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Abstract: A dynamic energy performance scaling (DEPS) framework has been proposed as a generalization of dy-
namic voltage frequency scaling (DVFS). The DEPS framework selects an energy-optimal hardware configuration at
runtime. To reduce runtime overhead, Pareto-optimal combinations of hardware configurations should be provided
via DEPS profiling during the design phase. The challenge of DEPS profiling lies in extracting the Pareto-optimal
combinations efficiently from the exponential search space. We propose two exact algorithms to reduce the number
of calculations in DEPS profiling. These algorithms can be used with common search algorithms. We also propose a
heuristic algorithm for searching Pareto-optimal configurations efficiently. Extensive experiments are performed, and
they demonstrate that the proposed algorithms can complete DEPS profiling within a reasonable amount of time and
generate optimal DEPS profiles. It is believed that the proposed algorithms will enable easy application of the DEPS
framework in practice.
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1. Introduction

Power and energy consumption has become one of the major
concerns in embedded system design. Reducing them can extend
the battery lifetime of portable systems, decrease chip cooling
costs, and increase system reliability. Various techniques have
been proposed to optimize the energy consumption of embed-
ded systems. Dynamic voltage and frequency scaling (DVFS)
is one of the most effective techniques for energy optimization,
and it has been applied to many commercial processors. How-
ever, as the feature size of very-large-scale integration (VLSI)
circuits consistently shrinks, the processor power supply voltage
has become so low that room for DVFS has been limited. To
overcome this limitation, processors with more configuration pa-
rameters than DVFS have been proposed recently, for example,
a processor whose instruction cache, as well as voltage and fre-
quency, is dynamically reconfigurable [1].

To make best use of such processors, we have proposed dy-
namic energy performance scaling (DEPS) [2], a generalization
of DVFS, and integrated it into a framework for energy opti-
mization of embedded real-time applications [3]. DVFS controls
only supply voltage and operating frequency for saving energy,
whereas DEPS aims to control more configuration parameters to
further reduce energy consumption. For dealing with various con-
figuration parameters, DEPS generalizes a set of configuration
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parameters as a configuration. For example, for a processor with
DVFS and resizable cache, a configuration consists of a voltage,
a frequency, and a cache size.

However, this abstraction poses DEPS a challenge, which
DEPS cannot employ existing DVFS methods. In most DVFS
algorithms it is assumed that the energy is proportional to the
square of the supply voltage and the execution time is inversely
proportional to the clock frequency. Unfortunately, DEPS cannot
calculate execution time and energy consumption via configura-
tion (i.e., set of configuration parameters) by easy formulas. For
example, neither energy nor execution time can be calculated by
using the cache size for a processor with resizable cache. As a
result, DEPS cannot employ most existing DVFS algorithms [2].

To further reduce energy consumption and limit runtime over-
head, a DEPS framework performs both design time and runtime
optimization. During design time, only the Pareto-optimal con-
figuration sets are extracted and reserved as candidates for on-line
use. The Pareto-optimal configuration sets are those configura-
tion sets that are not dominated by any other configuration set in
terms of energy consumption and performance. During runtime,
the DEPS dynamically selects the optimal configuration sets from
these candidates using runtime information. Specifically, the con-
figuration is switched in an application program interface (API)
function called checkpoint, which has been inserted into the pro-
gram in advance. Although this two-stage optimization is effec-
tive, finding the Pareto-optimal configuration sets efficiently in a
reasonable amount of time is an issue because the total number
of configuration sets exponentially increases with the number of
checkpoints.
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Calculating the optimal voltage and frequency for meeting
deadlines and minimizing energy is a common problem in DVFS
systems, and various methods have been proposed so far [4].
Azevedo et al. first proposed a method using a checkpoint func-
tion for voltage scheduling [5]. Xu et al. provided a unified prac-
tical approach for obtaining optimal stochastic inter-task, intra-
task, and hybrid DVFS schemes [6]. Bambha et al. proposed a
hybrid global/local configuration search for DVFS in embedded
multiprocessor systems [7]. Xian et al. proposed voltage schedul-
ing using statistical information of task execution time [8]. All
these DVFS methods formulate the execution time and energy
consumption using voltage and frequency parameters, and, based
on these formulas, the optimal voltage and frequency are deter-
mined. However, these methods are not applicable to DEPS since
this formulation is not realistic for DEPS.

Recently, Wang et al. conducted similar research, wherein they
employed a dynamic-programming-based algorithm to search the
optimal configurations for a system with DVFS and resizable
cache capability [9]. Although the aim is to find the most energy
efficient configuration set, our goal is to extract a Pareto-optimal
configuration set. In addition, Wang et al.’s algorithm assumes
a fixed execution path and makes reconfiguration decisions on
the granularity of the program execution block when tasks are
switched. Their method, however, lacks flexibility and cannot
deal with input-data-dependent execution. Therefore, it also can-
not be adopted in the DEPS framework.

As for Pareto-optimal exploration algorithms, there is some ex-
isting research, especially in the design-space exploration field.
In general, the objective is to determine a Pareto-optimal design
with respect to circuit area and delay. For example, a multiob-
jective evolutionary algorithm [10] based on the Non-dominated
Sorting Genetic Algorithm-II (NSGA-II) [11] and a multiobjec-
tive simulated annealing algorithm [12] have been proposed for
this purpose. Recently, Ando et al. proposed an approximate al-
gorithm for the same problem [13]. It starts searching from two
optimal points (i.e., area optimal and delay optimal), and repeats
extracting Pareto-optimal points around each starting point. Basi-
cally, these Pareto-optimal search algorithms can be applied to the
DEPS framework after some modifications. However, a key prob-
lem is designing a dedicated algorithm to achieve high efficiency
and satisfactory quality simultaneously by taking the features of
DEPS into account.

