expansion of cached regions and the
management of added regions.

This data management method for immutable regions divides
the object cache into sub-regions, as shown by the dotted line in
Fig. 7. A sub-region is classified into the following two types;
“closed regions,” which do not allow putting nor updating data,
and “unclosed regions,” which allow adding and updating data.
Because no data adding or updating of data on a closed region is
allowed, we can simply determine that the Card of all closed re-
gions is unchanged without finding data references in each Card.
This means that we can mostly eliminate the need for detecting
Card information. In addition, we can concentrate updated Cards
in unclosed regions because no update is performed in closed re-
gions.

To allow any kind of data to be cached, we must consider vary-
ing data size. If we use a fixed sub-region size, some large data
will not fit in the sub-region. To prevent such mismatching, we
made the cache region variable and limited the maximum size of
the region by limiting the maximum number of objects that can
be cached. When a sub-region exceeds the limit of registered
data size, the state of the sub-region is changed from “unclosed”
to “closed.” Then, a new sub-region for registering cached data is
added.

We made the Java VM to receive information about unclosed or
closed regions of the object cache. With this information, the Java
VM can determine closed regions as unchanged regions without
any checks to find references.

3.4 Application to Generational GC
In this section, we describe the implementation of the data

management method for immutable region of our generational
GC algorithm. This management method divides the object cache

into closed or unclosed regions. To apply this method, we must
solve two problems. The first one is the putting of data. In gener-
ational GC, data are first placed in a new region as a young object.
When the data are put in an object cache, the cloned data are not
guaranteed to be placed in cache regions. The second one is the
reclaiming of unused cache region. This problem is not specific
to generational GC. However, because we cannot hold an infi-
nite amount of data in an object cache, unused regions must be
reclaimed. In the rest of this section, we describe the solutions
for these implementation problems.
(1) Putting Data into Cache Region
The GC target region in Fig. 7 is the region in which an applica-
tion generates temporary data for data processing. This region is
the same as the new region of generational GC. All data, includ-
ing cached data, are first placed in this GC target region. After
an application puts the data in an object cache, clones of the data
are registered. To guarantee the region in which the cloned ob-
ject is placed as an unclosed region, we need to find all data by
traversing references and move the found data that do not reside
in the cache region to the unclosed region. This process some-
times leads to a large overhead in PUT operations due to refer-
ence traversal and copying. To hide this overhead, we overlay this
copying process on GC that executes similar reference traversal
and data movement.

When the garbage collector finds references, it begins traversal
from a set of nodes. These nodes are called the “ROOT” set. The
ROOT set is the data directly accessible from an application. If
data cannot be traversed from the ROOT set, they can be treated
as garbage. This object cache separately places the ROOT set on
each sub-region of the object cache. The garbage collector moves
the data traversed from the ROOT set to the sub-region to which
the ROOT set is associated. We call the ROOT set associated with
each sub-region as the Region Index (RI). The RI holds keys for
managing data and the references to the data.

In Fig. 8, for example, the garbage collector moves data A and
B to the corresponding region in which the RI is associated. If
data have nested references, the garbage collector finds all data

c© 2012 Information Processing Society of Japan 33

IPSJ Transactions on Programming Vol.5 No.3 29–39 (Aug. 2012)

reachable from the RI by recursive traversal and moves the found
data to the region in which the RI is associated. If RIs only hold
information about mapping of keys and data, an application must
search multiple RIs when obtaining data. This results in perfor-
mance loss. To solve this problem, we provide a Master Index
(MI), which provides a KVS interface to manage mapping. When
putting data, an application puts the mapping in both the RI and
MI. When obtaining data, an application obtains data with the
reference information of the MI.

The garbage collector moves data to unclosed regions. There-
fore, the reference from the unclosed regions to a new region re-
mains, even if the RI of an unclosed region has enough references
to data for the unclosed regions. This prevents the unclosed re-
gion from changing to a closed region, which requires no ref-
erence detection to a new region. The garbage collector must
guarantee no existence of references from the unclosed region to
a new region. In other words, we need to introduce a new in-
termediate state that represents the transient state from that of an
inhibiting PUT operation for filled unclosed regions that exceed
the data registration limit to the state of a closed region. We define
the intermediate state as a “closing region.” If the garbage collec-
tor moves all data referenced from closing regions to an object
cache, it changes the state to that of closed regions.

