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Abstract: In recent years, it is quite necessary to convert conventional low-resolution images to high-resolution ones
at low cost. Super-resolution is a technique to remove the noise of observed images and restore its high frequencies. We
focus on reconstruction-based super-resolution. Reconstruction requires large computation cost since it requires many
images. In this paper, we propose a fast weighted adder for reconstruction-based super-resolution. From the viewpoint
of reducing partial products, we propose two approaches to speed up a weighted adder. First, we use selector logics
to halve its partial products. Second, we propose a weights-range limit method utilizing negative term. By applying
our proposed approaches to a weighted adder, we can reduce carry propagations and our weighted adder can be de-
signed by a fast circuit as compared to conventional ones. Experimental evaluations demonstrate that our weighted
adder reduces its delay time by a maximum of 25.29% and its area to a maximum of 1/3, compared to conventional
implementations.
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1. Introduction

High-resolution output devices such as television sets and com-
puters with large screens are very widely used in recent years.
The resolution difference between conventional low-resolution
output devices and high-resolution ones has become larger and
larger. It is quite necessary to convert conventional low-resolution
images to high-resolution ones at low cost. To solve this problem,
conventional interpolation methods such as a bilinear interpola-
tion and a cubic convolution [4] are used. These methods can
interpolate the pixels of observed images. They cannot restore
the high frequencise of them and interpolated images result in
indistinct ones.

Super-resolution [2], [5], [8], [9], [12] is a technique to remove
the noise of observed images and restore the high frequencise of
ones. We focus on reconstruction-based super-resolution which
is able to restore their own brightnesses. Reconstruction-based
super-resolution can be divided into two approaches; one is a
spatial domain approach and the other is a frequency domain
approach [11]. The spatial domain approach can accommodate
global, non-global motion, optical blur, motion blur, compres-
sion artifacts and more. The frequency domain approach provides
the advantages of theoretical simplicity, low computational com-
plexity, which is appropriate to hardware design. We focus on
frequency domain super-resolution methods.

Reconstruction is one of the processes in reconstruction-based
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super-resolution based on a frequency-domain approach. It re-
quires large computation cost since we need many images in re-
construction. It is strongly necessary to improve arithmetic cir-
cuits’ performance specific to reconstruction.

Veterli et al. [14] proposes an algorithm that can estimate ro-
tation, horizontal and vertical shifts between the reference image
and each of the other observed images for reconstruction-based
super-resolution in frequency domain. Tanaka and Okutomi [13]
proposes a fast registration algorithm for reconstruction-based
super-resolution. As far as we know, there are no previous ap-
proaches which focus on speeding-up reconstruction.

In this paper, we propose a weighted adder for reconstruction-
based super-resolution. From the viewpoint of reducing partial
products, we propose two approaches to speed up a weighted
adder. First, we use selector logics to halve its partial products.
Second, we propose a weights-range limit method utilizing nega-
tive term. Applying our proposed approaches to a weighted adder,
we can reduce carry propagations and our weighted adder can
be designed by a fast circuit as compared to conventional ones.
Experimental results show that our proposed weighted adder im-
proves its performance by a maximum of 33.85% and reduces its
area to a maximum of 1/3, compared to conventional ones.

This paper is organized as follows: Section 2 introduces the
reconstruction-based super-resolution by Aoki method; Section 3
proposes two approaches: one is a selector-logic-based approach
and the other is a weights-range limit method, to speed up a
weighted adder; Section 4 demonstrates experimental results;
Section 5 gives concluding remarks.
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(a) fΔ0 (x) (= fs(x)) is the signal sampled at the sampling angular frequency μs in f (x).

(b) Original signal with the aliases. (c) Low-pass-filtered signal whose cut-off
angular frequency is 1.

(d) Frequecy-domain signal after
weighted-adding and removing the
aliases.

Fig. 2 Restoring the original signal by removing the aliases.

Fig. 1 A block diagram of super-resolution process by Aoki method [2].

2. Reconstruction-based Super-resolution by
Aoki Method

In this section, we introduce the reconstruction-based super-
resolution by Aoki method [2], [5]. Aoki method is composed of
the three steps as follows:

1. Position estimation
2. Broadband interpolation
3. Reconstruction using weighted adder

A block diagram of Aoki method is shown in Fig. 1. In the posi-
tion estimation step, we compute a pixel shift or a subpixel shift*1

between the referenced image and each observed image and reg-
ister them. We can use a traditional block matching method or

*1 A pixel shift can be represented by a motion vector between the refer-
enced image and each observed image with pixel-wise accuracy. In the
same way, a subpixel shift can be represented by a motion vector between
the referenced image and each observed image with “fractional”-pel ac-
curacy.

the spatio-temporal image derivative method*2 [1] by obtaining a
pixel shift or a subpixel shift. In the broadband interpolation step,
we apply broadband low-pass filters*3 to the registered images,
which results in many aliases but they include high frequencise
completely. In the reconstruction using weighted adder step, we
perform weighted-sum of input signals to remove the aliases and
restore the original signal theoretically. The reconstruction using
weighted adder step is composed of weight calculation, weighted
sum, and sinc-function-based interpolation.