In this paper, we propose several algorithms for efficiently ex-
tracting the Pareto-optimal configuration sets as follows:

Fig. 1 Overview of our integrated energy optimization framework [3].

( 1 ) Checkpoint-interval Average Energy Consumption (CAEC)
CAEC enables the possibility of calculating the average en-
ergy consumption for each checkpoint interval before the
Pareto-optimal search iteration, thus reducing the number of
calculations for each search iteration. CAEC can be com-
bined with common search algorithms, and the optimality of
the results is not affected after adopting CAEC.

( 2 ) Configuration Pruning Based on CAEC (CPBC)
CPBC identifies energy-inefficient configurations based on
CAEC and removes them from the search space, thus result-
ing in improved efficiency. CPBC can also be combined with
common search algorithms without loss of optimality.

( 3 ) Pareto-optimal Hardware Configuration Search (PHCS)
PHCS is a heuristic algorithm dedicated for the DEPS frame-
work for efficiently searching Pareto-optimal configuration
sets. Our experiments demonstrate that PHCS can achieve
significantly better efficiency and quality than a dedicated
genetic algorithm.

The main contribution of this paper is that the proposed algo-
rithms and combination of algorithms can improve the search
efficiency by 99.89% on average while simultaneously achiev-
ing satisfactory quality, which will enable easy application of the
DEPS framework in practice.

This paper is organized as follows: An overview of the DEPS
framework and the problem setup are given in Section 2. In Sec-
tion 3, three algorithms for extracting the Pareto-optimal hard-
ware configurations are presented. In Section 4, an evaluation of
the proposed algorithms is given. Finally, Section 5 summarizes
this paper.

2. DEPS Profile

2.1 Overview of DEPS Framework
In the DEPS framework, we assume the following conditions:

A reconfigurable processor that can dynamically change its hard-
ware configuration to provide different levels of performance and
energy consumption is available. Static priority-based preemptive
scheduling is employed for independent periodic task set schedul-
ing. Hard real-time embedded application is assumed. The source
code of the application programs and their typical test data set, in-
cluding occurrence rate, are given in advance. In other words, the
framework assumes that the application is known. The frame-
work uses the energy and performance characteristics of the ap-
plication for optimizing the energy consumption of the entire sys-
tem. Figure 1 depicts the workflow of the integrated optimiza-
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tion framework [3] that has been implemented with a complete
toolchain and real-time operationg system (RTOS) for automatic
energy optimization. The framework consists of three analysis
and optimization phases. The first is an intra-task optimization
phase for each task. In this phase, checkpoints are inserted into
the source code first. Then, the energy-execution time informa-
tion of a task under different configuration sets is extracted into
a table called the DEPS profile. The second is an inter-task opti-
mization phase for all tasks on one system. This phase performs
system-level energy optimization by considering all task-related
information such as period, deadline, etc. Specifically, execu-
tion time budgets are distributed to each task in a manner that
the total system energy is minimized and all deadlines are met.
The optimal configuration candidates and worst-case execution
time are summarized into a DEPS management table. The third
is a runtime optimization phase. We developed a DEPS-enabled
RTOS as an extended version of the TOPPERS/ASP kernel [14].
The checkpoint API of the RTOS switches the configuration ac-
cording to the DEPS management table and slack information
detected at runtime.

2.2 Requirements for the DEPS Profile
The DEPS profile is one of the results of the intra-task anal-

ysis and optimization phase. Each task (program) will generate
one DEPS profile after this process. DEPS profiling is conducted
using typical test data to guarantee the generality of the DEPS
profile. The DEPS profile includes the following items:
• configuration set: a combination of configurations at each

checkpoint.
• WCET: the Worst-Case Execution Time of a task under a

specified configuration set.
• AEC: the Average Energy Consumption of a task under a

specified configuration set.
In this paper, a set of these items is called a profile element.

The WCET is necessary to guarantee the deadline of each task,
and the AEC is required to minimize the average energy for all
test data. Note that only a Pareto-optimal configuration set should
be reserved in the DEPS profile.

Table 1 shows an example of a DEPS profile where four
checkpoints have been inserted into a program, and the pro-
cessor can provide a total of two configurations. All possi-
ble configuration sets and Pareto-optimal sets are shown in Ta-
ble 1 (a) and Table 1 (b), respectively. Note that only Table 1 (b)
is the output of DEPS profiling. For example, the config-
uration sets (c fg1, c fg1, c fg1, c fg1), (c fg1, c fg1, c fg1, c fg2),
and (c fg1, c fg1, c fg2, c fg2) are not Pareto-optimal because they
have the same performance but consume more average energy
compared to configuration set (c fg2, c fg1, c fg2, c fg1).

2.3 CP-Interval Data Setup
In the DEPS framework, we estimate energy consumption and

execution time by using execution trace logs generated by a cycle-
accurate simulator [2], [3]. A naive approach for generating the
DEPS profile is to operate this simulation with all test data and
all configuration sets. Then, the execution time and the amount
of energy consumed are estimated by using generated execution

Table 1 An example of the DEPS profile.

