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Abstract: It is becoming more and more important to make use of personal or classified information while keeping
it confidential. A promising tool for meeting this challenge is secure multi-party computation (MPC). However, one
of the biggest problems with MPC is that it requires a vast amount of communication. We analyzed existing MPC
protocols and found that the random number bitwise-sharing protocol used by many of them is notably inefficient.
By devising a representation of the truth values and using special form prime numbers, we propose efficient random
number bitwise-sharing protocols, dubbed “Extended-Range I and II,” which reduce the communication complexity
to approximately 1/6th that of the best of the existing such protocol. We reduced the communication complexity to
approximately 1/26th by reducing the abort probability, thereby making previously necessary backup computation
unnecessary. Using our improved protocol, “Lightweight Extended-Range II,” we reduced the communication com-
plexities of equality testing, comparison, interval testing, and bit-decomposition, all of which use the random number
bitwise-sharing protocol, by approximately 91, 79, 67, and 23% (for 32-bit data), respectively. We also reduce the
communication complexity of private exponentiation by about 70% (for 32-bit data and five parties).
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1. Introduction

Although gathering personal information (e.g., a person’s age,
address, and buying history) and using it directly or via data min-
ing enable the provision of higher quality services, leakage of
such information has become a serious problem. Similarly, while
utilization of sensor logs can be profitable, their leakage is prob-
lematic. Moreover, in cloud computing, the confidentiality of re-
motely located personal or classified information must be guar-
anteed. It has thus become crucial to balance data availability
against information confidentiality.

A promising tool for meeting this challenge is secure multi-
party computation (MPC). Here we focus on MPC based on
Shamir’s (k, n) threshold secret sharing [10] in which a “share,”
or snippet, of secret information is distributed to n parties, and
the parties can reconstruct the secret by gathering k shares.

MPC based on Shamir’s scheme enables multiple parties to
obtain the function value f (s1, . . . , st) without revealing secrets
s1, . . . , st. Various existing protocols (e.g., addition, multiplica-
tion, equality testing, and comparison) [2], [4], [5], [6], [7], [8],
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[11] enable the construction of the function for using personal or
classified information, so they can be used to balance data avail-
ability against information confidentiality.

However, one of the biggest problems with MPC is that it re-
quires a vast amount of communication and thus a vast amount
of processing time. The multiplication protocol, which obtains
the product of secrets a, b ∈ Zp, requires n(n − 1) times of com-
munication since n parties communicate with each other. The
complexity of MPC for protocols other than for multiplication,
such as for comparison and equality testing, is evaluated in terms
of the number of times the multiplication protocol is used. Much
research has gone into making these other protocols more effi-
cient by reducing the number of multiplications and parallelizing
them [4], [6], [7], [8], [11]. For example, the comparison of two
32-bit secrets among five parties requires 36,640 multiplications
and 44 rounds (number of parallel multiplications), resulting in
approximately 2.8 MB of information being communicated [4].
Nishide and Ohta improved this protocol so that only 8,933 mul-
tiplications are required and 698 KB of information is communi-
cated [8]. However, the protocol still requires a vast amount of
communication, and parallelization of multiplications does not
reduce the amount of information communicated. Hence it is re-
quired to make the protocols more efficient.

In this work, we analyzed the existing protocols and found
that the random number bitwise-sharing protocol used by many
of them is notably inefficient. For the comparison above, it ac-
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counts for 7,296 of the 8,933 multiplications. Though Toft im-
proved this protocol [11] so that only 5,424 multiplications are
required, it is still the dominant protocol. On the basis of our
analysis, we construct five protocols for more efficient random
number bitwise-sharing and use them to improve the efficiency
of higher level protocols (such as comparison and equality test-
ing) that use the random number bitwise-sharing protocol. Our
protocols are based on two novel ideas.

The first idea is to use a new representation of the truth values.
The random number bitwise-sharing protocol first generates can-
didates for �-bit random number r in binary form. This random
number must be less than the prime p used in the underlying se-
cret sharing scheme. While existing protocols represent the result
of the r < p comparison as either 1 or 0, we remove inefficient
bit operations by replacing these values with 0 and a non-zero
value and using a special form prime number, p. On the basis of
this idea, we construct two protocols, dubbed “Extended-Range I
and II.”

The second idea is to reduce the probability that the protocol
aborts. If random number candidate r is not less than p, the proto-
col aborts and the parties retry. The abort probability for existing
protocols is approximately 1/2 in the worst case. To reduce this
probability to less than 1/2κ, where κ is a predefined parameter,
existing protocols generate alternative candidates. We improved
our Extended-Range protocols so that they have an inherent abort
probability of less than 1/2κ, making the generation of alternative
candidates unnecessary. These improved protocols are dubbed
“Lightweight Extended-Range I, II, and III.”

All five of the proposed protocols reduce the communication
complexity and the round complexity, i.e., the number of paral-
lel multiplications, for equality testing, comparison, interval test-
ing, and bit-decomposition, which use random number bitwise-
sharing. The Lightweight Extended-Range II protocol, for exam-
ple, reduces the communication complexities by about 91, 79, 67,
and 23%, respectively (for 32-bit data). It also reduces the com-
munication complexity of private exponentiation by about 70%
(for 32-bit data and five parties). Our protocols are fundamental
to sharing random number r ∈ Zp in binary form and can be ap-
plied to other higher level protocols. We describe our protocols as
they are applied to the “honest-but-curious” model. Application
of standard techniques will make them more robust.

The organization of this paper is as follows. In Section 2 we
analyze existing MPC protocols. In Section 3 we introduce our
Extended-Range protocols and discuss their correctness, com-
plexity, and security. In Section 4 we introduce our improved
Lightweight Extended-Range protocols and discuss their com-
plexity, correctness, and security. In Section 5 we describe the
application of these protocols to higher level protocols and dis-
cuss their complexities. We conclude in Section 6 with a sum-
mary of the key points.