Let us explain how to remove the aliases and restore the origi-
nal signal theoretically using the exmaple as depicted in Fig. 2.
Let f (x) be an original signal and fΔ0 (x) be a sampled signal
whose sampling angular frequency μs is 1 (μs = 1) as in Fig. 2 (a).
However, assume that f (x) has a bandwidth of μs and its Fourier
transform Fs(u) is depicted as in Fig. 2 (b) where only the cen-
ter part of Fs(u) is shown. According to the sampling theorem,
f (x) cannot be restored by using fΔ0 (x) only, since its Nygust fre-
quency is μs/2 but f (x) contains frequencies higher than μs/2. If
Fs(u) is low-pass-filtered whose cut-off frequency is μs (μs = 1),
it has many aliases as shown in Fig. 2 (c). As described just be-
low in Reconstruction Using Weighted Adders, if weights meet
Eq. (4) and perform weighted sum of signals as in Eq. (6), we

*2 The spatio-temporal image derivative method is one of the methods to
obtain a velocity or a (sub-)pixel shift of moving images using spatio-
temporal derivative.

*3 A broadband low-pass filter here means a low-pass filter whose cut-off
frequency is more than the Nyquist frequency.
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Table 1 Experimental results of the CPU times in Aoki method.

Images

CPU time [s]

Position
estimation

Broadband
interpolation

Reconstruction using weighted adder

Weight
calculation

Weighted
sum

Bicubic
interpolation

Lena 1.68 0.34 1.62 1.40 2.34
Mandrill 1.35 0.31 1.56 1.55 2.56

(a) fΔ0 (x) (= fs(x)) is the signal sampled at the sampling angular frequency μs in f (x).

(b) fΔ1 (x) is the signal sampled at the sampling angular frequency μs in Δ1-shifted f (x).

(c) fΔ2 (x) is the signal sampled at the sampling angular frequency μs in Δ2-shifted f (x).

Fig. 3 Sampling with Δ0-, Δ1- and Δ2-shifted signals.

can remove these aliases and extract the original high frequencise
without aliases as shown in Eq. (5) and as in Fig. 2 (d). By apply-
ing inverse Fourier transform to the frequency-domain signal as
shown in Fig. 2 (d), we can have a complete original signal f (x)
theoretically*4.

Aoki method has several advantages as follows; First, Aoki
method can accommodate horizontal and vertical blur. Second, it
does not need very complex and iterative operations which con-
ventional reconstruction-based super-resolutions need by using
weighted adders in the reconstruction step. Finally, it can remove
the alias of observed images and restore their high frequencise
theoretically.

Now we demonstrate experimental evaluations on Aoki
method. In this experiment, we implement super-resolution pro-
cesses using Octave [10] on Intel Core i7 CPU at 2.13 clock GHz
whose memory size is 8.00 GB. We use two types of images
whose size is 128 × 128. In each image type, we use seven im-
ages to reconstruct a super-resolution image. In the position es-
timation step, we use traditional block matching where we use a
block size of 1 × 3 and a search window of 6 × 6-pixel size and
in the reconstruction using weighted adder step, we use bicubic

*4 Note that we cannot restore a complete original signal practically, since
we have numerical errors and interpolation errors.

interpolation [3]. As shown in Table 1, “Weighted sum” is one of
the most time-consuming processes. We focus on weighted sum
and speed-up it as a first step to speed-up the super-resolution
processes.

Reconstruction Using Weighted Adders:
Consider implementing a weighted adder to cancel out the alias

of each low-pass-filtered observed image. In the rest of this paper,
we consider 1-dimensional signals for simplicity, but the discus-
sion here can be applied to 2-dimensional images very easily.

Let f (x) be an original signal. fs(x) is the signal sampled at the
sampling angular frequency μs in f (x). fΔn (x) is the signal sam-
pled at the sampling angular frequency μs in f (x) which is shifted
by Δn (n = 1, 2, · · · ). We further define Δ0 = 0 and fΔ0 (x) = fs(x).

Note that, given a set of (n + 1) signals (n ≥ 2), Δn are de-
termined based on these (n + 1) signals. Thus, if we are given
another set of (n + 1) signals, we have to re-calculate Δn and thus
their associated weights.

For example, assume that we have an original signal f (x) and
its sampled signal fΔ0 (x) where we have no x-axis shifts (Δ0 = 0)
as in Fig. 3 (a). Assume also that we have signals g(x) and g′(x)
as in Figs. 3 (b) and 3 (c). Given a set of three signals f (x),
g(x), and g′(x), we have Δ1 and Δ2 where g(x) = f (x − Δ1)
and g′(x) = f (x − Δ2). Note that Δn is an x-axis shift in a 1-
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dimensional signal and this corresponds to a (sub-)pixel shift in
a 2-dimensional image. The estimation of Δn also corresponds to
the position estimation in a 2-dimensional image. After that, we
can calculate the weights w0, w1, and w2 based on the values of
Δ1 and Δ2 so that they can satisfy Eq. (4).