(a) All possible profile elements

configuration set WCET AEC
CP0 CP1 CP2 CP3

cfg1 cfg1 cfg1 cfg1 38.000 38.500
cfg1 cfg1 cfg1 cfg2 38.000 38.250
cfg1 cfg1 cfg2 cfg1 37.000 35.125
cfg1 cfg1 cfg2 cfg2 38.000 34.875
cfg1 cfg2 cfg1 cfg1 46.000 36.375
cfg1 cfg2 cfg1 cfg2 48.000 36.125
cfg1 cfg2 cfg2 cfg1 46.000 33.000
cfg1 cfg2 cfg2 cfg2 48.000 32.750
cfg2 cfg1 cfg1 cfg1 39.000 36.875
cfg2 cfg1 cfg1 cfg2 40.000 36.625
cfg2 cfg1 cfg2 cfg1 38.000 33.500
cfg2 cfg1 cfg2 cfg2 40.000 33.250
cfg2 cfg2 cfg1 cfg1 48.000 34.750
cfg2 cfg2 cfg1 cfg2 50.000 34.500
cfg2 cfg2 cfg2 cfg1 48.000 31.375
cfg2 cfg2 cfg2 cfg2 50.000 31.125

(b) Pareto-optimal profile elements

configuration set WCET AEC
CP0 CP1 CP2 CP3

cfg1 cfg1 cfg2 cfg1 37.000 35.125
cfg2 cfg1 cfg2 cfg1 38.000 33.500
cfg2 cfg1 cfg2 cfg2 40.000 33.250
cfg1 cfg2 cfg2 cfg1 46.000 33.000
cfg2 cfg2 cfg2 cfg1 48.000 31.375
cfg2 cfg2 cfg2 cfg2 50.000 31.125

trace logs. Finally, the results are summarized into the DEPS
profile. This approach however is not realistic because the cycle-
accurate simulation is time consuming and the number of possible
configuration sets is too large.

For this reason, we assume an independence relation among
checkpoints, which means that the execution time and the energy
consumption of a CP-interval are not affected by the configura-
tion at the other checkpoints. The CP-interval is defined as an
interval from one checkpoint to the next. We call this assump-
tion inter-CP independence. With this assumption, the simulation
time can be reduced significantly because we need to estimate the
execution time and the energy consumed only k times for a CP-
interval, where k is the number of possible configurations for a
configurable processor.

Obviously, this assumption is reasonable for the DVFS func-
tion at each checkpoint. However, its effect on other configurable
hardware such as the configurable cache is unclear. For this rea-
son, we investigated the inter-CP independence on a prototype
processor with configurable instruction cache [1], which is also
used in our experiments. We guarantee the independence between
checkpoints by adding a cache refresh operation at the beginning
of each checkpoint. Our results show that the maximum over-
heads of the WCET and the AEC caused by this refresh are 0.06%
and 0.08%, respectively. Because this overhead is negligible in
most cases, in this paper, we assume inter-CP independence.

Based on this discussion, the CP-interval data can be created as
follows: First, simulations are performed using a fixed hardware
configuration for all checkpoints. Then, execution trace logs are
split at each checkpoint, and the execution time and energy con-
sumption of each CP-interval are estimated. Finally, the DEPS
profile is generated by combining the above CP-interval data ac-
cording to the given configuration sets.
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Fig. 2 Example of the CP-interval data for DEPS profiling.

We show an example of the obtained CP-interval data in Fig. 2.
It is supposed that the processor has two hardware configurations,
c fg1 and c fg2, and four checkpoints have been inserted into a
program in advance. The checkpoint CP0 is always placed at
the beginning of a program. The other checkpoints are inserted
according to the result of the CP insertion [3]. As can be seen,
the same program executes different paths and checkpoints that
are dependent on given test data. Therefore, even for the same
checkpoint, the CP-interval data could vary depending on the test
data. For checkpoints that are not executed for a given test datum,
its CP-interval datum is treated as 0. To obtain all CP-interval
data in this example, only two simulations should be performed
with configuration sets (1, 1, 1, 1) and (2, 2, 2, 2). Eventually, the
DEPS profile shown in Table 1 (b) can be obtained from this CP-
interval data by DEPS profiling.

We summarize all the input and output parameters for DEPS
profiling as follows:
input
• H = {c fg1, c fg2, · · · , c fgk}: possible hardware configura-

tions. k indicates the number of configurations.
• D = {d1, d2, · · · , dm}: typical test data set. m indicates the

number of test data.
• weight(d): occurrence rate for test data d.
• et(d, i, c): execution time for test data ∀d ∈ D, the CP-

interval that starts from checkpoint i and configuration
∀c ∈ H.

• ec(d, i, c): energy consumption for test data ∀d ∈ D, the
CP-interval that starts from checkpoint i and configuration
∀c ∈ H.

output
The DEPS profile consists of the Pareto-optimal sets of the
following parameters:
• C = (c0, c1, · · · , cn−1): Pareto-optimal configuration set. ci

indicates a configuration selected at checkpoint i, and n in-
dicates the number of checkpoints.

Fig. 3 Energy consumption and execution time of test data under the con-
figuration set C = (1, 2, 2, 1).