Many generational GC implementations move data that are not
recognized as dead several times from a new region to an old
one. These implementations do not guarantee that all data refer-
enced from closing regions are moved in one GC process. There-
fore, we make the garbage collector monitor the condition of data
movement and to keep the state of closing regions if all the data
referenced from the closing regions are not moved to the object
cache region. In addition, a threshold for the number of times to
find data movement is periodical. If the number of GC operations
on a closing region exceeds the threshold, all the data referenced
from the closing region are guaranteed to be moved to the object
cache region. We can change the state of the region from closing
to closed after executing GC operation as more times over than
the threshold.
(2) Deleting Unnecessary Cache Regions
The object cache for the proposed GC algorithm must change the
MI and RIs when deleting or updating data. When deleting data,
the object cache deletes the reference from the closed region to
the data. When updating data, the object cache deletes the refer-
ence from the closed region to the data and adds the reference to

Fig. 9 Java object cache management system.

updated data in the RI of the unclosed region. In this manner, the
data management on closed regions is limited only to removal of
references and does not create a new reference to the GC target
region. However, by deleting or updating, unused data are gener-
ated that are not reachable from the ROOT set. Therefore, after
updating these processes, the garbage in closed regions increases
and the efficiency of memory usage decreases. To solve this prob-
lem, the garbage collector reclaims the closed region. The region
manager finds the references from the RI of each region and ob-
tains the ratio of surviving data, which represents the ratio of the
number of unmodified data over the maximum number of data in
a region. The region manager determines a threshold of the sur-
vivor ratio. If the number of surviving data is under the threshold,
the region manager adds a new unclosed region and relocates the
surviving data to the new region. After the relocation of the sur-
viving data, the region manager frees the closed region.

3.5 Object Cache Management System
In this section, we first describe the object cache with COW-

type data access and immutable data region management for re-
ducing GC time.

We call this object cache Explicit Object Cache (EOCache).
Figure 9 shows the organization of the EOCache. The Java ob-
ject cache management system works in cooperation with object
cache managers and the Java VM. When the user application
written as a Java program sends PUT/GET/REMOVE, the object
cache manager executes the following processes:
• Put : The index selector obtains the unclosed region that is

the current target of the PUT operation and adds the refer-
ence to the PUT data. After that, the mapping information is
registered in the MI.

• Get : The object cache manager obtains the data requested
by the GET operation. The proxy selector obtains the proxy
object for accessing data with the COW method. After that,
the object cache manager sends the reference information
of the proxy object to the user application. In this man-
ner, the object cache manager permits the user application
to access the data only through the proxy object. This ac-
cess method can prevent the data from changing due to other
activities. To reduce the overhead for generating the proxy
object, the proxy selector generates the proxy object in the
temporal data area before proxy object creation is requested,
and reference information is only changed for the retrieved

c© 2012 Information Processing Society of Japan 34

IPSJ Transactions on Programming Vol.5 No.3 29–39 (Aug. 2012)

data on demand.
• Remove : The index selector obtains the RI, which has the

reference to remove targets, by finding the reference for the
RI from the MI. After that, it removes the references in the
MI and RI.

The object cache manager manages the object cache region di-
vided into unclosed and closed regions by the region manager.
It sends the region information to the GC manager in the Java
VM. The GC manager executes GC using received region infor-
mation. First, the garbage collector finds the references for the
Java heap memory except the object cache region and moves the
data if necessary. Next, the garbage collector finds the references
from unclosed regions and moves the data to the unclosed region
if references to the data exist. If all the data referenced from a
closing region are moved to the unclosed region, the GC manager
takes the closing region away from a group of unclosed regions
and changes it to a closed region. These processes enable the GC
process to skip finding the references from closed regions.

4. Evaluation

The data management method for immutable regions of our
GC algorithm is aimed at reducing GC time of a large Java object
cache. This method reduces GC time that increases in accordance
with the size of an object cache. In this section, we show the re-
sults of evaluating its effectiveness.