Let F(u) be the Fourier transform of f (x). Fs(u) and FΔ(u) are
the Fourier transforms of fs(x) and fΔn (x) (n = 0, 1, 2), respec-
tively, and they can be expressed by:

Fs(u) =
∞∑

k=−∞
F(u − kμs) (1)

FΔn (u) =
∞∑

k=−∞
e− j2πkΔn F(u − kμs). (2)

where Fs(u) = FΔ0 (u) since Δ0 = 0.
Assume the original signal f (x) has a bandwidth of twice

Nyquist frequency. If low-pass filters whose cut-off frequency is
the twice Nyquist frequency are applied to fs(x) = fΔ0 (x), fΔ1 (x)
and fΔ2 (x), the sum of these signals includes alias but all high
frequencise of the original f (x).

Let us consider the terms of k = 0 and k = ±1 in the above
Eqs. (1) and (2). By introducing the weights wn (n = 0, 1, 2), we
can compute the weighted-sum operation in frequency domain as
follows:∑

n=0,1,2

wnFΔn (u) =
∑

n=0,1,2

wnF(u)

+
∑

n=0,1,2

wne j2πΔn F(u + μs)

+
∑

n=0,1,2

wne− j2πΔn F(u − μs). (3)

If the weights wn meet the conditions as follows:∑
n=0,1,2

wn = 1 and
∑

n=0,1,2

wne j2πΔn = 0, (4)

we can remove all the alias and restore the high frequencies of the
original signal, i.e.,

Eq. (3) = F(u). (5)

In practice, we compute weighted-sum of them by using real
signals. Thus the reconstruction is finally expressed as follows
under the condition Eq. (4):∑

n=0,1,2

wn fΔn (x). (6)

Let us explain how to interpolate signals. We interpolate sig-
nals by using the sinc function. We assume the original signal
f (x) has a bandwidth of μs. The time-domain transfer function
h(x) corresponding to a window function whose cut-off frequency
is μs is expressed by:

h(x) =
sin (μsx)
μsx

. (7)

By using Eq. (7), we can interpolate signals as follows:

f (x) =
∑

n=0,1,2

wn fΔn (x) ⊗ h(x). (8)

where
∑

n=0,1,2

wn fΔn shows the weighted sum of sampled signals

and ⊗ shows convolution. In practice, we cannot execute interpo-
lation using the sinc fuction above directly, since it requires near-
infinite addition. Then we use bicubic interpolation [3] which ap-
proximates sinc-function-based interpolation.

3. Efficient Weighted Adders for Reconstruc-
tion in Super-Resolution

Bit-level transformation is one of the methods to optimize
arithmetic units [7]. In this section, we propose two bit-level
transformation techniques such that we can reduce partial prod-
ucts generated for reconstruction using weighted adders. First,
we propose a method that halves partial products by utilizing se-
lector logics. Second, we propose a weights-range limit method
that will reduce the partial products furthermore by utilizing a
negative term.

3.1 Bit-level Representation for Weighted Adders
Eq. (4) can be generalized for n inputs as follows:

w0 fΔ0 (x) + w1 fΔ1 (x) + · · · + wn−1 fΔn−1 (x) (9)

w0 + w1 + · · · + wn−1 = 1. (10)

We denote fΔn (x) as fn for simplicity.
An input signal f j is an m-bit signed fixed-point variable and

a weight w j is an m-bit unsigned fixed-point variable*5. They are

*5 We define f j to be an m-bit signed fixed-point signal due to the following
two reasons:

More generalized weighted adder:
By considering singed valuables, we can construct “more general”
weighted adders which can be applied to many applications other than
image processing.
The weight w j must be an unsigned variable because it is defined by
0 ≤ w j ≤ 1.

We employ an m-bit signed fixed-point variable so that we can apply
selector logics to weighted addition:
Even when we consider signed valuables, they can be easily applied to
image processing as follows:
In order to obtain an m-bit signed signal f j from an m-bit unsigned signal
g j, one of the easiest ways is just subtracting 2m−1, i.e., f j = g j − 2m−1.
This can be done by just inverting the MSB of g j. In our cell library,
1-bit inverter just requires 0.076 ns, which can be negligible.
A weight addition can be expressed by:

n−1∑
j=0

w j f j =

n−1∑
j=0

w j

(
g j − 2m−1

)
=

n−1∑
j=0

w j g j −
n−1∑
j=0

w j2
m−1. (11)

Using the definition of the weight as in Eq. (10), Eq. (11) can be trans-
formed into:

Eq. (11) =
n−1∑
j=0

w jg j − 2m−1. (12)

Finally, we have:

n−1∑
j=0

w jg j =

n−1∑
j=0

w j f j + 2m−1. (13)

