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Abstract: A static analysis tool has been developed for finding common mistakes in programs that use the Java Native
Interface (JNI). Specific rules in JNI are not caught by C++ and other compilers, and this tool is aimed at rules about
references to Java objects, which are passed to native methods as local references. Local references become invalid
when the native method returns. To keep them valid after the return, the programmer should convert them into global
references. If they are not converted, the garbage collector may malfunction and may, for example, fail to mark ref-
erenced objects. The developed static analysis tool finds assignments of local references to locations other than local
variables such as global variables and structure fields. The tool was implemented as a plug-in for Clang, a compiler
front-end for the LLVM. Application of this tool to native Android code demonstrated its effectiveness.
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1. Introduction

Java is a platform-independent programming language and
thus enables the efficiency of software development to be im-
proved and maintenance costs to be reduced. However, functions
that depend on the execution environment cannot be called di-
rectly in Java. The Java Native Interface (JNI) [3] is used to call
such functions.

JNI is a facility of Java that enables Java applications to inter-
operate with native applications. Native applications and libraries
written in native languages such as C++ can be called from Java
by using JNI. However, care must be taken when developing ap-
plications using JNI because JNI has specific rules.

Java objects are passed to native methods as local references
in JNI. These local references are invalid after the execution of
the native method finishes. These local references should thus be
converted into global ones if they are to be used after the native
method returns. Though most programmers know about this rule,
they tend to forget about it and violate it. To make matters worse,
compilers of native languages such as C++ cannot detect these
violations.

We are working on enhancing Dalvik VM [13], a virtual ma-
chine that executes bytecode converted from a Java program.
Dalvik VM runs on Android, which is an OS for smart phones.
We found that even the application framework library provided
with Android has violations of the JNI rules, and these violations
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prevented the VM from running correctly after we modified it.
We began to check the source code in order to correct these vio-
lations but soon realized that it has too many lines to check.

Warnings about such violations have been posted on web pages
for Android developers [5], and they have been given as an exam-
ple of common mistake in section 10 of the JNI programmer’s
guide [11]. This is evidence that this problem affects not only
Android developers but also all developers who use JNI.

To help us detect missing conversions from local references
into global ones, we developed a static analysis tool called
“SEAN” (Static Escape Analyzer for Native code). This tool
identifies lines of source code where local references may be
stored to somewhere other than local variables. Use of this tool
greatly reduces the effort needed to find such violations because
only those lines identified need to be manually checked.

This paper is organized as follows. In Section 2, we explain
the pattern of violations on which this paper is focused. In Sec-
tion 3, we describe the design and implementation of SEAN. In
Section 4, we describe how we verified its operation, and in Sec-
tion 5, we discuss related work. We conclude in Section 6 with a
brief summary and a look at future work.

2. Problem Description

JNI provides two kinds of references, local and global, en-
abling native methods to handle Java objects. The objects are
passed to native methods as local references. Local references
are valid only during execution of the native method. They be-
come invalid when the native method returns. Therefore, a pro-
grammer cannot write native methods that store local references
somewhere (such as in global variables) and then use those ref-
erences after the return. However, programmers often store local
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static jobject savedReference;

JNIEXPORT void JNICALL Java_Foo_someMethod(JNIEnv *env, jobject obj){

// local reference is assigned to global variable

savedReference = obj;

...

}

JNIEXPORT void JNICALL Java_Foo_someOtherMethod(JNIEnv *env, jobject obj){

jclass clazz;

// local reference may be invalid

clazz = env->GetObjectClass(savedReference);

...

}

Fig. 1 Example of using an invalid local reference.

static jobject savedReference;

JNIEXPORT void JNICALL Java_Foo_someMethod(JNIEnv *env, jobject obj){

// local reference is converted into global reference

savedReference = env->NewGlobalRef(obj);

...

}

JNIEXPORT void JNICALL Java_Foo_someOtherMethod(JNIEnv *env, jobject obj){

jclass clazz;

// savedReference is valid until explicitly deleted

// because it was converted to a global reference

clazz = env->GetObjectClass(savedReference);

...

}

Fig. 2 Example of using a global reference.

references in global variables. Figure 1 shows an example of
this common violation. Native method Java_Foo_someMethod
receives local reference obj and stores it in global variable
savedReference. However, the saved reference is no longer
valid after the native method returns. Thus,

clazz = env->GetObjectClass(savedReference);

may not return a valid value. To enable the program to use the
object after the native method returns, the programmer must con-
vert the local reference into a global one. In contrast to local ref-
erences, global ones remain valid until they are explicitly deleted.
Programmers can convert a local reference into a global one by
explicitly using the NewGlobalRef function. The violation illus-
trated in Fig. 1 is corrected in Fig. 2 using NewGlobalRef. The
global reference stored in savedReference remains valid after
Java_Foo_someMethod returns as long as it is not deleted. Thus,
GetObjectClass returns the correct class of the object received
by Java_Foo_someMethod. Programmers can delete a global
reference by calling DeleteGlobalRefwith the global reference
as its argument. An object that is created in a native method is
passed to the native method as a local reference. Thus, the refer-
ence must be converted into a global one in the same way as those
that are passed as arguments if the program is to use it after the
native method returns.