4.1 GC Time
Table 1 lists the evaluation environment conditions. We used

generational GC as the GC algorithm and divided the Java heap
memory in a new region and an old region. Their ratio of mem-
ory size was 1 : 2. GC is performed on the new region that con-
tains 1.3 GB of data when obtaining GC time resulted in data in
a new region becoming garbage. The total time spent for find-
ing references and freeing a new region was obtained by this
measurement. Figure 10 shows GC time of previously proposed
and our methods under these settings. The previously proposed
method, labeled as “JDK1.6 HashMap,” manages data using JDK
1.6 HashMap that uses the same data structure with that of our
data management method. The method, labeled as “EOCache,”
manages data using the object cache for the proposed GC algo-
rithm shown in Fig. 7. The vertical axis represents the amount of
cached data and the horizontal axis represents GC time.

The results of our data management method shows that the in-
crease in GC time of a new region is kept small compared to the
increase in the size of the object cache. For example, when 96 GB
of data is cached, JDK1.6 HashMap spent 0.43 seconds for GC,
while our method reduced the time to 0.092 seconds. However,
we also see that the GC time of our method also increased with
the increase in the size of the object cache. The reason is that the
MI has the references to all data in the object cache, and mainte-
nance of the references must be executed if an application updates

Table 1 Evaluation environment.

CPU Memory OS Java VM
GC

Algorithm
Java
Heap

Object
Cache

2.3 GHz
× 16Core 112 GB

Linux
64bit

Hotspot VM [7]
JDK1.6 update 13 Generational GC 4 GB 100 GB

or deletes data. This means that we must find a modified part of
the MI in GC. The MI only holds keys and references to data.
The data size is small compared to that of cached data. Thus,
finding a modified region in GC requires finding only a narrow
region. In this evaluation, all data in the GC target were unused
data not referenced from others. In real-world enterprise appli-
cations, GC time becomes much longer because data reachable
from the ROOT set must be moved.

We also evaluated the GC time when updating data in the ob-
ject cache. The test application randomly retrieved data from the
100 GB object cache and updated the retrieved data. Then, the
application created a large amount of garbage data to invoke GC.
Figure 11 shows the obtained GC time. The horizontal axis rep-
resents the amount of updated data in the object cache. The verti-
cal axis represents GC time. Our data management method (EO-
Cache) reduced GC time by 1/4 compared with that of JDK1.6
HashMap. In this evaluation, the garbage collector found all data
references in the updated Card in addition to usual reference find-
ing and collection of garbage data. With JDK1.6 HashMap, up-
dated data spreads in the heap memory if data are randomly up-
dated. This increases data that require references finding and re-
sults in increased GC time. In contrast, our method gathers all
updated data to unclosed regions. Thus, updates are directed to
a small number of Cards, and the amount of data that requires
references found is also small.

4.2 Performance of Data Processing
We evaluated data processing performance with the data man-

agement method for the proposed GC algorithm from the follow-
ing points of view:
(1) Read/Write Performance of Cached Data

This evaluates the overhead of our data management method
for reading and writing data.

(2) Number of Transactions Executed between GCs
This measures the number of transactions executed before a

Fig. 10 GC time according to object cache usage.

Fig. 11 GC time when updating 100 GB object cache.

c© 2012 Information Processing Society of Japan 35

IPSJ Transactions on Programming Vol.5 No.3 29–39 (Aug. 2012)

fixed amount of memory has been consumed by data pro-
cessing until invoking GC. This confirms if our method can
reduce the amount of memory usage for data processing.

(3) Throughput
This evaluates the throughput of applications for confirming
that our method can reduce the GC time contained in all Java
processing times and increase the amount of processed data
in a fixed time window.