Thus we can have a weighted sum of unsigned variables by using singed
variables and inverting its MSB.
When we use singed valuables, we can effectively use selector logics in
weighted addition as discussed in Section 3.2. Then, we can speed-up
the weighted addition by reducing partial products. As in our experi-
ments (Section 4), our selector-logic-based results are superior in terms
of circuit speed compared to other implementations, even when we con-
sider the delays to invert MSBs to convert unsigned signals into singed
signals and vice versa.
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represented by:

f j = − f j,(m−1)2
m−1 +

m−2∑
i=0

f j,i2
i (0 ≤ j ≤ n − 1) (14)

w j =

m−1∑
i=0

w j,i2
i−m (0 ≤ j ≤ n − 1), (15)

where f j,i represents the i-th bit of f j and w j,i represents the i-th
bit of w j. Since we use here a 2’s complementary form,

(
− f j

)
and(

−w j

)
are expressed by:

− f j = − f j,(m−1)2
m−1 +

m−2∑
i=0

f j,i2
i + 1 (16)

−w j = −1 · 20 +

m−2∑
i=0

w j,i2
i−m + 1 · 2−m. (17)

By using Eqs. (14)–(17), we will perform a bit-level transfor-
mation to Eq. (9) such that a selector logic can be applied to them.

Let us explain a bit-level transformation for a weighted adder
with three input signals (n = 3). Using Eqs. (10) and (15), Eq. (9)
with n = 3 can be transformed into:

(
Eq. (9)

)∣∣∣
n=3

= w0 f0 + w1 f1 + w2 f2

= (1 − w1 − w2) f0 + w1 f1 + w2 f2

= f0 + ( f1 − f0)
m−1∑
i=0

w1,i2
i−m + ( f2 − f0)

m−1∑
i=0

w2,i2
i−m

= f0 + f1
m−1∑
i=0

w1,i2
i−m + f0

⎛⎜⎜⎜⎜⎜⎜⎝−
m−1∑
i=0

w1,i2
i−m

⎞⎟⎟⎟⎟⎟⎟⎠

+ f2
m−1∑
i=0

w2,i2
i−m + f0

⎛⎜⎜⎜⎜⎜⎜⎝−
m−1∑
i=0

w2,i2
i−m

⎞⎟⎟⎟⎟⎟⎟⎠ . (18)

Using Eq. (17), we have:

−
m−1∑
i=0

w1,i2
i−m = −1 +

m−1∑
i=0

w1,i2
i−m + 1 · 2−m

−
m−1∑
i=0

w2,i2
i−m = −1 +

m−1∑
i=0

w2,i2
i−m + 1 · 2−m. (19)

Using Eqs. (14) and (19), Eq. (18) can be transformed into:

Eq. (18)

=
(
− 1 + 2−m+1

)
f0

+

⎧⎪⎪⎨⎪⎪⎩ f0
m−1∑
i=0

w1,i2
i−m + f1

m−1∑
i=0

w1,i2
i−m

⎫⎪⎪⎬⎪⎪⎭
+

⎧⎪⎪⎨⎪⎪⎩ f0
m−1∑
i=0

w2,i2
i−m + f2

m−1∑
i=0

w2,i2
i−m

⎫⎪⎪⎬⎪⎪⎭ (20)

= − f0
��
+ f02−m+1

+

m−1∑
i=0

{ f0,(m−1)(−w1,i) + f1,(m−1)(−w1,i) + f0,(m−1)(−w2,i)

+ f2,(m−1)(−w2,i)}2i−1

+

m−2∑
i=0

m−1∑
j=0

(
f0,iw1, j + f1,iw1, j + f0,iw2, j + f2,iw2, j

)
2i+ j−m.

(21)

First, we propose a method that halves partial products by uti-
lizing selector logics (Section 3.2). Second, we will focus on
the negative term with the wavy line in Eq. (21) and propose a
weights-range limit method that will reduce the partial products
furthermore (Section 3.3).

For example, a weighted adder for reconstruction with n = 3
and m = 4 originally generates 88 partial products, which cor-
responds to Eq. (24) and Fig. 4 (a). By using our proposed ap-
proaches in Section 3.2 and Section 3.3, they will be reduced to
33 as in Fig. 4 (c). Overall, we can realize extremely fast weighted
adders.

3.2 Reducing Partial Products by Using Selector Logics
In this subsection, we propose a bit-level transformation tech-

nique such that a selector logic can be applied to a weighted
adder.