2. Related Work

2.1 Notation
• p: an �-bit prime number
• Zp: a set of integer x where 0 ≤ x < p

• [a]: a set of shares of secret a ∈ Zp

• [a] + [b]: shares of addition [a + b (mod p)] where secrets
a, b ∈ Zp

• [a] × [b]: shares of multiplication [a × b (mod p)] where
secrets a, b ∈ Zp

• [a = b]: shares of result of equality testing a = b where
secrets a, b ∈ Zp

• [a < b]: shares of result of comparison a < b where secrets
a, b ∈ Zp

• [ai]B: i’th bit shares of a ∈ Zp

• [a]B: set of all bit shares of a ∈ Zp; i.e., [a]B= {[ai]B|0≤ i<�}

2.2 Shamir’s (k, n) Threshold Secret Sharing
Given a secret s ∈ Zp, Shamir’s (k, n) threshold secret sharing

scheme [10] generates a polynomial,

f (x) = s + r1x + r2x2 + · · · + rk−1xk−1 (mod p), (1)

where ri ∈ Zp is a random number (1 ≤ i ≤ k − 1). Each of n

parties Pd is given a share, f (d) (1 ≤ d ≤ n). To reconstruct the
secret, the parties must gather k shares.

2.3 Multi-party Computation based on Secret Sharing
Scheme

Because communication complexity is more dominant than lo-
cal computational complexity, complexity for MPC is evaluated
in terms of the communication complexity. Basic protocols for
MPC are addition and multiplication. Given secrets a, b ∈ Zp,
the addition protocol obtains [c] = [a + b (mod p)] without re-
vealing a, b. To compute [c], each party simply adds [a] and [b]
on Zp independently. The complexity of the addition protocol is
negligible since communication is unnecessary.

Given secrets a, b ∈ Zp, the multiplication protocol obtains
[c] = [a × b (mod p)] without revealing a, b. The details are
reported elsewhere [2], [5]. The communication complexity of
the multiplication protocol is evaluated on the basis of the num-
ber of times the parties communicate with each other. As men-
tioned above, one invocation of the multiplication protocol re-
quires n(n−1) communications since n parties communicate with
each other. However, if secret a ∈ Zp and public value e ∈ Zp are
given, the computation of [c] = [a × e] requires no communica-
tion. Moreover, the complexity of computing any second-order
polynomial, such as [c] = [a2 + b2], is one multiplication opera-
tion [9].

Most existing MPC protocols use addition and multiplication,
so their communication complexity is evaluated in terms of the
number of multiplications required. The round complexity is also
important in these protocols. We call protocols that use addition
and multiplication “higher level protocols.”

2.4 Problem of Multi-party Computation
One of the biggest problems with MPC is that it requires a vast

amount of communication. The multiplication protocol requires
n(n−1) communications, and higher level protocols require much
more communications.

Proposals have been made for improving each protocol.
Damgård et al. [4] proposed bit-decomposition, which requires
94� log2 � + 93� multiplications and 38 rounds as well as
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Table 1 Complexities of higher level protocols and of Joint Random Number Bitwise-Sharing (JRNBS)
protocol used in them.

Overall JRNBS
Protocol Comm. Rounds Comm. Rounds

Equality testing [8] 81� 8 76� 7

Comparison [8] 279� + 5 15 228� 7

Interval testing [8] 110� + 1 13 76� 7

Bit-Decomposition [11] 31� log2 � + 71� + 30
√
� 23 52� + 24

√
� 7

Private exponentiation [7] 157�+(20n+36)
√
�+10n+8 24 128�+24

√
� 7

several protocols based on his improved bit-decomposition.
Nishide et al. [8] improved several protocols by eliminating bit-
decomposition, but they also reduced the complexity of bit-
decomposition to 47� log2 � + 93� multiplications and 25 rounds.
Recently, Toft [11] focused on and improved bit-decomposition
so that it requires 31� log2 � + 71� + 30

√
� multiplications and

23 rounds. However, the protocols still require a vast amount of
communication. For example, comparing two 32-bit secrets us-
ing the Nishide’s protocol [8] requires 8,933 multiplications.

The complexities of random number sharing account for a sub-
stantial portion of the complexity of the higher level protocols.
The Joint Random Number Bitwise-Sharing protocol is particu-
larly dominant. For example, it accounts for 76� multiplications
and 7 rounds out of total 81� multiplications and 8 rounds for
equality testing. Even with Toft’s improvement [11], the com-
plexity is still 54� + 24

√
� multiplications and 7 rounds, and it

is still dominant, as shown in Table 1. Cramer et al. proposed
a protocol for pseudo-random secret sharing [3], but this proto-
col does not generate bitwise shares. Though most of the higher
level protocols require both a random bitwise number and a ran-
dom non-bitwise number, Cramer’s protocol only cannot effec-
tively reduce their complexity since the random bitwise number
protocol is much more inefficient than the non-bitwise one.

2.5 Protocols for Random Number Sharing
2.5.1 Joint Random Number Sharing

This protocol generates shares [r] where r ∈ Zp is a uniformly
random number [1]. Though this protocol contains no multiplica-
tion, the complexity is evaluated as 1 multiplication and 1 round
since communication is necessary.
2.5.2 Joint Random Non-zero Sharing

This protocol generates shares [r∗] where r∗ is a uniformly non-
zero random value. The complexity of this protocol is 3 multipli-
cations and 2 rounds. The procedure of this protocol is as follows.
First, the parties generate two sets of shares of uniformly random
numbers r1, r2 ∈ Zp. Next, obtain [s] = [r1]× [r2] and reveal s. If
s = 0, the parties retry. If s � 0, the parties output [r1].
2.5.3 Joint Random Bit Sharing

This protocol generates shares of a uniformly random bit [r]
where r ∈ {0, 1}. The complexity is 2 multiplications and 2
rounds [4].
2.5.4 Joint Random Number Bitwise-Sharing

This protocol generates bitwise shares of a uniformly random
number [r]B where r ∈ Zp. Though required for various higher
level protocols, this protocol is quite inefficient. The complexity
is 76� multiplications and 7 rounds [8].