(1) Read/Write Performance for Cached Data
Read performance is the processing time required for obtaining
data from a 100 GB object cache and executing the READ oper-
ation to the data. Write performance is the processing time re-
quired for executing the WRITE operation to data and putting the
clone data into the object cache. This evaluation confirmed the
read/write performance of our method with three types of data
access methods: First the “EOCache + COW” method for the
proposed GC algorithm that accesses data with COW, the “JDK
HashMap + COW” method that maintains data with HashMap
of JDK1.6, and the “JDK1.6 HashMap Direct R/W” method that
directly executes READ/WRITE operations on data for compar-
ison without guaranteeing data consistency. Figure 12 shows
READ/WRITE performance with 100 GB data in the EOCache
or HashMap. With COW, the READ performance of our method
was lower compared with the both previous methods. However,
WRITE performance degraded by 8.8%. This overhead might
have been caused by the overhead for accessing both the RI and
MI on write access. The READ performance of our method de-
graded by 7.9% and WRITE performance degraded by 33% com-
pared with Direct R/W. The decrease in READ performance may
have been caused by the overhead for copying data before the
WRITE operation. In common business data processing, READ
operations are executed more frequently than WRITE operations.
In addition, operations executed in data processing are not re-
stricted only to READ/WRITE operations on cached data. There-
fore, the WRITE ratio of all business data processing is small,

Fig. 12 Get & read performance/Write & put performance.

Fig. 13 The number of processed transactions until GC.

and this leads to a small decrease in performance of business data
processing compared with this evaluation.
(2) Number of Transaction between GCs
Transaction is a series of data operations consisting of READ
(GET & READ), WRITE (WRITE & PUT), and other operations
such as generating a key or data to execute READ/WRITE oper-
ations. This transaction generates data and consumes Java heap
memory. In generational GC, the transaction uses the memory al-
located from a new region and triggers GC if the available mem-
ory of the new region is exhausted. We measured the number of
transactions executed from the point of not consuming a new re-
gion to that of starting the GC process when the new region has
been consumed. The experimental environment and evaluation
results are discussed below.

We assumed the transaction in this experiment was to handle
two kinds of data: cached data for READ/WRITE operations and
temporal data necessary for the READ/WRITE operations. Both
data sizes were about 220 Bytes. With the COW method, READ
operations did not copy cached data and WRITE operation copied
cached data. This means that the memory usage changed in accor-
dance with the change in the ratio of READ operations to WRITE
operations in the transaction. To investigate this effect, we had
the transaction consist of 10 READ/WRITE operations and var-
ied the number of WRITE operations executed in the transactions
from 1 to 9. Therefore, the application handled 2.2 KB of cached
data and generated 2.2 KB of temporal data. The cached data
was set to 100 GB, which is the same as that for the evaluation of
READ/WRITE performance, and the Java heap memory size for
data processing was set to 4 GB. The GC algorithm used for eval-
uation was the generational GC. A new region in a size of 1.3 GB
was treated as the GC target. Figure 13 shows the results of the
simulation estimating the number of transactions executed until
1.3 GB of memory allocated for a new region was consumed.

The “EOCache + COW” method for the proposed GC algo-
rithm does not require copying of cached data in the READ op-
eration. In contrast, it requires copying of cached data in the
WRITE operation. This means that proposed data management
method can execute 0.6 million transactions, which does not de-
pend on the WRITE ratio. This number is obtained by dividing
the heap size (1.3 GB) by the temporal data size (2.2 KB). Direct
R/W can also execute 0.6 million transactions, which does not
depend on the WRITE ratio because no extra data are generated
in READ/WRITE operations except temporal data. The “JDK1.6

c© 2012 Information Processing Society of Japan 36

IPSJ Transactions on Programming Vol.5 No.3 29–39 (Aug. 2012)

Fig. 14 Transaction throughput according to the ratio: Write & Put.