First, the double-underlined term in Eq. (21) can be trans-
formed into:

m−1∑
i=0

f0,(m−1)
(−w1,i

)
2i−1= f0,(m−1)

m−1∑
i=0

(
1 − w1,i − 1

)
2i−1

= f0,(m−1)

⎛⎜⎜⎜⎜⎜⎜⎝−1 · 2m−1 +

m−1∑
i=0

w1,i2
i−1 + 2−1

⎞⎟⎟⎟⎟⎟⎟⎠

m−1∑
i=0

f1,(m−1)
(−w1,i

)
2i−1= f1,(m−1)

m−1∑
i=0

(
1 − w1,i − 1

)
2i−1

= f1,(m−1)

⎛⎜⎜⎜⎜⎜⎜⎝−1 · 2m−1 +

m−1∑
i=0

w1,i2
i−1 + 2−1

⎞⎟⎟⎟⎟⎟⎟⎠

m−1∑
i=0

f0,(m−1)
(−w2,i

)
2i−1= f0,(m−1)

m−1∑
i=0

(
1 − w2,i − 1

)
2i−1

= f0,(m−1)

⎛⎜⎜⎜⎜⎜⎜⎝−1 · 2m−1 +

m−1∑
i=0

w2,i2
i−1 + 2−1

⎞⎟⎟⎟⎟⎟⎟⎠

m−1∑
i=0

f2,(m−1)
(−w2,i

)
2i−1= f2,(m−1)

m−1∑
i=0

(
1 − w2,i − 1

)
2i−1

= f2,(m−1)

⎛⎜⎜⎜⎜⎜⎜⎝−1 · 2m−1 +

m−1∑
i=0

w2,i2
i−1 + 2−1

⎞⎟⎟⎟⎟⎟⎟⎠ .
(22)

Using Eq. (14), f02−m+1 in Eq. (21) can be transformed into:

f02−m+1 = f0 × 2−m+1 = − f0,(m−1) +

m−2∑
i=0

f0,i2
i−m+1. (23)

Using Eqs. (22) and (23), Eq. (21) can be transformed into:

Eq. (21) = − f0 − (
2 f0,(m−1) + f1,(m−1) + f2,(m−1)

)
2m−1
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(a) Partial products generated by Eq. (21) with m = 4 and
n = 3.

(b) Partial products using selector logics.

(c) Partial products using the weights-range limit method.

Fig. 4 Partial products generated for reconstruction using weighted adders with m = 4 and n = 3 using
selector logics.

+

m−1∑
i=0

( f0,(m−1)w1,i + f1,(m−1)w1,i + f0,(m−1)w2,i

+ f2,(m−1)w2,i)2
i−1

+ (2 f0,(m−1) + f1,(m−1) + f2,(m−1))2
−1 − f0,(m−1)

+

m−2∑
i=0

f0,i2
i−m+1

+

m−2∑
i=0

m−1∑
j=0

( f0,iw1, j + f1,iw1, j + f0,iw2, j

+ f2,iw2, j)2
i+ j−m

= − f0 − (
2 f0,(m−1) + f1,(m−1) + f2,(m−1)

)
2m−1

+

m−1∑
i=0

( f0,(m−1)w1,i + f1,(m−1)w1,i + f0,(m−1)w2,i

+ f2,(m−1)w2,i)2
i−1

+ f0,(m−1)2
0 + ( f1,(m−1) + f2,(m−1))2

−1 − f0,(m−1)

+

m−2∑
i=0

f0,i2
i−m+1

+

m−2∑
i=0

m−1∑
j=0

( f0,iw1, j + f1,iw1, j + f0,iw2, j

+ f2,iw2, j)2
i+ j−m

= − f0 − (
2 f0,(m−1) + f1,(m−1) + f2,(m−1)

)
2m−1

+

m−1∑
i=0

(
f0,(m−1)w1,i + f1,(m−1)w1,i

+ f0,(m−1)w2,i + f2,(m−1)w2,i

)
2i−1

+
(
f1,(m−1) + f2,(m−1)

)
2−1 +

m−2∑
i=0

f0,i2
i−m+1

+

m−2∑
i=0

m−1∑
j=0

(
f0,iw1, j + f1,iw1, j

+ f0,iw2, j + f2,iw2, j

)
2i+ j−m. (24)
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Selector Logics:
Let us focus on underlined terms in Eq. (24). They have a form

which is completely the same as the selector logic represented by
an expression below:

d = ac + bc, (25)

where a, b, c and d are 1-bit variables. The output value d is set
to be a or b by using the select signal c. This expression can be
implemented by two logical ANDs and a logical OR but it can be
also implemented by a “selector.”

The output range of the selector logic is expressed by

0 ≤ |ac + bc| ≤ 1. (26)

In other words, it generates no carry-out, since the output of the
selector logic becomes 0 or 1. Generally speaking, any arithmetic
operation which has two or three 1-bit inputs and whose output
range is greater than one generates a carry-out. For example, a
full adder and a half adder used very often in arithmetic units
must generate a sum and a carry-out. This means that, if we can
apply selector logics to the underlined terms in Eq. (24), carry
propagation must be reduced. As shown in Fig. 4 (b), a selector
logic directly computes each of the underlined terms in Eq. (24).
We can reduce partial products by pre-computating them. Since
selector logics generate no carry-outs, this precomputation can be
done very fast.