• wcet(D,C): worst-case execution time for a test data set D
and a configuration set C.

• aec(D,C): average energy consumption for a test data set
D and a configuration set C.

2.4 Calculating WCET and AEC
Using the CP-interval data, the wcet(D,C) and the aec(D,C)

for a configuration set C and a test data set D can be calculated
as follows.

First, the total execution time and energy consumption of a pro-
gram are calculated. For a given configuration set C and test data
d, these can be calculated as the sum of the execution times and
the energy consumptions of the CP-intervals as follows:

et(d,C) =
∑

i

et(d, i, ci), (1)

ec(d,C) =
∑

i

ec(d, i, ci). (2)

As an example, the execution time and the energy consumption of
Fig. 2 under the configuration set (1, 2, 2, 1) are shown in Fig. 3.
For example, the execution time and the energy consumption of
d2 can be calculated as follows:

et(d2, (1, 2, 2, 1)) = 4 + 13 + 22 + 0 = 39,

ec(d2, (1, 2, 2, 1)) = 6 + 7 + 18 + 0 = 31.

Next, the worst-case execution time and the average energy
consumption of a program are calculated. The WCET is the
largest execution time of the program for a set of test data and
a specific configuration set. The AEC is the average energy con-
sumption of the program determined by considering the occur-
rence rate of all test data. We can calculate the WCET and the
AEC using et(d, i, c) and ec(d, i, c) as follows:

wcet(D,C) = MAXd∈D
∑

i

et(d, i, ci), (3)

aec(D,C) =
∑

d∈D
∑

i ec(d, i, ci)weight(d)∑
d∈D weight(d)

. (4)

As an example, we show the calculation of the WCET and the
AEC for C = (1, 2, 2, 1) by using the results of Fig. 3 as follows:

wcet(D, (1, 2, 2, 1)) = max(35, 39, 46, 19) = 46,

aec(D, (1, 2, 2, 1)) =
36 × 1 + 31 × 4 + 44 × 1 + 30 × 2

1 + 4 + 1 + 2
= 33.

(5)
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As can be seen, the WCET is calculated as the largest execution
time of four test data, and the AEC is calculated as a weighted
average of the energy consumption of four test data.

A naive approach for extracting Pareto-optimal configuration
sets is the exhaustive search. This method first calculates the
WCET and the AEC for all possible configuration sets. Then,
it excludes the configuration sets that are not Pareto-optimal. Fi-
nally, the remaining sets will be the DEPS profile. A problem
with this approach is that the possible configuration sets could be
kn, which is exponential with the number of checkpoints. To re-
solve this problem, we propose three algorithms to extract Pareto-
optimal configuration sets efficiently in the next section.

3. DEPS Profiling Acceleration Algorithms

In this section, three algorithms are presented for accelerat-
ing DEPS profiling. The first two methods are exact algorithms.
One is used for reducing the number of calculations for the AEC,
and the other is aimed at pruning the inefficient configurations.
The third method is a heuristic search algorithm for extracting
Pareto-optimal configuration sets. The two exact algorithms are
fundamental methods, and they can be combined with the third al-
gorithm or other search algorithms to further improve the search
efficiency.

3.1 CAEC for Reducing the Number of Calculations for
AEC

According to the inter-CP independence, energy consumption
of a CP-interval does not depend on the configurations selected at
other checkpoints. Therefore, the average energy consumption of
each CP-interval can be calculated independently. We define the
CAEC that starts from checkpoint i with configuration c ∈ H as

caec(D, i, c) =
∑

d∈D ec(d, i, c)weight(d)∑
d∈D weight(d)

. (6)

The caec is calculated as the weighted average of the energy con-
sumptions of the CP-intervals that start from the same checkpoint.
Then, the AEC can be calculated efficiently using the caec as fol-
lows:

aec(D,C) =
∑

d∈D
∑

i ec(d, i, ci)weight(d)∑
d∈D weight(d)

=
∑

i

∑
d∈D ec(d, i, ci)weight(d)∑

d∈D weight(d)

=
∑

i

caec(D, i, ci). (7)

To find the Pareto-optimal configuration sets from s configura-
tion set candidates, s×m×n product sums are required according
to Eq. (4), where m and n indicate the number of test data and
the number of checkpoints, respectively. On the other hand, the
CAEC method only needs s × n summations of caecs (Eq. (7)),
and the caecs are precalculated with k × m × n product sums,
where k is the number of possible configurations (Eq. (6)). There-
fore, a drastic reduction in processing time is possible, especially
for large s such as in the exhaustive search space kn. We use
the example in Fig. 2 and Fig. 4 to illustrate this reduction. Let
m = 4, n = 4, and k = 2. For the exhaustive search, 16 configu-
ration sets should be investigated, then s = 16. Without CAEC,

Fig. 4 CAEC and CP-interval data.

16×4×4 = 256 product sums are needed. However, with CAEC,
only 2×4×4 = 32 product sums and 16×4 = 64 summations are
needed for calculating caecs and investigating configuration sets,
respectively.

The caecs calculated for each CP-interval are shown in Fig. 4.
For example, the AEC of the configuration set (1, 2, 2, 1) is cal-
culated using caecs as follows:

aec(D, (1, 2, 2, 1)) = 8.375 + 7.750 + 9.875 + 7.000 = 33.