HashMap + COW” does not require copying of cached data in the
READ operation. However, it requires copying of cached data to
a new region in the WRITE operation. Therefore, it can execute
0.3–0.6 million transactions. This result is obtained by dividing
the heap size (1.3 GB) by the sum of temporal data size (2.2 KB)
and copied data size, which varies from 0 to 2.2 KB depending
on the WRITE ratio. For comparison, we simulated the num-
ber of transactions with CORC (JDK1.6 HashMap + CORC in
Fig. 13), which that also copies cached data in the READ oper-
ation. CORC requires copying cached data in both READ and
WRITE operations. Therefore, it can execute 0.3 million trans-
actions, which does not depend on the WRITE ratio. This is ob-
tained by dividing the heap size (1.3 GB) by the sum of temporal
data size (2.2 KB) and copied data size (2.2 KB).
(3) Throughput
Throughput is the number of transactions executed in a unit time
window. Figure 14 shows the results of throughput evaluation in
the same environment as (2). The horizontal axis represents the
WRITE operation ratio over all operations. The vertical axis rep-
resents the number of transactions per second. This figure also
shows four types of throughputs: the COW method (EOCache
+ COW); the previously proposed method (JDK1.6 HashMap +
COW); CORC with copying in both READ and WRITE oper-
ations (JDK1.6 HashMap + CORC); and Direct READ/WRITE
with direct READ/WRITE operation (JDK1.6 HashMap + Di-
rect R/W). The throughput of our method showed 40% perfor-
mance increase over the other methods. The main reason for this
may have been the reduction in GC time caused by narrowing
the garbage collected regions. Regarding narrowing, our method
handles 100 GB of cached data in the closed region, and 1 GB of
cache region used as the unclosed region to place copied data. In
addition to the 1 GB GC target, 4 GB Java heap memory for data
processing was also the GC target. Therefore, only 5 GB was the
GC target. In contrast, all the other methods (JDK1.6 HashMap +
COW, CORC, Direct R/W) require 105 GB regions, which con-
tain additional 100 GB for the object cache region. This indicates
that our method can reduce the GC target size by about 1/20. In
addition, GC with our method requires 5% of all processing time.
All the other methods (JDK1.6 HashMap + COW, CORC, Di-
rect R/W) require 20%. This means that our method can reduce
GC time by 1/4. This result is the same with that shown in Sec-
tion 4.1. The reason for this throughput improvement seems to
be that the increased amount of processed data with a reduction

in GC time is longer than the decreased amount of processed data
by the WRITE operation overhead indicated in (1). All methods
increased throughput if the WRITE operation ratio was low. This
result seems due to the increased number of transactions along
with reduction in the WRITE operation ratio, which is heavier
compared to the READ operation. Our method has an overhead
for WRITE operation as indicated in (1). This overhead reduces
the margins between the other methods with an increase in the
WRITE ratio. However, all methods require additional task for
generating temporal data in addition to READ/WRITE opera-
tions. The effect of the overhead as indicated in (1) and the perfor-
mance difference between READ and WRITE operations seems
to be small.

In JDK1.6 HashMap + COW, the number of processed trans-
actions increased with a decrease in the WRITE operation ratio is
larger than that of CORC. This relation of the number of transac-
tions is similar to the relation between JDK1.6 HashMap + COW
and CORC methods, as indicated in (2). This throughput perfor-
mance gap decreased because a portion of the operations that are
not READ/WRITE operations exists.

5. Related Works

Besides cache, the in-memory database (DB) technique [8] is
another technology that accelerates data processing using large
memory. In-memory DB is a kind of DB that holds its data in
memory. It can recognize a database language (e.g., SQL) query
and return the search results. As with a disk, in-memory DB sup-
ports relations and indexes for data management, which lead to
the support of complex searches or aggregate calculations. In
contrast, many object cache systems provide simple data access
interfaces such as KVS. Therefore, an object cache is not ideal
for doing complex searches or aggregate calculations. Because an
object cache does not require the interpreting of complex queries,
such as SQL, simple data access can be performed faster than us-
ing in-memory DB. Business data management or analysis usu-
ally requires aggregate calculations. In contrast, business data
processing requires simple data access. Therefore, by using a
large object cache, we can improve the performance of business
data processing.

There have been many studies on large-scale caches for man-
aging large data sets. One example is a distributed cache that
connects several cache nodes via a network. Another example is a
large object cache with large memory similar to the one described

c© 2012 Information Processing Society of Japan 37

IPSJ Transactions on Programming Vol.5 No.3 29–39 (Aug. 2012)

in this paper. These features are summarized by Xiulei [3] et
al. They described that a large-scale cache requires performance,
scalability, and availability to meet these requirements. There
are three cache strategies. The first one is replication, which en-
hances availability and reliability. The second one is partitioning,
which ensures scalability by maintaining data separately placed
in distributed nodes. The last one is using a near cache, which
accelerates the access speed of data. A near cache is a kind of
client cache that is located on the node in which data processing
is executed. The object cache described in this paper is a type of
near cache. This object cache improves speed for data access and
performance for data processing by caching data in the Java heap
memory used for data processing.