How to Reduce Negative Terms:
Additionally, let us focus on the negative terms in Eq. (24)

whose coefficient is 2m−1. A weighted-sum of any m-bit in-
put signals results in a (2m + 1)-bit signed fixed-point value.
Each of the negative terms in Eq. (24) whose coefficient is
2m−1 affects not only 2m−1-th digit but 2m-th digit and 2m+1-
th digit. For example, we require 12 partial products for(− (

2 f0,(m−1) + f1,(m−1) + f2,(m−1)
)

2m)
. Its overhead may be too

large.
Thus we perform a bit-level transformation to them as follows:

− (
2 f0,(m−1) + f1,(m−1) + f2,(m−1)

)
2m−1

=
{
−2

(
1 − f0,(m−1)

)
−

(
1 − f1,(m−1)

)
−

(
1 − f2,(m−1)

)}
2m−1

= −2m+1 + f0,(m−1)2
m +

(
f1,(m−1) + f2,(m−1)

)
2m−1. (27)

By applying this transformation, the number of partial products
required for

(− (
2 f0,(m−1) + f1,(m−1) + f2,(m−1)

)
2m)

is reduced from
12 to 4.

Assigning Eq. (27) to Eq. (24) leads to:

Eq. (24)

= − f0
��
− 2m+1 + f0,(m−1)2

m +
(

f1,(m−1) + f2,(m−1)

)
2m−1

+

m−1∑
i=0

(
f0,(m−1)w1,i+ f1,(m−1)w1,i+ f0,(m−1)w2,i+ f2,(m−1)w2,i

)
2i−1

+
(
f1,(m−1) + f2,(m−1)

)
2−1 +

m−2∑
i=0

f0,i2
i−m+1

(a) Weight decomposed into two parts.

(b) Limiting the first k j bits as zero.

Fig. 5 A weights-range limit method.

+

m−2∑
i=0

m−1∑
j=0

(
f0,iw1, j + f1,iw1, j + f0,iw2, j + f2,iw2, j

)
2i+ j−m.

(28)

For example, Eq. (24) with n = 3 and m = 4 originally gen-
erates 88 partial products. By using selector logics, they are re-
duced to 49 as in Figs. 4 (a) and 4 (b).

3.3 Reducing Partial Products by Using a Weights-range
Limit Method

In this subsection, we propose a weights-range limit method
that can reduce partial products by focusing on the negative term
underlined with the wavy line in Eq. (28). First, we decompose
the weight w j defined by Eq. (15) as in Fig. 5 (a) into the follow-
ing two parts:

w j =

m−1∑
i=0

w j,i2
i−m =

m−1∑
i=m−k j

w j,i2
i−m +

m−1−k j∑
i=0

w j,i2
i−m. (29)

Since Eq. (28) is transformed from Eq. (20), Eq. (28) can be
transformed into:

Eq. (28) = Eq. (20)

= (−1 + 2−m+1) f0

+

⎧⎪⎪⎨⎪⎪⎩ f0
m−1∑
i=0

w1,i2
i−m + f1

m−1∑
i=0

w1,i2
i−m

⎫⎪⎪⎬⎪⎪⎭

+

⎧⎪⎪⎨⎪⎪⎩ f0
m−1∑
i=0

w2,i2
i−m + f2

m−1∑
i=0

w2,i2
i−m

⎫⎪⎪⎬⎪⎪⎭ . (30)

Assigning Eq. (29) to Eq. (30) leads to:

Eq. (30) = f02−m+1+

⎛⎜⎜⎜⎜⎜⎜⎝−1+
m−1∑

i=m−k1

w1,i2
i−m+

m−1∑
i=m−k2

w2,i2
i−m

⎞⎟⎟⎟⎟⎟⎟⎠ f0

+ f1
m−1∑

i=m−k1

w1,i2
i−m + f2

m−1∑
i=m−k2

w2,i2
i−m

+

⎧⎪⎪⎨⎪⎪⎩ f0

m−1−k1∑
i=0

w1,i2
i−m + f1

m−1−k1∑
i=0

w1,i2
i−m

⎫⎪⎪⎬⎪⎪⎭

+

⎧⎪⎪⎨⎪⎪⎩ f0

m−1−k2∑
i=0

w2,i2
i−m + f2

m−1−k2∑
i=0

w2,i2
i−m

⎫⎪⎪⎬⎪⎪⎭ . (31)

Let us focus on the underlined terms in Eq. (31). Assume that
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w j,i (m − k j ≤ i ≤ m − 1) for the weight w j is zero as in Fig. 5 (b).
In Fig. 5 (b), * shows 0 or 1 and the first k j bits are zero. Then the
underlined terms in Eq. (31) will be transformed into:

⎛⎜⎜⎜⎜⎜⎜⎝−1 +
m−1∑

i=m−k1

w1,i2
i−m +

m−1∑
i=m−k2

w2,i2
i−m

⎞⎟⎟⎟⎟⎟⎟⎠ f0

+ f1
m−1∑

i=m−k1

w1,i2
i−m + f2

m−1∑
i=m−k2

w2,i2
i−m

=

⎛⎜⎜⎜⎜⎜⎜⎝−1 +
m−1∑

i=m−k1

2i−m +

m−1∑
i=m−k2

2i−m

⎞⎟⎟⎟⎟⎟⎟⎠ f0

= (−1 + 1 − 2−k1 + 1 − 2−k2 ) f0

= (1 − 2−k1 − 2−k2 ) f0. (32)

How to Define k j:
Now let us focus on the value k j. Consider the case that w0 is

the maximum among w0, w1 and w2*6.
In this case, we have w1 < 1/2 and w2 < 1/2 since w0 + w1 +

w2 = 1. This means that the first bit of w1 and w2 must be zero,
i.e., w1,(m−1) = w2,(m−1) = 0 in Eq. (15). Overall, this discussion
leads to k1 = 1 and k2 = 1. Assigning k1 = k2 = 1, Eq. (32) = 0.
Then we have

Eq. (30) = f02−m+1

+

⎧⎪⎪⎨⎪⎪⎩ f0
m−2∑
i=0

w1,i2
i−m + f1

m−2∑
i=0

w1,i2
i−m

⎫⎪⎪⎬⎪⎪⎭

+

⎧⎪⎪⎨⎪⎪⎩ f0
m−2∑
i=0

w2,i2
i−m + f2

m−2∑
i=0

w2,i2
i−m

⎫⎪⎪⎬⎪⎪⎭ . (33)

Using Eqs. (22), (23) and (27) in the same way, (33) can be
transformed into:

Eq. (24)

= − f0,(m−1) +

m−2∑
i=0

f0,i2
i−m+1

+

m−1∑
i=0

{
f0,(m−1)(−w1,i

)

+ f1,(m−1)
(−w1,i) + f0,(m−1)

(−w2,i
)
+ f2,(m−1)

(−w2,i
)}

2i−1

+

m−2∑
i=0

m−2∑
j=0

( f0,iw1, j + f1,iw1, j + f0,iw2, j + f2,iw2, j)2
i+ j−m

= − (
2 f0,(m−1) + f1,(m−1) + f2,(m−1)

)
2m−1

+

m−2∑
i=0

( f0,(m−1)w1,i + f1,(m−1)w1,i + f0,(m−1)w2,i

*6 We cannot say that w0 is always the maximum. If w0 is not the maxi-
mum, we have to re-arrange the weights and signals accordingly so that
w0 is the maximum. If we know the maximum weight beforehand such
as in the weight calculation, it is very easy to re-arrange them. But, if we
do not have the maximum weight beforehand, we have to add an extra
process to obtain the maximum weight. In our experiments in Section 4,
we have obtained the weights of w0 = 0.359, w1 = 0.186, w2 = 0.185,
w3 = 0.092, w4 = 0.079, w5 = 0.053, and w6 = 0.046, and w0 was the
maximum of them.
Note that Section 3.2 can be applied to any case of weighted addition
whatever weights we have.

+ f2,(m−1)w2,i)2
i−1

+
(
2 f0,(m−1) + f1,(m−1) + f2,(m−1)

)
2−1 − f0,(m−1)

+

m−2∑
i=0

f0,i2
i−m+1

+

m−2∑
i=0

m−2∑
j=0

( f0,iw1, j + f1,iw1, j + f0,iw2, j + f2,iw2, j)2
i+ j−m

= −2m+1 + f0,(m−1)2
m +

(
f1,(m−1) + f2,(m−1)

)
2m−1

+

m−1∑
i=0

(
f0,(m−1)w1,i + f1,(m−1)w1,i

+ f0,(m−1)w2,i + f2,(m−1)w2,i

)
2i−1

+
(
f1,(m−1) + f2,(m−1)

)
2−1 +

m−2∑
i=0

f0,i2
i−m+1

+

m−2∑
i=0

m−2∑
j=0

(
f0,iw1, j + f1,iw1, j + f0,iw2, j + f2,iw2, j

)
2i+ j−m.

(34)

Let us focus on underlined terms in Eq. (34). The terms have a
form which we can apply selector logics to. Thus not only the
weights-range limit method but also selector logics can be ap-
plied to weighted addition.

For example, Fig. 4 (b) has 49 partial products. Using the
weights-range limit method above, they will be reduced to 33
as in Fig. 4 (c). We can expect that a weighted adder in super-
resolution will be much faster than the one realized by a conven-
tional method.