The general procedure of this protocol is as follows. First, gen-

erate bitwise shares [r]B by applying Joint Random Bit Sharing
� times. Next, using the Bitwise Less-Than protocol, obtain the
result of r < p without revealing r, and then output [r]B if r < p.
Otherwise, the parties retry.

The Bitwise Less-Than protocol accounts for 68� multiplica-
tions and 7 rounds out of the total 76� multiplications and 7
rounds of Joint Random Number Bitwise-Sharing.

The procedure of the Bitwise Less-Than protocol is as fol-
lows [4]. Let pi be the i’th bit of �-bit prime p.
( 1 ) For 0 ≤ i < �, compute [ci] = [ri ⊕ pi] = [ri] + pi − 2pi[ri].
( 2 ) For each i, compute [di] = ∨�−1

j=i [c j] using the Prefix-Or pro-
tocol [4], [8].

( 3 ) For each i, compute [ei] = [di − di+1] where [e�−1] = [d�−1].
( 4 ) Compute [r < p] =

∑�−1
i=0 (pi × [ei]).

Toft improved Joint Random Number Bitwise-Sharing and re-
duced its complexity to 52� + 24

√
� multiplications. However,

the round complexity is still 7. In this work, we reduce the com-
plexity further by making the Bitwise Less-Than protocol more
efficient.

3. Extended-Range Protocols

Our proposed Joint Random Number Bitwise-Sharing proto-
cols, “Extended-Range I and II,” generate bitwise shares [r]B

where r is a uniformly random number r ∈ Zp.

3.1 Key Ideas of Extended-Range Protocols
As shown in Fig. 1, the main procedure of the Extended-Range

protocols is as follows.
( 1 ) Generate bitwise shares [r]B by applying Joint Random Bit

Sharing � times.
( 2 ) Obtain the result of [z] = [r < p] by applying the Bitwise

Less-Than protocol.
( 3 ) Reveal z. If z = 0, output [r]B. If z is a non-zero value, the

parties retry.
The existing Bitwise Less-Than protocol outputs [1] if r < p,
otherwise [0]. A key idea of the Extended-Range protocols is
to replace the values output by the Bitwise Less-Than protocol
with [0] and a non-zero value. Another is to assume that prime p

satisfies some requirements that can still be practical in the real
applications.

We focus on the second step (i.e., the Bitwise Less-Than pro-
tocol) since the other protocols used in the Extended-Range pro-
tocols are the same as in the existing protocols. Given � bitwise
shares [r]B and a public prime p, our Bitwise Less-Than proto-
col outputs [0] if r < p and shares of a non-zero value otherwise
without revealing r.
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Fig. 1 Main procedure of Extended-Range protocols.

3.2 Extended-Range I
We use an �-bit prime p that includes three 1s in its binary

form. Since p is an �-bit odd prime, the binary representation of
p is as follows.

p : 10 · · · 010 · · · 01︸��������������︷︷��������������︸
� bits

(2)

We use p0, p�−1, and pm to denote LSB, MSB, and the remaining
1 bit between LSB and MSB. The output of the Bitwise Less-
Than protocol is used in the Extended-Range I protocol as fol-
lows.

[r�−1]B ×
⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎜⎜⎜⎜⎝
�−2∑

i=m+1

[ri]B

⎞⎟⎟⎟⎟⎟⎟⎠ + [rm]B ×
⎛⎜⎜⎜⎜⎜⎜⎝

m−1∑
i=0

[ri]B

⎞⎟⎟⎟⎟⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭ (3)

The complexity of this formula is 2 multiplications and 2 rounds.
3.2.1 Correctness of Extended-Range I

The Bitwise Less-Than protocol used in the Extended-Range I
protocol outputs [0] if r < p and a share of a non-zero value if
r ≮ p. Let A and B designate ranges of bits in r.

p : 1 0 · · · 0 1 0 · · · 0 1 (4)

r : ∗ ∗ · · · ∗︸︷︷︸
A

∗ ∗ · · · ∗ ∗︸��︷︷��︸
B

(5)

If r ≮ p, r is in at least one of the two following states in binary
form.

p : 1 0 · · · 0 1 0 · · · · · · 0 1 (6)

1. r : 1 # · · · #︸�︷︷�︸
includes 1

∗ · · · · · · · · · ∗︸���������︷︷���������︸
arbitrary

(7)

2. r : 1 ∗ · · · · ∗︸��︷︷��︸
arbitrary

1 # · · · · · · · #︸������︷︷������︸
includes 1

(8)

We can translate these states into the following respective condi-
tions.
( 1 ) r�−1 = 1 and A includes 1.
( 2 ) r�−1 = rm = 1 and B includes 1.
For each condition, we can construct the following formulas that
output a non-zero value if the condition is true and 0 if the condi-
tion is false.
( 1 ) r�−1 ×∑�−2

i=m+1 ri

( 2 ) r�−1 × rm ×∑m−1
i=0 ri

If r < p, these formulas output 0. If r ≮ p, at least one formula
outputs a non-zero value. Thus, by adding these formulas, we can
obtain Eq. (9), which outputs 0 if r < p and a non-zero value if
r ≮ p.

r�−1 ×
⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎜⎜⎜⎜⎝
�−2∑

i=m+1

ri

⎞⎟⎟⎟⎟⎟⎟⎠ + rm ×
⎛⎜⎜⎜⎜⎜⎜⎝

m−1∑
i=0

ri

⎞⎟⎟⎟⎟⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭ (9)

The maximum output of Eq. (9) is �−2 and less than p. Hence we

can translate Eq. (9) into Eq. (3), which is computed over GF(p).
We can see that Eq. (3) outputs [0] if r < p and shares of a non-
zero value if r ≮ p and that the output is correct.