Studies on cache management algorithms for effective utiliza-
tions have also been aggressively conducted. Even if a cache size
is large, it is not always possible to maintain all data in the cache.
Therefore, maintaining frequently accessed data in a near cache
is necessary for accelerating data access. In addition, even if the
size of a distributed cache can be used to enlarge memory space,
maintaining frequently accessed data in a near cache is necessary
for accelerating data access. Several types of selecting methods
for frequently accessed data have been proposed [9].

One method for implementing near caches is placing cached
data in external heap memory that is outside the heap memory
by converting a Java object to a byte array. Hichens [10] et al.
showed that the direct buffer provided by Java NIO can accel-
erate READ/WRITE operations on a byte array in the external
heap memory and can improve data processing performance. The
direct buffer can also prevent the increase in GC time because
the external heap memory is not checked for collecting garbage.
However, all data are serialized to the byte array if we use the
external heap memory. To reduce this overhead, methods for re-
ducing serialization overhead have been investigated [11], [12].
However, completely eliminating serialization overhead is diffi-
cult. Thus, data access performance decreases compared with an
object cache using direct data references.

Studies on GC time reduction that is not solely targeted at
an object cache have been conducted. Metronome GC is a GC
algorithm that is modified to be applied to real-time systems.
Metronome GC [13] divides normal GC operation into pieces. It
periodically stops the Java program for a short time to execute
a piece of GC operation. However, Metronome GC does not re-
duce the work required for GC, as stated in this paper. Concurrent
Mark-Sweep GC [14] is also an algorithm for reducing GC pause
time. This algorithm executes GC operations in parallel with the
Java program. However, the concurrent Mark-Sweep GC algo-
rithm requires finding the object changed by Java program ex-
ecution. The overhead of this finding may significantly reduce
throughput.

Our GC time reduction algorithm with the specific data man-
agement eliminates a part of the heap memory from finding the
references in a GC operation. Obata [15] et al. proposed an ex-
plicitly managed heap memory that allows parts of Java heap
memory not to be checked to collect garbage data. This explicitly
managed heap memory prevents a garbage collector from man-
aging all heap memory and decreases the GC time by explic-

itly controlling a specific region of memory. However, explicitly
managed heap memory must be checked to find the references
from the region when the garbage collector executes GC opera-
tion to another region from the explicitly managed heap memory.
An increase in explicitly managed heap memory size results in
enlargement of regions to which references are found, causing an
increase in GC time. To solve this problem, the explicitly man-
aged heap memory and our method can be combined to inhibit
GC with long pause time and reduce the GC time of a sub-region
of an object cache.

6. Conclusion and Future Work

We proposed an algorithm for reducing GC that incorporates
novel data management method on a Java object cache. It is
aimed at resolving a serious performance problem when using
a large server memory as a large Java object cache. A Java object
cache enables direct accesses to data and accelerates data access
because cached data is placed in the heap memory. By using a
data access method with COW, consistent direct data access is
possible. Although, direct data access can accelerate data access,
the increase in GC time is a problem for a large object cache.
This problem is caused by the increase in the number of data to
be checked to find references to the GC target. To solve this prob-
lem, we use a data management method for immutable regions
with our GC algorithm. This method manages an object cache
in two divided regions: an unclosed region, which permits an ap-
plication to add or change the cached data, and a closed region,
which does not permit an application to add or change the cached
data. This method creates immutable data regions and eliminates
necessary to find the references from them. Our experimental
evaluation showed that the proposed method with 4 GB data pro-
cessing, 100 GB object cache, and 1.3 GB collected-garbage re-
gions decreased the GC time from 0.5 to 0.09 seconds. The eval-
uation also showed that this algorithm can reduce GC time by 1/4
and improve throughput by 40% compared to the previously pro-
posed generational GC algorithm. The proposed GC algorithm
can improve throughput and reduce GC time with a large object
cache. However, since an object cache cannot hold an infinite
amount of data, an algorithm for detecting and deleting unneces-
sary data should be implemented. We plan to implement several
cache maintenance algorithms and evaluate their effectiveness in
reducing GC time. This is for extending the proposed GC algo-
rithm.

References

[1] Gosling, J., Joy, B., Steele, G.L. et al.: The Java Language Specifica-
tion, Addison Wesley (1995).