Note that this result is the same as Eq. (5). That is, the AEC
result calculated using caec is the same as that calculated using
Eq. (4). Although, CAEC is effective for AEC calculation, a sim-
ilar method cannot be applied to the calculation of the WCET,
since the MAX operation is required.

3.2 CPBC for Pruning the Inefficient Configurations
The idea behind Configuration Pruning Based on CAEC

(CPBC) is that if a hardware configuration is identified as inef-
ficient (i.e., it consumes more energy but with the same or worse
performance than other configurations), it can be excluded from
the search space, resulting in shorter processing time. However,
evaluating whether a hardware configuration is efficient poses a
problem.

A straightforward approach is that if both execution time and
energy consumption of a configuration are larger than those of
other configurations for all test data, the configuration can be
identified as inefficient, because in this case the evaluated con-
figuration is significantly inferior to others in terms of execution
time and energy consumption. The inefficient configurations can
be evaluated independently at each checkpoint as the inter-CP in-
dependence. Formally, a configuration c′ ∈ H at checkpoint i is
inefficient if the following conditions can be satisfied:
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∀d ∈ D, ∃c∗ ∈ H,

((et(d, i, c′) ≥ et(d, i, c∗)) ∩ (ec(d, i, c′) ≥ ec(d, i, c∗))). (8)

However, these conditions are too strong to be applied in practice
efficiently. Given the example in Fig. 2, there are no configu-
rations that can be determined as inefficient according to these
conditions.

To relax these conditions, CAEC can be employed. Because
our objective is to minimize the average energy consumption for
all test data, a configuration with higher average energy consump-
tion and the same or longer execution time can be determined as
an inefficient configuration. As a result, more inefficient configu-
rations could be pruned by using the CAEC criterion.

Formally, a configuration c′ ∈ H at checkpoint i is inefficient
if

∃c∗ ∈ H, ((∀d, et(d, i, c′) ≥ et(d, i, c∗))

∩(caec(D, i, c′) ≥ caec(D, i, c∗))). (9)

Considering the same example in Fig. 2, we see that the cfg1 at
CP2 can be identified as inefficient compared with cfg2, because
the following conditions are satisfied using the caec results in
Fig. 4:

et(d1,CP2, c fg1) ≥ et(d1,CP2, c fg2),

et(d2,CP2, c fg1) ≥ et(d2,CP2, c fg2),

caec(D,CP2, c fg1) ≥ caec(D,CP2, c fg2).

As a result, the total number of configuration sets for the search
can be reduced from 16 to 8 by pruning cfg1 at CP2.

3.3 PHCS Heuristic Search Algorithm
To further improve the search efficiency, a heuristic search

algorithm—the Pareto-optimal Hardware Configuration Search
(PHCS) algorithm—is proposed. The complete algorithm is
listed in Fig. 5. Different from the exhaustive search, the PHCS
only conducts local search around some seeds that are Pareto-
optimal configuration sets during the search process. This local

Input: CP-interval data set intcp

Output: DEPS profile depspro f

1: depspro f = {}
2: initialseed = get initialseed(intcp)

3: searched = {}
4: not searched = {initialseed}
5: while not searched ! = {} do

6: seed = get nextseed(not searched)

7: c fgsetlist = generate cfgsetlist(seed)

8: for all c fgset ∈ c fgsetlist do

9: pro f element = calculate wcet aec(intcp, c fgset)

10: if is ParetoOptimal(depspro f , pro f element) then

11: append(depspro f , pro f element)

12: end if

13: end for

14: remove nonPareto(depspro f )

15: searched.add(seed)

16: not searched = exclude(depspro f , searched)

17: end while

Fig. 5 The PHCS algorithm.

search is repeated from one seed to another until no new seed can
be found. The idea is to improve the search efficiency by limit-
ing the search space on the current Pareto-optimal configuration
sets. The local search ensures that, for a current Pareto-optimal
configuration set, only one configuration is changed and other
configurations remain unchanged. In other words, once an effec-
tive configuration has been found for a checkpoint, it could be
reserved. This method is also consistent with the inter-CP inde-
pendence principle. The PHCS algorithm mainly consists of two
operations: one determines the seed configuration sets and the
other searches the Pareto-optimal configuration sets around the
seeds.

First, it is necessary to decide the initial seed configuration set
initialseed (line 2, get initialseed) as the starting point of the
search. We select the configuration set with the smallest AEC
as the initialseed. Note that this initialseed is necessarily in-
cluded in the final DEPS profile; i.e., it must be Pareto-optimal.
Thus, the search efficiency is expected to be improved from a
known effective configuration set instead of a random one. The
initialseed can be found easily by selecting the configurations
with the smallest caec at each checkpoint. For the example in
Fig. 4, the initialseed is (2, 2, 2, 2).

Next, the algorithm searches for Pareto-optimal configuration
sets around the seed. For this purpose, a list of neighbor con-
figuration sets of seed is constructed in the generate cfgsetlist
(line 7). The list includes the configuration sets that have only
one different configuration from the configuration set of the seed.
The maximum number of generated configuration sets could be
n(k − 1) for k possible configurations and n checkpoints. Given a
seed configuration set (2, 2, 2, 2) for the example in Fig. 4, the
generated c fgsetlist are (1, 2, 2, 2), (2, 1, 2, 2), (2, 2, 1, 2), and
(2, 2, 2, 1). If CPBC is adopted, the identified inefficient configu-
rations will not appear in the c fgsetlist. For the above example,
(2, 2, 1, 2) will be removed from the list because it is inefficient
according to the result of CPBC. For each configuration set in
c fgsetlist, its corresponding WCET and AEC will be calculated
in line 9. If a configuration set is determined as Pareto-optimal at
this moment, it will be appended to the DEPS profile temporarily
(lines 10 to 12). Some existing configurations could become non-
Pareto-optimal after adding a new configuration set to the DEPS
profile. For this reason, these configurations should be removed
from the DEPS profile after investigating all configuration sets in
c fgsetlist (line 14).