3.3 Extended-Range II
The value of prime p that satisfies the assumption of the

Extended-Range I protocol is mostly p ≡ 1 (mod 4). However,
there are protocols that require p ≡ 3 (mod 4), such as some of
Nishide’s protocols [8]. Thus, we develop the Extended-Range II
protocol for p ≡ 3 (mod 4). Here we use a prime p that in-
cludes four 1 s in its binary form and p�−1 = pm = p1 = p0 = 1,
where 1 < m < �−1. The binary representation of p is as follows.

p : 10 · · · 010 · · · 011︸���������������︷︷���������������︸
� bits

(10)

The output of the Bitwise Less-Than protocol used in Extended-
Range II is as follows.

[r�−1]B

⎛⎜⎜⎜⎜⎜⎜⎝
�−2∑

i=m+1

[ri]B

⎞⎟⎟⎟⎟⎟⎟⎠ + ([r�−1]B[rm]B)

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎜⎜⎜⎜⎝

m−1∑
i=2

[ri]B

⎞⎟⎟⎟⎟⎟⎟⎠ + [r1]B[r0]B

⎫⎪⎪⎬⎪⎪⎭
(11)

To obtain the output, the parties compute [r�−1]B × [rm]B and
[r1]B × [r0]B in parallel. This makes the formula second-order,
so its complexity is 1 multiplication and 1 round. Hence the total
complexity of Eq. (11) is 3 multiplications and 2 rounds.
3.3.1 Correctness of Extended-Range II

The Bitwise Less-Than protocol used in Extended-Range II
outputs [0] if r < p and shares of a non-zero value if r ≮ p.
If r ≮ p, r is in at least one of the three following states in binary
form.

p : 1 0 · · · 0 1 0 · · · · · · 0 1 1 (12)

1. r : 1 # · · · #︸�︷︷�︸
includes 1

∗ · · · · · · · · · · · ∗︸������������︷︷������������︸
arbitrary

(13)

2. r : 1 ∗ · · · · ·∗︸���︷︷���︸
arbitrary

1 # · · · · · #︸���︷︷���︸
includes 1

∗ ∗ (14)

3. r : 1 ∗ · · · · ·∗︸���︷︷���︸
arbitrary

1 ∗ · · · · · · ∗︸����︷︷����︸
arbitrary

1 1 (15)

For each state, we can construct a equation that outputs a non-
zero value if r is in the state and 0 if r is not in the state.
( 1 ) r�−1 ×∑�−2

i=m+1 ri

( 2 ) r�−1 × rm ×∑m−1
i=2 ri

( 3 ) r�−1 × rm × r1 × r0

If r < p, these formulas output 0. If r ≮ p, at least one equation
outputs a non-zero value. Thus, by adding these formulas, we can
obtain Eq. (16), which outputs 0 if r < p, and a non-zero value if
r ≮ p.

r�−1 ×
⎛⎜⎜⎜⎜⎜⎜⎝
�−2∑

i=m+1

ri

⎞⎟⎟⎟⎟⎟⎟⎠ + (r�−1 × rm) ×
⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎜⎜⎜⎜⎝

m−1∑
i=2

ri

⎞⎟⎟⎟⎟⎟⎟⎠ + r1 × r0

⎫⎪⎪⎬⎪⎪⎭ (16)

The maximum output of Eq. (16) is � − 3 and less than p. Hence
we can translate Eq. (16) into Eq. (11), which is computed over
GF(p). We can see that Eq. (11) outputs [0] if r < p and shares
of a non-zero value if r ≮ p and that the output is correct.
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3.4 Complexity of Extended-Range Protocols
The Extended-Range protocols generate � sets of bitwise

shares [ri]B in parallel through Joint Random Bit Sharing. The
complexity of this step is 2� multiplications and 2 rounds. Then
the parties obtain the result of r < p from the Bitwise Less-Than
protocol. The complexity of this step is 2 multiplications and 2
rounds for Extended-Range I and 3 multiplications and 2 rounds
for Extended-Range II. Thus, the complexity to generate one ran-
dom number candidate and obtain the result of r < p is 2� + 2
multiplications and 4 rounds for Extended-Range I and 2� + 3
multiplications and 4 rounds for Extended-Range II.

Since the abort probability for existing protocols is approxi-
mately 1/2 in the worst case, these protocols generate four ran-
dom number candidates [4], [8], [11]. Because the abort proba-
bility for the Extended-Range protocols is the same as that of the
existing protocols, we evaluate the complexities for Extended-
Range in the case of generating four candidates in parallel. The
complexity is 8� + 8 multiplications and 4 rounds for Extended-
Range I and 8� + 12 multiplications and 4 rounds for Extended-
Range II (Table 2).

3.5 Security of Extended-Range Protocols
The existing Joint Random Number Bitwise-Sharing proto-

col [8], which outputs shares of random number r, satisfies the
following conditions.
( 1 ) The random number r can be any value x such that 0 ≤ x < p

with equal probability.
( 2 ) Any information about r is not leaked unless k shares are

collected.
If these two conditions are satisfied, the existing Joint Random
Number Bitwise- Sharing protocol can be securely used in higher
level protocols.