3. Design and Implementation

3.1 Design
The necessary condition for the rule violation described above

is that the local reference escapes from the native method. That
is, the local reference leaves the local environment of the native

method. Our analyzer detects the following three cases as pro-
gram points where such escapes may occur.
( 1 ) A reference is assigned to a global variable, a member vari-

able of a structure, a member variable of a class instance, or
a static member variable (hereafter, we refer to these vari-
ables collectively as “global variables”) with an assignment
expression.

( 2 ) A reference is stored in a member variable using the corre-
sponding member initializer.

( 3 ) The value of a reference type (jobject type or one of its
subclass types) is converted to the value of a non-reference
type by using a type cast, etc.

The rule violation illustrated in Fig. 1 is detected as an instance
of case (1). More specifically, the following assignment to a
global variable is detected:

savedReference = obj; // savedReference is a

// global variable.

Besides assignments to global variables, assignments to member
variables may be rule violations in some cases. An assignment of
some value to a member variable does not mean that the value es-
capes if the instance (or structure) to which the value is assigned
is allocated on the stack. However, to simplify the implementa-
tion, we decided to detect any assignments to member variables
regardless of their location.

C++ provides member initializers as well as assignment ex-
pressions that may store local references in member variables.
Rule violations that use member initializers are detected as in-
stances of case (2). The Android framework in fact includes a
rule violation that uses a member initializer:
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Table 1 Verification environment.

Computer CPU Memory OS

Mac Book Air Intel Core 2 Duo 2.13 GHz 4 GB Mac OS X Ver 10.7.2

class Foo{

public:

Foo(JNIEnv* env, jobject obj)

: otherObj(obj){ ... } // value is passed

// using member

// initializer

˜Foo(){ ... }

...

private:

jobject otherObj;

};

In this code, parameter obj is stored in member variable
otherObj when constructor Foo is called.

Cases (1) and (2) are detected using type information (the de-
tection methods are described in the next section). In case (1),
an assignment expression is detected if the right-hand side of the
expression is of a reference type. This means that such cases can-
not be detected if local references are cast to non-reference types
before their assignment. Moreover, once a local reference is cast
to a non-reference type, it may be passed to any C++ library func-
tions for which definitions are not written in the same source file.
Therefore, we detect such escapes as instances of case (3). For
example, we can detect a rule violation in which a local reference
that is implicitly cast to the void-pointer type is then assigned to
a member variable of a structure:

static someFoo *some;

class UserFoo{

public:

void UserFooMemberFunc(void *any){

some = new someFoo();

// local reference cast to void-pointer

// type is assigned to member

// variable of structure

some->foo = any;

}

};

jobject FuncFoo(JNIEnv *env, jobject obj){

UserFoo some = new UserFoo;

// local reference is cast to void-pointer

// type implicitly

some->UserFooMemberFunc(obj);

}

3.2 Implementation
We implemented the SEAN static analyzer as a plug-in for

Clang, which is a C language family front-end for the LLVM
compiler [7].

We implemented detection for case (1) (described in the previ-
ous section) by detecting every assignment expression in which
the left-hand side is a global variable and the right-hand side is
of a reference type. We implemented the detection for case (2)
by detecting every member initializer with at least one reference-
type argument. We implemented detection for case (3) by detect-
ing every expression that casts a reference-type expression to the
void-pointer type. Strictly speaking, we should detect every ex-
pression that casts an expression to a non-reference type. How-
ever, for simplicity, we cover only those that cast to the void-

Table 2 Number of detections.

Case Reported Actual

(1) 72 12
(2) 9 9
(3) 24 11

pointer type. In the Android source code, there is no cast to non-
reference types other than the void-pointer type.

For simplicity, the current implementation of SEAN does not
check whether each Java object is a local reference. Therefore,
it sometimes mistakenly detects rule violations. For example,
for case (1), SEAN detects assignment expressions in which the
right-hand side expressions are Java objects converted in advance
to global references by the NewGlobalRef function.

4. Verification

To verify the operation of our proposed static analyzer, we ap-
plied it to C++ source files in the frameworks directory of the
Android source distribution. The version of Android we used
is GingerBread 2.3.7. The frameworks directory contains the
source code of frameworks for developing applications and con-
sists of 1,037 files (500,877 lines of code). Table 1 shows the
computer settings used for the verification.

Table 2 summarizes the detections. The processing time was
92 seconds, the total number of detections for all cases was 105,
and 32 of them were actual violations. Judgement of whether a
reported violation was an actual violation was done manually by
the four authors, three of whom have been working to improve
Dalvik VM for six months.