Weighted Adder for Reconstruction with n input images:
The discussion above can be applied similarly to weighted

adders in super-resolution which require n input images. If the
value k j meets the condition below:

0 = 1 − (2−k1 + · · · + 2−kn−1 ), (35)

an weighted adder for reconstruction which requires n input im-
ages can be expressed as follows:

Eq. (9) =

⎧⎪⎪⎨⎪⎪⎩−(n − 1) f0,(m−1) −
n−1∑
i=1

fi,(m−1)

⎫⎪⎪⎬⎪⎪⎭ 2m−1

+

m−2∑
i=0

n−1∑
j=0

{
f0,(m−1)w j,i + f j,(m−1)w j,i

}
2i−1

+

m−2∑
i=0

f0,i2
i−m+1 +

n−1∑
i=0

fi,(m−1)2
−1

+

n−1∑
i=1

m−1−ki∑
j=0

m−1∑
l=0

(
wi, j f0,l + wi, j f j,l

)
2 j+l−m. (36)

4. Experimental Results

In this section, we demonstrate experimental evaluations. In
this experiment, we assume that one pixel has a bit-length of
eight (m = 8) for input images and the number of required in-
put images for super-resolution based on a frequency-domain ap-
proach is seven (n = 7) according to [14]. We have compared our
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Table 2 Experimental results.

Method Delay time [ns] Area
[
µm2

]
Arithmetic operators 2.28 (100%) 5,718 (100%)

BLF 2.30 (101%) 8,879 (155%)
Redundant binary method 1 2.04 (89%) 7,258 (127%)
Redundant binary method 2 2.61 (114%) 9,025 (158%)

Proposed approach 1 (BLF+SL) 2.06 (90%) 4,942 (86%)
Proposed approach 2 (BLF+SL+WRL) 1.95 (86%) 3,316 (58%)

weighted adders with the ones as follows:

Arithmetic operators: In this method, we use conventional
arithmetic operators such as plus (+), minus (−) and mul-
tiply (∗). In our experiences, Design Compiler using arith-

metic operators synthesizes very much fast arithmetic cir-
cuits based on many optimizing techniques.

Bit-level transformation (BLF): In BLF method, the partial
products generated by bit-level transformation in Eq. (24)
are added up by Design Compiler.

Redundant binary method 1: In this method, the partial prod-
ucts in in Eq. (24) are added up by redundant binary
adders (RBA) [6]. A redundant binary method generates
carry propagation at most once by introducing redundant
representations; x ∈ {−1, 0, 1} and speeds up repeated arith-
metic operations. By using a redundant binary addition tree,
the weighted-sum can be faster because it includes many ad-
dition.

Redundant binary method 2: The result of Redundant binary
method 1 is expressed by redundant binary form. It is nec-
essary to decode redundant binary values into normal binary
values. In addition to Redundant binary method 1 above, we
add the decoder converting the result of Redundant binary
method 1 into normal binary values.

Proposed method 1 (Bit-level transformation + Selector-
logics (BLF+SL)):

In BLF+SL method, selector logics are applied to the partial
products generated by Eq. (28) and they are added up by
Design Compiler.

Proposed method 2 (Bit-level transformation + Selector-
logics +Weights-range limit method (BLF+SL+WRL)):

In BLF+SL+WRL method, selector logics and the weights-
range limit method are applied to the partial products
generated by Eq. (34) and they are added up by Design
Compiler*7.

We used Design Compiler Version B-2008.09-SP4 with the
cell libraries in STARC CMOS 90nm to synthesize them where
its objective function is to minimize their delays with no area con-
straints. Experimental results are shown in Table 2. Our proposed
weighted adder (BLF+SL+WRL) has smaller delays than the
ones using other designing methods. Comparing Our proposed
method 2 (BLF+SL+WRL) with BLF and Proposed method 1

*7 As discussed in Section 3.3, the weights-range limit method can be ap-
plied to the case where the weight w0 is the maximum. In this sense,
Proposed method 1 (BLF+SL) is more general than Proposed method 2
(BLF+SL+WRL).

(BLF+SL), using selector logics improves the performance by
11.65% and using the weights-range limit method improves it by
5.641%.

Redundant binary method 1 has smaller delays than arith-
metic operators, BLF and Proposed method 1 (BLF+SL). But
Redundant binary method 2 has larger delays than the ones us-
ing other designing methods. Then we have compared our pro-
posed methods 1 and 2 with the Redundant binary methods 1 and
2. Our proposed method 1 (BLF+SL) can improve the perfor-
mance by 21.07% compared with Redundant binary method 2.
Our proposed method 2 (BLF+SL+WRL) can improve the per-
formance by 4.612% furthermore compared with Redundant bi-
nary method 1 and by a maximum of 25.29% compared with Re-
dundant binary method 2.

5. Conclusions

In this paper, we proposed a fast weighted adder for
reconstruction-based super-resolution. From the viewpoint of re-
ducing partial products, we propose two approaches to speed up
a weighted adder. First, we use selector logics to halve its par-
tial products. Second, we propose a weights- range limit method
utilizing negative term. Applying our proposed approaches to
a weighted adder, we can reduce carry propagations and our
weighted adder can be designed very fast compared to conven-
tional ones.

Experimental results show that our proposed weighted adder
(BLF+SL+WRL) improves its performance by a maximum of
25.29% and reduces its area to up to 1/3, compared to conven-
tional ones.

In the future, we will design overall super-resolution hardware
using our proposed weighted adder and demonstrate its effective-
ness.
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