In the Extended-Range protocols, the steps to generate candi-
dates for a random number are the same as those of the existing
Joint Random Number Bitwise-Sharing protocol. Both the output
of the existing protocol and those in the Extended-Range proto-
cols are chosen from the candidates only by checking whether r

is less than p. Thus, the Extended-Range protocols satisfy condi-
tion 1 above regardless of the choice of the prime number p.

The proposed Bitwise Less-Than protocols, which are used in
the Extended- Range protocols, output 0 if r < p and the out-
put does not leak any information about r. If r ≮ p, r is aban-
doned, and the value of the output causes no problem. Thus,
the Extended-Range protocols do not leak any information about
r and therefore satisfy condition 2 above. Since the Extended-
Range protocols satisfy the conditions for the existing protocol,
they can be securely used in higher level protocols. Note that

Table 2 Complexities of Random Number Bitwise-Sharing protocols.

Protocol Comm. Rounds

Nishide and Ohta [8] 76� 7

Toft [11] 52� + 24
√
� 7

Extended-Range I 8� + 8 4

Extended-Range II 8� + 12 4

Lightweight Extended-Range I 2� + 4 3

Lightweight Extended-Range II 2� + 5 4

Lightweight Extended-Range III 2� + 7 5

any prime number can be used for the underlying secret sharing
scheme, so the choice of p does not affect the security of the se-
cret sharing scheme. Therefore, using a special form prime num-
ber does not compromise the security.

4. Improvement of Extended-Range Protocols

Although the Extended-Range protocols are efficient compared
to existing protocols [8], [11], the abort probability is still 1/2 in
the worst case. In this section, we introduce our more efficient
protocols “Lightweight Extended-Range” protocols, which make
the abort probability negligible.

The Lightweight Extended-Range I protocol uses a Mersenne
prime. It is efficient but not practical since a Mersenne prime is
sparse. The Lightweight Extended-Range II protocol uses a mod-
ified Mersenne prime, a “semi-Mersenne prime,” which is suffi-
ciently abundant. This protocol is thus practical as well as effi-
cient. The Lightweight Extended-Range III protocol is a variation
of these two protocols. It uses a prime number p that satisfies
p ≡ 1 (mod 4), whereas Lightweight Extended-Range I and II
normally use a prime number p ≡ 3 (mod 4).

4.1 Key Idea of Lightweight Extended-Range Protocols
The Lightweight Extended-Range protocols use a Mersenne

or semi-Mersenne prime to make the abort probability negligi-
ble. However, the straightforward use of these primes would in-
crease the protocol’s complexity. The key idea of Lightweight
Extended-Range is making the abort probability negligible with-
out increasing the complexity by exchanging the truth values.
These protocols use a non-zero value if r < p and 0 if r ≮ p

whereas the Extended-Range protocols use 0 if r < p and a non-
zero value if r ≮ p. As shown in Fig. 2, the main procedure of the
Lightweight Extended-Range protocols is as follows.
( 1 ) Generate bitwise shares [r]B by applying Joint Random Bit

Sharing protocol � times and generate a share of a non-zero
value [r∗] by applying Joint Random Non-zero Sharing pro-
tocol in parallel.

( 2 ) Obtain [s] = [r < p] by applying Bitwise Less-Than proto-
col and reveal [s × r∗].

( 3 ) If s × r∗ is non-zero (i.e., r < p), output [r]B. If s × r∗ = 0
(i.e., r ≮ p), the parties retry.

Again we focus on the Bitwise Less-Than protocol used in the
second step since the other protocols used in the Lightweight
Extended-Range protocols are the same as those in the existing
protocols. Given bitwise shares of an �-bit random number [r]B

and a public prime p, our Bitwise Less-Than protocol outputs
shares of a non-zero value if r < p and [0] otherwise without
revealing r.

Fig. 2 Main procedure of Lightweight Extended-Range protocols.
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4.2 Lightweight Extended-Range I
A Mersenne prime is a prime p such that p = 2� − 1; i.e., the

binary representation of an �-bit Mersenne prime is as follows.

p = (1 . . . 1︸︷︷︸
� bits

)2 (17)

The output of the Bitwise Less-Than protocol used in
Lightweight Extended-Range I is as follows.

[r∗]([r0] + [r1] + · · · + [r�−2] + [r�−1] − �) (18)

The complexity of Eq. (18) is 1 multiplication and 1 round.
4.2.1 Correctness of Lightweight Extended-Range I

If r ≮ p, all ri’s are 1 since p is a Mersenne prime (0 ≤ i < �).
Thus, Eq. (18) obviously outputs [0]. If r < p, the output is shares
of a non-zero value since (r0 + · · · + r�−1 − �) is non-zero. Thus,
we can see that the output is correct.

4.3 Lightweight Extended-Range II
Using a Mersenne prime is hardly practical since it is sparse,

as noted above. Thus, we define a semi-Mersenne prime, which
is sufficiently abundant.

A semi-Mersenne prime is an �-bit prime such that

p = 2� − 1 − 2c, (19)

where 0 < c < � − 1.
The binary representation of a semi-Mersenne prime is

p = (1 . . . 101 . . . 1)2 (20)

and pc = 0.
The output of the Bitwise Less-Than protocol used in

Lightweight Extended-Range II is as follows.