To avoid a duplicated search, the searched seeds are registered
in the searched list (line 15). Also, the remaining configura-
tion sets in the DEPS profile after excluding the searched seeds
are registered in the not searched list (line 16). After searching
around a seed, a new seed will be selected from the not searched

by the get nextseed in line 6. For the same reason as for the
selection of initialseed, the selection of the next seed is also im-
portant. However, since it is difficult to estimate which seed will
be left in the final DEPS profile, we thus consider the following
three strategies for selecting the next seed in get nextseed:
• WAS (WCET Ascending Search): A configuration set

with the smallest WCET in not searched is selected as the
next seed. As described above, get initialseed provides the
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configuration set with the smallest AEC (i.e., the largest
WCET). Therefore, the relatively most distant configuration
set from the initial seed is selected as the next seed.

• WDS (WCET Descending Search): A configuration set
with the largest WCET in not searched is selected as the
next seed. In contrast to the WAS, the relatively nearest con-
figuration set from the initial seed is selected as the next one.

• FFFS (First Find First Search): A configuration set that is
found earliest is selected as the next seed. An advantage of
this strategy is its simple implementation.

The PHCS algorithm will repeat the above two operations until
no new seed can be found in the not searched. This means that
all configuration sets in the DEPS profile have been searched and
no more Pareto-optimal configuration sets could be found.

4. Experimental Evaluations

4.1 Experimental Setup
The proposed DEPS profiling algorithms and an exhaustive al-

gorithm are evaluated in terms of computation time and solution
quality on benchmarks and a real application. Regarding related
work, we implement a modified genetic algorithm (GA) based
on the NSGA-II [11] for comparison, since a GA is a typical
meta-heuristic algorithm and is suitable for exploring the Pareto-
optimal configuration set for our problem.

To obtain results from the exhaustive search within a reason-
able amount of time, test programs need to have a relatively
small number of checkpoints. We select several benchmarks from
EEMBC whose numbers of checkpoints inserted by our toolchain
are less than 16 [3], [15]. Test data provided by the benchmark
suite are used for evaluation, and their distribution of occurrence
rate is assumed uniform.

To validate practicality, a real application is also employed
for evaluation. The application is a brief version of a video-
conference system using the Xvid MPEG-4 video codec and the
FFmpeg library. Two tasks from the application (i.e., video en-
coding and decoding) are used; these are denoted as venc and
vdec in the experiments. Four video data sets with different char-
acteristics and occurrence rate are used as test data, and each data
set has ten frames.

A prototype reconfigurable processor [1] with eight possible
configurations is employed for the experiment. The processor
can allow the frequency and voltage to be set to low or high, and
can provide a resizable four-way instruction cache whose size can
be set as 2k, 4k, 6k, or 8k byte by changing its associativity. A
cycle-accurate simulator for the reconfigurable processor is used
for generating the execution traces by running benchmarks and

Table 2 Parameters of GA-based algorithm.

benchmark parameter set A parameter set B parameter set C
generations mut. rate generations mut. rate generations mut. rate

canrdr01 70 30 70 30 20 10
idctrn01 120 30 120 30 50 20
pntrch01 140 30 140 30 70 5
puwmod01 170 30 170 30 50 30
rspeed01 60 30 60 30 20 30
ttsprk01 220 30 220 30 60 10

venc 300 5 300 30 150 10
vdec 300 30 300 30 100 30

real programs on it. A dedicated energy estimation tool based on
the energy characterization framework [16] is used for energy es-
timation using traces. Its estimation error is 3% on average. Note
that the overhead for the configuration switch can be simulated
and estimated by the simulator and the energy estimation tool,
respectively. The DEPS profiling algorithms are implemented
with Perl v5.10.1 and executed on a computer with a Xeon X5680
3.33-GHz processor with 65 GB of memory.

In the experiments, the following three search algorithms are
evaluated:
• EXS: An exhaustive search algorithm for investigating all

possible configuration sets. The DEPS profiles generated by
EXS are optimal; that is, all real Pareto-optimal configura-
tion sets can be found by this algorithm.

• GA: A dedicated genetic algorithm for searching energy-
efficient configuration sets. The algorithm uses the same
initial seed configuration set as that of the PHCS: One-point
crossover is employed, and the crossover point is determined
randomly for each pair of parents. Mutation occurs at the
given rates. Only current Pareto-optimal configuration sets
are selected and used as the next parent population. This
algorithm does not guarantee the optimality of the obtained
DEPS profiles.

• PHCS: The proposed heuristic search algorithm. The PHCS
is implemented with three different strategies—WAS, WDS,
and FFFS—for evaluation. The algorithm does not guaran-
tee the optimality of its results owing to its heuristic feature.