[2] Blackburn, S.M. and Stanton, R.: The Transactional Object Cache:
A Foundation for High Performance Persistent System Construc-
tion, Proc. 8th International Workshop on Persistent Object Systems,
pp.37–50, August 30-September 1 (1998).

[3] Xiulei, Q., Wenbo, Z., Wei, W., Jun, W., Hua, Z. and Tao, H.: A Com-
parative Evaluation of Cache Strategies for Elastic Caching Platforms,
Proc. 2011 QSIC, pp.166–175 (2011).

[4] Appel, A.W.: Simple Generational Garbage Collection and Fast Allo-
cation, Software Practice and Experience 19, pp.171–183 (1989).

[5] Keith, M. et al.: Object-Relational Mapping, ACM Queue, Vol.6, Is-
sue 3, pp.38–47 (2008).

[6] Wilson, P.R. and Moher, T.G.: A Card-Marking Scheme for Control-
ling Intergenerational References in Generation-Based GC on Stock

c© 2012 Information Processing Society of Japan 38

IPSJ Transactions on Programming Vol.5 No.3 29–39 (Aug. 2012)

Hardware, SIGPLAN Notices, Vol.24, No.5, pp.87–92 (1989).
[7] Bak, L. et al.: The New Crop of Java Virtual Machines, Proc. 13th

ACM SIGPLAN Conference on Object-Oriented Programming, Sys-
tems, Languages and Applications, pp.179–182 (1998).

[8] Silberschatz, A. Korth, H.F. and Sudarshan, S.: Database System Con-
cepts, pp.429–474, McGraw-Hill International Edition (2011).

[9] Gu, X. and Ding, C.: On the Theory and Potential of LRU-MRU Col-
laborative Cache Management, Proc. 2011 International Symposium
on Memory Management, pp.43–54 (2011).

[10] Hichens, R.: Java NIO, O’Reilly Media, Inc., pp.43–50 (2002).
[11] Palmer, N., Kielmann, T. and Bal, H.: Serialization for Ubiquitous

System: An Evaluation of High Performance Techniques on Java Mi-
cro Edition, UBICOMM, pp.356–361, Spain (2008).

[12] Palmer, N., Miron, E., Kemp, R., Kielmann, T. and Bal, H.: Towards
Collaborative Editing of Structured Data on Mobile Devices, Proc.
MDM2011, pp.194–199 (2011).

[13] Auerbach, J., Bacon, D.F., Bomers, F. and Cheng, P.: Real-Time Mu-
sic Synthesis in Java Using the Metronome Garbage Collector, Proc.
International Computer Music Conference, pp.100–109, (2007).

[14] Printezis, T. and Detlefs, D.: A Generational Mostly-Concurrent
Garbage Collector, Proc. 2nd International Symposium on Memory
Management, ISMM 2000, Vol. 36, No.1, pp.143–154, (2000).

[15] Obata, M., Nishiyama, H., Adachi, M., Okada, K., Nagase, T. and
Nakajima, K.: Explicitly Managed Heap Memory for Java, IPSJ Jour-
nal, Vol.50, No.7, pp.1693–1715 (2009).

Yasushi Miyata received his B.Eng. de-
gree from Kyoto University in 2005, and
M.Eng. degree from Kyoto University in
2007. He has been working at Yokohama
Research Laboratory, Hitachi, Ltd. since
2007, and is now a Researcher. He has
been working on middleware.

Motoki Obata received his Ph.D. degree
from Waseda University in 2003. He has
been working at Yokohama Research Lab-
oratory, Hitachi, Ltd. and is now a Senior
Researcher. He has been working on Java
runtime environment.

Tomoya Ohta received his Ph.D. degree
from Shizuoka University in 1998. He
has been working at Yokohama Research
Laboratory, Hitachi, Ltd. and is now a Se-
nior Researcher. He has been working on
language processor and Java runtime en-
vironment.

Hiroyasu Nishiyama received his Ph.D.
degree from University of Tsukuba in
1993. He has been working at Yokohama
Research Laboratory, Hitachi, Ltd. and is
now a Supervisory Researcher. He has
been working on language processor, op-
timizing compilers, and Java runtime en-
vironment.

c© 2012 Information Processing Society of Japan 39