[
r∗
]
⎧⎪⎪⎨⎪⎪⎩
�−1∑
i=c

[
ri
]
⎫⎪⎪⎬⎪⎪⎭
⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎜⎜⎜⎜⎝
�−1∑

i=c+1

[
ri
]
⎞⎟⎟⎟⎟⎟⎟⎠ + [rc] +

⎛⎜⎜⎜⎜⎜⎜⎝
c−1∑
i=0

[
ri
]
⎞⎟⎟⎟⎟⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭ (21)

Note that a bitwise NOT can be computed as [ri] = 1 − [ri]. The
complexity of Eq. (21) is 2 multiplications and 2 rounds.
4.3.1 Correctness of Lightweight Extended-Range II

If r ≮ p, r is in either one of the two following states in binary
form.

p : 1 · · · 1 0 1 · · · · · · 1 (22)

1. r : 1 · · · · 1 ∗ · · · · · · ∗︸����︷︷����︸
arbitrary

(23)

2. r : 1 · · · 1 0 1 · · · · · · 1 (24)

We can translate these states into the following respective condi-
tions.
( 1 ) r�−1, . . . , rc = 1.
( 2 ) r�−1, . . . , rc+1 = 1 and rc = 0 and rc−1, . . . , r0 = 1.
For each condition, we can construct a formula that outputs 0 if
the condition is true and a non-zero value if the condition is false.
( 1 )
∑�−1

i=c ri

( 2 ) (
∑�−1

i=c+1 ri) + rc + (
∑c−1

i=0 ri)
Both of these formulas output a non-zero value if r < p. If r ≮ p,
one of them outputs 0. By multiplying these equations, we can
obtain Eq. (21), which outputs shares of a non-zero value if r < p

and [0] if r ≮ p.

4.4 Lightweight Extended-Range III
Almost all values of prime p that satisfy the condition for the

Lightweight Extended-Range II protocol are in the form of p ≡ 3
(mod 4). However, some protocols require p ≡ 1 (mod 4),
such as some of Nishide’s protocols [8]. Thus, we construct
the Lightweight Extended-Range III protocol for p ≡ 1 (mod 4).
Here we use a prime p that includes three 0 s in its binary form,
and pc+1 = pc = p1 = 0, where 1 < c < � − 2. The binary
representation of p is as follows.

p = (1 . . . 1001 . . . 101)2 (25)

The output of the Bitwise Less-Than protocol used in
Lightweight Extended-Range III is as follows.

[r∗]

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎜⎜⎜⎜⎝
�−1∑

i=c+2

[ri]

⎞⎟⎟⎟⎟⎟⎟⎠ + [rc+1][rc]

⎫⎪⎪⎬⎪⎪⎭

×
⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎜⎜⎜⎜⎝
�−1∑

i=c+2

[ri]

⎞⎟⎟⎟⎟⎟⎟⎠ + [rc+1] + [rc] +

⎛⎜⎜⎜⎜⎜⎜⎝
c−1∑
i=2

[ri]

⎞⎟⎟⎟⎟⎟⎟⎠ + [r1][r0]

⎫⎪⎪⎬⎪⎪⎭ (26)

The complexity of Eq. (26) is 4 multiplications and 3 rounds.
The Lightweight Extended-Range III protocol improves the

generality of the Lightweight Extended-Range protocols, so we
can use both p ≡ 1 (mod 4) and p ≡ 3 (mod 4).
4.4.1 Correctness of Lightweight Extended-Range III

If r ≮ p, r is in either one of the two following states in binary
form.

p : 1 · · · 1 0 0 1 · · · 1 0 1 (27)

1. r : 1 · · · 1 # #︸︷︷︸
includes 1

∗ · · · · · · · · · ∗︸��������︷︷��������︸
arbitrary

(28)

2. r : 1 · · · 1 0 0 1 · · · 1 # #︸︷︷︸
includes 1

(29)

We can translate these states into the following respective con-
ditions.
( 1 ) r�−1, . . . , rc+2 = 1, and (rc+1 = 1 or rc = 1)
( 2 ) r�−1, . . . , rc+2, rc−1, . . . , r2 = 1, and rc+1 = rc = 0, and (r1 =

1 or r0 = 1)
For each condition, we can construct a formula that outputs 0 if
the condition is true and a non-zero value if the condition is false.
( 1 ) (

∑�−1
i=c+2 ri) + rc+1 × rc

( 2 ) (
∑�−1

i=c+2 ri) + rc+1 + rc + (
∑c−1

i=2 ri) + r1 × r0

Both of the equations output a non-zero value if r < p. If r ≮ p,
one of them outputs 0. By multiplying these equations, we can
obtain Eq. (26), which outputs shares of a non-zero value if r < p

and [0] if r ≮ p.

4.5 Complexity of Lightweight Extended-Range Protocols
The Lightweight Extended-Range protocols generate � sets of

bitwise shares [ri]B and non-zero shares [r∗] in parallel by Joint
Random Bit Sharing and Joint Random Non-zero Sharing, re-
spectively. The complexity of this step is 2� + 3 multiplications
and 2 rounds. The parties obtain the result of r < p from the Bit-
wise Less-Than protocol. The complexity of this step is 1 multi-
plication and 1 round for Lightweight Extended-Range I, 2 mul-
tiplications and 2 rounds for Lightweight Extended-Range II, and
4 multiplications and 3 rounds for Lightweight Extended-Range
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III. Thus, the complexity to generate one random number candi-
date and obtain the result of r < p is 2� + 4 multiplications and
3 rounds for Lightweight Extended-Range I, 2� + 5 multiplica-
tions and 4 rounds for Lightweight Extended-Range II, and 2�+7
multiplications and 5 rounds for Lightweight Extended-Range III.