Each search algorithm can be accelerated with CAEC or
CAEC+CPBC. Note that CPBC only cannot be applied because
CPBC depends on CAEC. To evaluate the effectiveness of each
method, experiments are conducted with the following accelera-
tion settings:
• no acceleration

• with CAEC only

• with CAEC+CPBC

Unlike the EXS and the PHCS, the GA requires several pa-
rameters for running, and its results are undetermined. For all
GA-related experiments, we use three parameter sets, as shown
in Table 2. The generation parameter is employed to control the
running time of the GA. The mutation rate is selected from 5%,
10%, 20%, and 30%, and only the one with the best results is
listed in the table. In addition, we perform the GA 100 times in
each experiment, and only statistical results are employed for fair
comparison.
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4.2 Results and Discussion
The experimental results for the EEMBC benchmarks and a

real application are listed in Tables 3 and 4. In these tables, the
CPs column shows the number of inserted checkpoints, and the
optimality column indicates the optimality of the generated DEPS
profiles. We define “a DEPS profile is optimal” if and only if the
DEPS profile is the same as that generated by the EXS. The “©”
mark indicates that the DEPS profile generated by the PHCS is
optimal. For the GA, the optimality column indicates the proba-
bility of obtaining the optimal results. For example, 39% means
the GA can obtain the optimal DEPS profile 39 times in 100 exe-

Table 3 Experimental results for EEMBC benchmarks and a real application.

benchmark CPs algorithm no acceleration with CAEC only with CAEC+CPBC
time (sec) optimality time (sec) optimality time (sec) optimality

canrdr01 7 EXS 76,238.365 39,059.617 11.202
GA 55.566 39% 29.991 39% 9.919 46%
PHCS (WAS) 45.827 © 23.734 © 6.892 ©
PHCS (WDS) 45.953 © 23.633 © 7.065 ©
PHCS (FFFS) 49.861 © 26.140 © 7.632 ©

idctrn01 8 EXS 255,313.542 122,810.840 49.749
GA 122.531 22% 63.668 22% 25.047 4%
PHCS (WAS) 85.315 © 43.613 © 16.652 ©
PHCS (WDS) 79.964 © 45.284 © 15.739 ©
PHCS (FFFS) 100.012 © 55.569 © 19.402 ©

pntrch01 8 EXS 83,819.994 43,571.593 92.179
GA 57.886 7% 30.705 5% 11.940 0%
PHCS (WAS) 36.083 © 19.446 © 9.750 ©
PHCS (WDS) 33.240 © 19.076 © 8.726 ©
PHCS (FFFS) 40.825 © 22.825 © 10.651 ©

puwmod01 13 EXS (could not finish (could not finish 1,987.296
within 4 days) within 4 days)

GA 2,079.850 98% 1,032.680 97% 270.064 40%
PHCS (WAS) 1,657.360 © 870.025 © 177.860 ©
PHCS (WDS) 1,609.047 © 882.287 © 173.219 ©
PHCS (FFFS) 1,983.931 © 1,021.846 © 212.892 ©

rspeed01 5 EXS 291.915 149.479 0.832
GA 14.119 66% 7.544 62% 2.915 53%
PHCS (WAS) 10.599 © 5.888 © 2.098 ©
PHCS (WDS) 10.545 © 5.498 © 1.839 ©
PHCS (FFFS) 10.570 © 5.582 © 1.830 ©

ttsprk01 15 EXS (could not finish (could not finish 778.982
within 4 days) within 4 days)

GA 311.691 28% 160.561 30% 33.353 0%
PHCS (WAS) 255.781 © 132.016 © 26.885 ©
PHCS (WDS) 229.937 © 119.342 © 23.848 ©
PHCS (FFFS) 235.234 © 123.585 © 24.724 ©

venc 9 EXS 173,103.936 93,332.111 11,728.793
GA 25.697 0% 23.619 1% 7.343 0%
PHCS (WAS) 17.249 © 8.631 © 7.843 ©
PHCS (WDS) 15.096 © 8.641 © 6.711 ©
PHCS (FFFS) 18.845 © 8.613 © 8.533 ©

vdec 9 EXS 172,467.763 93,189.838 184.202
GA 22.410 43% 12.333 51% 3.761 10%
PHCS (WAS) 7.392 © 4.657 © 2.284 ©
PHCS (WDS) 7.136 © 4.668 © 2.100 ©
PHCS (FFFS) 8.633 © 4.656 © 2.461 ©

Table 4 Evaluation for CAEC and CPBC on GA using parameter set A.

task no acceleration with CAEC only with CAEC+CPBC
time (sec) optimality time (sec) optimality time (sec) optimality

canrdr01 55.566 39% 29.991 39% 30.050 96%
idctrn01 122.531 22% 63.668 22% 65.988 43%
pntrch01 57.886 7% 30.705 5% 30.694 28%
puwmod01 2,079.850 98% 1,032.680 97% 1,117.850 100%
rspeed01 14.119 66% 7.544 62% 7.573 92%
ttsprk01 311.691 28% 160.561 30% 186.636 93%

venc 25.697 0% 14.083 0% 18.535 0%
vdec 22.410 43% 12.333 51% 13.452 88%

cutions.
In Table 3, we use the parameter sets A, B, and C of Ta-

ble 2 for the GA with no acceleration, with CAEC only, and with

CAEC+CPBC, respectively. The generation parameters are se-
lected in such a way that the GA will run for a little longer time
than the PHCS. The purpose is to compare the optimality of the
GA and the PHCS in case that they have similar computation
time.