The detected patterns of JNI rule violations correspond to two
(P1 and P2) of the following four patterns; they are described on
a web page for Android developers [5] as typical rule violations
related to local references.
(P1) Forgetting to call NewGlobalRef when stashing a jobject

in a native peer
(P2) Mistakenly assuming FindClass returns global references
(P3) Calling DeleteLocalRef and continuing to use the deleted

reference
(P4) Calling PopLocalFrame and continuing to use a popped ref-

erence
Figure 3 shows one of the detected rule violations that do not

correspond to any of the patterns above. In the code, the argument
thiz is cast to the void-pointer type and then stored as a unique
key. We cannot simply compare the source code of GingerBread
(the target version of the verification) with that of IceCreamSand-
wich 4.0.3 (the latest version at the time of writing) due to the dif-
ference in file/directory structures of the source code. However,
we see that the detected rule violations corresponding to (P1) and
(P2) are corrected in IceCreamSandwich while that in Fig. 3 is
not.

There are many code patterns in which, before a local refer-
ence is assigned to a global variable, the GlobalNewRef function
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// frameworks/base/core/jni/android_hardware_Camera.cpp

static void android_hardware_Camera_native_setup(

JNIEnv *env, jobject thiz, jobject weak_this, jint cameraId){

...

// local reference cast to void-pointer type implicitly at the following line

context->incStrong(thiz);

...

}

// frameworks/base/libs/utils/RefBase.cpp

void RefBase::incStrong(const void *id) const{

...

// void-pointer type is stored as unique key

refs->addWeakRef(id);

...

}

Fig. 3 Example violation detected in Android sources using JNI.

is called for it from other functions or macros. Although these
patterns are not rule violations, our current SEAN implementa-
tion mistakenly detected them as rule violations.

5. Related Work

Programmers should strictly follow the rules of the foreign
function interface (FFI) when writing programs in multiple lan-
guages using FFI. Even expert programmers often make a mis-
take in using FFI because such rules do not exist in programming
using a single language. In fact, we found a case in which local
references were cast to void-pointers and used as unique values.
This case is not listed on the web page for Android developers [5].

Avoiding bugs due to violations of the FFI rules is a subject
of active investigation because common compilers cannot detect
such violations. The approaches taken can be classified as
• detecting violations by static analysis,
• detecting violations by runtime checking, and
• improving FFI.

Our tool detects violations by static analysis.

5.1 Static analysis
Furr and Foster [1] presented a multi-language type inference

for checking the type safety of OCaml programs together with C
functions called across FFI. They applied the inference to JNI
and developed a system that detects in compile time a bug where
a C function called across JNI calls a Java method with arguments
of the wrong class [2]. Li and Tan [9], [10] proposed an analysis
that detects C functions called across JNI that may throw excep-
tions that the calling Java methods do not expect. These studies
targeted different violations than the one we did. SEAN is thus
worth using with these systems. Moreover, these systems do not
support C++ programs and thus cannot be used for verification of
the Android framework.

Kondoh and Onodera [6] proposed static analyses that de-
tect three kinds of violations from among the several kinds
in the JNI programmer’s guide [3]. One of their analyses is
aimed at the same target as ours, that is, references that are
no longer valid. Their analysis detects the lines of code where
the program stores those values into global variables that are
returned from invocations of functions except NewGlobalRef
and NewWeakGlobalRef, which return global references by JNI
specification. The analysis is a syntactic checking but not a data-

flow analysis. Therefore, it cannot detect lines where the program
stores those references into global variables that come through lo-
cal variables or arguments. In contrast, SEAN detects such lines
as well though it does not use a data-flow analysis. Instead, it uses
types of variables described in C++ programs in such a way that
it detects lines where values of reference types such as jobject
are stored in global variables.

5.2 Dynamic analysis
Most Java VMs have a command line option such as

"-Xcheck:jni" to detect JNI rule violations at run time. When
this option is enabled, JNI verifies references passed from C func-
tions as arguments of Java method calls or return values. This
facility is designed and implemented by VM developers. Lee
et al [8] developed a tool, Jinn, that synthesizes verification code
for runtime checking from FFI rules.

As is shown in Section 2 of the paper by Lee et al [8], run-
time checking can detect many kinds of violations with few false
positives. However, it is impossible in general to detect all viola-
tions using only runtime checking since runtime checking cannot
detect violations unless the problematic code is executed.

5.3 Improving FFI
SafeJNI [12] and Jeannie [4] are alternatives to direct use of

JNI. Programs using these interfaces are finally converted into
programs using JNI. These interfaces are designed to make it easy
to detect violations statically, and violations are detected when
the programs are converted.

This approach is useful when developing new programs. How-
ever, a violation detecting tool is still needed to find violations in
the enormous amount of source code that has already been de-
scribed using the JNI such as Android framework.

6. Summary

Our static analysis tool helps programmers find JNI coding rule
violations as a plug-in module of Clang. Application of this tool
to Android native code showed that JNI rule violations that cannot
be detected by a compiler for the native language can be detected
using static analysis.

Since the proposed method is simple, there are false positives.
Nevertheless, in our demonstration experiment, it enabled us to
focus on the potential violations of about 100 lines, rather than
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having to check half a million lines of code.
Future work includes improving the detection accuracy, possi-

bly by preventing the tool from reporting typical patterns of false
positives.

Future work also includes equipping the tool with data-flow
analysis so that it can both reduce the false positives and detect
(P3) and (P4) violations listed on the web page for Android devel-
opers [5]. Applying the tool to other applications besides Android
that use JNI is also future work.
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