As mentioned, the abort probability for the previous proto-
cols is approximately 1/2 in the worst case. To reduce this to
1/2κ, they generate four random number candidates where κ is
a predefined parameter [4], [8], [11]*1. Meanwhile, the inherent
abort probability of the Lightweight Extended-Range protocols is
1/2κ. In the case of Lightweight Extended-Range I, which uses
a Mersenne prime p = 2� − 1, κ = �. For example, Mersenne
prime p = 231 − 1 gives an abort probability of 1/231. In the case
of Lightweight Extended-Range II, which uses a semi-Mersenne
prime p = 2� −1−2c, κ > �− c−1. For example, semi-Mersenne
prime p = 232 − 1 − 22 gives an abort probability of less than
1/229. In the case of Lightweight Extended-Range III, which uses
a prime p = 2� − 1 − 2c+1 − 2c − 21, the abort probability is
κ > �−c−2. For example, a prime p = 232−1−26−25−21 gives
an abort probability of less than 1/225. Thus, the Lightweight
Extended-Range protocols do not need to generate four candi-
dates, which means that we can evaluate their complexities using
only one candidate. The complexities of the Random Number
Bitwise-Sharing protocols are summarized in Table 2.

4.6 Security of Lightweight Extended-Range Protocols
As mentioned, the existing Joint Random Number Bitwise-

Sharing protocol [8], which outputs shares of random number r,
satisfies the following conditions.
( 1 ) The random number r can be any value x such that 0 ≤ x < p

with equal probability.
( 2 ) Any information about r is not leaked unless k shares are

collected.
If these two conditions are satisfied, the existing Joint Random
Number Bitwise- Sharing protocol can be securely used in higher
level protocols.

In the same way as the Extended-Range protocols in Section
3.5, the Lightweight Extended-Range protocols satisfy condition
1 above regardless of the choice of prime number p.

The proposed Bitwise Less-Than protocols, which are used
in the Lightweight Extended-Range protocols, output a non-zero
value if r < p. Since this non-zero value is masked by a ran-
dom number r∗, the output does not leak any information about
r. If r ≮ p, r is abandoned, and the value of the output causes
no problem. Thus, the Lightweight Extended-Range protocols do
not leak any information about r and therefore satisfy condition
2 above. Since the Lightweight Extended- Range protocols sat-
isfy the conditions for the existing protocol, they can be securely
used in higher level protocols. Note that using a special form
prime number does not compromise the security as discussed in
Section 3.5.

*1 The generation of four candidates is further discussed elsewhere [4].

Table 3 The number of prime numbers satisfying conditions for proposed
protocols.

Extended-Range Lightweight Extended-Range
� I II I II III

16 4 3 0 3 3

32 6 2 0 7 6

64 2 5 0 3 0

128 6 5 0 4 8

256 4 2 0 2 5

512 5 2 0 6 4

1,024 3 5 0 9 2

4.7 Practicality of Proposed Protocols
Given bit-length �, if there exists an �-bit prime number p

that satisfies the condition for a proposed protocol, the proposed
protocols can be used to generate shares of a random number r

more efficiently than the existing protocols. As shown in Ta-
ble 3, there are prime numbers that satisfy the condition for the
Extended-Range I and II and the Lightweight Extended-Range II
protocol where � = 16, 32, 64, 128, 256, 512, and 1,024. For the
Lightweight Extended-Range III protocol as well, there are prime
numbers that satisfy the condition except for � = 64. Note that we
can use a 65-bit prime number that satisfies the condition instead
of a 64-bit prime number. Only the Lightweight Extended-Range
I protocol lacks the prime numbers that satisfy its condition, so it
can only be used for the limited �’s (e.g., � = 31 and 61).

Therefore, the proposed protocols except for Lightweight
Extended-Range I are sufficiently practical.

5. Application to Higher Level Protocols

We applied our five proposed protocols to equality testing [8],
comparison [8], interval testing [8], bit-decomposition [11], and
private exponentiation [7]. We briefly explain each of these
higher level protocols. They are described in more detail else-
where [7], [8], [11]. Given sets of shares [a], [b], where a, b ∈ Zp,
the equality testing protocol [8] and the comparison protocol [8]
respectively obtain a set of shares [a = b] and [a < b] without
revealing a and b. Given a set of shares [a], where a ∈ Zp and
public values c1, c2 ∈ Zp, the interval testing protocol [8] obtains
a set of shares [c1 < a < c2] without revealing a. Given a set of
shares [a], where a ∈ Zp, the bit-decomposition protocol [11] ob-
tains sets of bitwise shares [a]B without revealing any ai. Given
sets of shares [a], [x], where a, x ∈ Zp, the private exponentiation
protocol [7] obtains a set of shares [xa mod p] without revealing
a and x.

The proposed protocols can be applied to these higher level
protocols simply by replacing the existing Joint Random Num-
ber Bitwise-Sharing protocol with a proposed one. In the case
of equality testing, the existing Joint Random Number Bitwise-
Sharing protocol accounts for 76� of 81� multiplications and 7 of
8 rounds [8]. The proposed protocols reduce the communication
and round complexities as shown in Table 4. The complexities of
comparison, interval testing, bit-decomposition, and private ex-
ponentiation are respectively shown in Tables 5, 6, 7, and 8. Note
that the existing higher level protocols use various protocols for
random number sharing.
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Table 4 Complexities of equality testing protocols and of Joint Random Number Bitwise-Sharing
protocols used in them.

Random number sharing Equality testing
Protocol Comm. Rounds Comm. Rounds

Nishide and Ohta [8] 76� 7 81� 8

Extended- I 8� + 8 4 13� + 8 5
Range II 8� + 12 4 13� + 12 5

Lightweight I 2� + 4 3 7� + 4 4
Extended- II 2� + 5 4 7� + 5 5

Range III 2� + 7 5 7� + 7 6

Table 5 Complexities of comparison protocols and of Joint Random Number Bitwise-Sharing protocols
used in them.

Random number sharing Comparison
Protocol Comm. Rounds Comm. Rounds

Nishide and Ohta [8] 228� 7 279� + 5 15

Extended- I 24� + 24 4 75� + 29 12
Range II 24� + 36 4 75� + 41 12

Lightweight I 6� + 12 3 57� + 17 11
Extended- II 6� + 15 4 57� + 20 12

Range III 6� + 21 5 57� + 26 13

Table 6 Complexities of interval testing protocols and of Joint Random Number Bitwise-Sharing
protocols used in them.