Note that the results of the GA in Table 3 are unsuitable for
evaluating the effectiveness of CAEC and CPBC on the GA,
since different parameter sets are employed. Alternatively, we
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perform another experiment with the GA using the same param-
eter set A, the results of which are given in Table 4.
4.2.1 Evaluation for PHCS

In this section, we evaluate the PHCS by comparing it with the
EXS and the GA. First, we compare the PHCS with the EXS.
As can be seen from Table 3, although the PHCS is a heuristic
search algorithm, it can obtain the same DEPS profile as that of
the EXS, i.e., the optimal DEPS profile in all experiments. Except
for puwmod01 and ttsprk01, the PHCS reduces the processing
time over the EXS by 99.37%, 99.36%, and 57.73% on average
for no acceleration, with CAEC only, and with CAEC+CPBC,
respectively. Whereas the EXS with no acceleration cannot fin-
ish DEPS profiling for puwmod01 and ttsprk01 within 4 days, the
PHCS with no acceleration can finish within 27 min and 3.8 min,
respectively. It is observed from the results that the EXS algo-
rithm is not practical for a program with more than 13 check-
points. In contrast, the PHCS can complete profiling for bench-
marks with 15 checkpoints.

Next, we compare the PHCS with the GA. As can be seen in
Table 3, only for puwmod01 with CAEC+CPBC, the GA shows
98% optimality, which is comparable to the PHCS. However, for
the other benchmarks, the optimality of the DEPS profiles gener-
ated by the GA are significantly inferior to that of the PHCS. In
short, while the PHCS obtains the optimal results in all experi-
ments, the GA can only achieve 0% to 93% optimality when it
consumes similar computation time to the PHCS.

For the evaluation of the three strategies for searching the next
seed in the PHCS, the best results with the shortest time are
shown in boldface in the tables. As can be seen, the WDS can
achieve the best results for most programs with only two excep-
tions. Therefore, the WDS is considered to be the best strategy,
and its results are selected to represent the PHCS in the analysis
in the rest of this paper.
4.2.2 Evaluation for CAEC and CPBC

In this section, we first discuss the effectiveness of CAEC and
CPBC on the EXS and the PHCS, then analyze them on the GA.

We evaluate CAEC by comparing the results of no accelera-

tion and with CAEC only in Table 3. The results show that with

CAEC only can decrease the processing time by 48.2% and 44.1%
on average for the EXS and PHCS, respectively, compared with
no acceleration. Then, we discuss the contribution of CPBC by
comparing the results of with CAEC only and with CAEC+CPBC.
From the results in Table 3, it is known that with CAEC+CPBC

can further reduce the processing time by 97.73% and 61.74%
on average for the EXS and the PHCS, respectively, compared
with CAEC only. The results also reveal that the effectiveness
of the PHCS in reducing processing time varies from 22.34% to
80.37%, which is dependent on benchmarks.

Second, we evaluate CAEC and CPBC on the GA. Experi-
mental results are given in Table 4. As mentioned earlier, the
parameter set A in Table 2 is employed for the GA with differ-
ent acceleration options. The results show that with CAEC only

can reduce the processing time by 47.07% on average over no

acceleration, and CAEC+CPBC can improve the optimality by
29.2% on average over with CAEC only. Meanwhile, it is also
observed that with CAEC only cannot improve the optimality and

CAEC+CPBC cannot reduce the processing time.
4.2.3 Summary of Evaluations

In our experiments, the PHCS achieves much higher efficiency
than the exhaustive search algorithm while maintaining the same
optimality. CAEC+CPBC can accelerate DEPS profiling by
98.78%, 42.45%, and 78.28% on average for the EXS, the GA,
and PHCS, respectively, compared with no acceleration. In addi-
tion, adoption of CAEC+CPBC results in lossless optimality for
the EXS and PHCS and improved optimality for the GA. In sum-
mary, it is observed through the experiments that the proposed al-
gorithm combination of PHCS (WDS) with CAEC+CPBC can
improve the search efficiency by 99.89% on average over an ex-
haustive search algorithm. Moreover, it can obtain a DEPS pro-
file with significantly better quality than a dedicated genetic algo-
rithm. Through our experiments, it is validated that the proposed
algorithms can complete DEPS profiling in reasonable time and
with satisfactory quality.

5. Conclusion

In this paper, we proposed several algorithms for efficient
DEPS profiling. First, CAEC and CPBC were proposed for re-
ducing the number of calculations of DEPS profiling. They are
general methods that can be used alone or can be combined with
common search algorithms without loss of optimality. Experi-
mental results showed that they can reduce processing time by
98.78%, 42.45%, and 78.28% on average for the exhaustive, GA,
and our search algorithm, respectively. Second, a heuristic al-
gorithm, PHCS, was proposed to improve the search efficiency.
This algorithm conducts a local search by taking advantage of the
inter-CP independence, thus resulting in improved efficiency and
high quality for DEPS profiling. In our experiments, the PHCS
can improve the search efficiency by 99.89% over an exhaustive
algorithm and generate optimal DEPS profiles for all benchmarks
we tested and a real application. The proposed algorithms enable
the DEPS framework to optimize the energy consumption of em-
bedded systems within a reasonable amount of time and enable it
to be applicable to practical system designs.
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