Random number sharing Interval testing
Protocol Comm. Rounds Comm. Rounds

Nishide and Ohta [8] 76� 7 110� + 1 13

Extended- I 8� + 8 4 42� + 9 10
Range II 8� + 12 4 42� + 13 10

Lightweight I 2� + 4 3 36� + 5 9
Extended- II 2� + 5 4 36� + 6 10

Range III 2� + 7 5 36� + 8 11

Table 7 Complexities of bit-decomposition protocols and of Joint Random Number Bitwise-Sharing
protocols used in them.

Random number sharing Bit-Decomposition
Protocol Comm. Rounds Comm. Rounds

Toft [11] 52�+24
√
� 7 31� log2 � + 71� + 30

√
� 23

Extended- I 8� + 8 4 31� log2 �+27�+6
√
�+8 20

Range II 8� + 12 4 31� log2 �+27�+6
√
�+12 20

Lightweight I 2� + 4 3 31� log2 �+21�+6
√
�+4 19

Extended- II 2� + 5 4 31� log2 �+21�+6
√
�+5 20

Range III 2� + 7 5 31� log2 �+21�+6
√
�+7 21

Table 8 Complexities of private exponentiation protocols and of Joint Random Number Bitwise-Sharing
protocols used in them.

Random number sharing Private exponentiation
Protocol Comm. Rounds Comm. Rounds

Ning and Xu [7] 128�+24
√
� 7 157�+(20n+36)

√
�+10n+8 24

Extended- I 16� + 16 4 45�+(20n+12)
√
�+10n+24 21

Range II 16� + 24 4 45�+(20n+12)
√
�+10n+32 21

Lightweight I 4� + 8 3 33�+(20n+12)
√
�+10n+16 20

Extended- II 4� + 10 4 33�+(20n+12)
√
�+10n+18 21

Range III 4� + 14 5 33�+(20n+12)
√
�+10n+22 22

6. Conclusion

Secure multi-party computation (MPC) is a promising tool for
making use of personal or classified information while keeping
it confidential, but one of the biggest problems with MPC is
that it requires a vast amount of communication and thus a vast
amount of processing time. Our analysis of existing MPC pro-
tocols revealed that the random number sharing protocol used by

many of them is notably inefficient. The Joint Random Bitwise-
Sharing protocol, which is used to generate random numbers in
binary form, is particularly inefficient. By replacing truth values
1 and 0 used in this protocol by 0 and a non-zero value, we con-
structed more efficient protocols, commonly dubbed “Extended-
Range I and II.” Compared with the best of the existing Joint
Random Bitwise-Sharing protocol, which requires 52� + 24

√
�

multiplications and 7 rounds, the complexity is 8� + 8 multipli-
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cations and 4 rounds for Extended-Range I and 8� + 12 mul-
tiplications and 4 rounds for Extended-Range II. Furthermore,
by reducing the abort probability and thus making the previ-
ously necessary backup computation unnecessary, we constructed
improved protocols, dubbed “Lightweight Extended-Range I, II,
and III.” The complexity is 2� + 4 multiplications and 3 rounds
for Lightweight Extended-Range I, 2� + 5 multiplications and 4
rounds for Lightweight Extended-Range II, and 2� + 7 multipli-
cations and 5 rounds for Lightweight Extended-Range III. Using
Lightweight Extended-Range II reduced the communication com-
plexity for equality testing, comparison, interval testing, and bit-
decomposition, all of which use a random number sharing pro-
tocol, by approximately 91, 79, 67, and 23%, respectively (for
32-bit data). We also reduced the communication complexity of
private exponentiation by about 70% (for 32-bit data and five par-
ties). Our protocols are fundamental to sharing random number
r ∈ Zp in binary form and can be applied to other higher level
protocols.
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Appendix

A.1 Variations of Proposed Protocols

We can easily construct a series of protocols based on the idea
of the proposed ones. We show two types of variations of our pro-
tocols. The first type is variations of the Extended-Range protocol
for p = (10 . . . 01 . . . 10 . . . 01)2. Let p = (10 . . . 0110 . . . 01)2 and

p�−1 = pm+1 = pm = p0 = 1 for simplicity. The output of r < p is
computed as follows, and its complexity is 3 multiplications and
3 rounds.

[r�−1] ×
⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎜⎜⎜⎜⎝
�−2∑

i=m+2

[ri]

⎞⎟⎟⎟⎟⎟⎟⎠ + [rm+1] × [rm] ×
⎛⎜⎜⎜⎜⎜⎜⎝

m−1∑
i=1

[ri]

⎞⎟⎟⎟⎟⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭

The second type is variations of the Lightweight Extended-
Range protocol for p = (1 . . . 10 . . . 01 . . . 1)2. Let p =

(1 . . . 1001 . . . 1)2 and pc+1 = pc = 0 for simplicity. The output of
r < p is computed as follows, and its complexity is 3 multiplica-
tions and 2 rounds.

[r∗]

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎜⎜⎜⎜⎝
�−1∑

i=c+2

[ri]

⎞⎟⎟⎟⎟⎟⎟⎠ + [rc+1][rc]

⎫⎪⎪⎬⎪⎪⎭

×
⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎜⎜⎜⎜⎝
�−1∑

i=c+2

[ri]

⎞⎟⎟⎟⎟⎟⎟⎠ + [rc+1] + [rc] +

⎛⎜⎜⎜⎜⎜⎜⎝
c−1∑
i=0

[ri]

⎞⎟⎟⎟⎟⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭

These variations increase the number of applicable primes for
our protocols and help in the selection of a suitable prime in prac-
tical use.
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