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Predicting Protein-RNA Residue-base Contacts Using
Two-dimensional Conditional Random Field

Morihiro Hayashida1,a) Mayumi Kamada1,b) Jiangning Song2,†1,c) Tatsuya Akutsu1,d)

Abstract: It is important to understand interactions between proteins and RNAs for uncovering networks and func-
tions of molecules in cellular systems. Many researchers have studied for analyzing and investigating interactions
between protein residues and RNA bases. For interactions between protein residues, it is supported that residues at in-
teracting sites have co-evolved with the corresponding residues in the partner protein to keep the interactions between
the proteins. In our previous work, on the basis of this idea, we calculated mutual information (MI) between residues
from multiple sequence alignments of homologous proteins for identifying interacting pairs of residues in interacting
proteins, and combined it with the discriminative random field (DRF), which is useful to extract some characteristic
regions from an image in the field of image processing, and is a special type of conditional random fields (CRFs). In
a similar way, in this technical report, we make use of mutual information for predicting interactions between pro-
tein residues and RNA bases. Furthermore, we introduce labels of amino acids and bases as features of a simple
two-dimensional CRF instead of DRF. To evaluate our method, we perform computational experiments for several
interactions between Pfam domains and Rfam entries. The results suggest that the CRF model with MI and labels is
more useful than the CRF model with only MI.

1. Introduction
It is essential to analyze molecular recognition and spe-

cific interactions between proteins and RNAs for understand-
ing construction and evolution of molecular networks and cel-
lular systems. Protein-RNA interactions are involved with regu-
latory mechanisms such as RNA splicing, translation, and post-
transcriptional control. Several studies have investigated tertiary
structures of some complexes of proteins with specific RNAs for
analyzing how proteins selectively interact with specific sites on
nucleic acids [1], [2]. The U1A protein, which is a part of ri-
bosomes, recognizes the same RNA subsequence consisting of
seven bases, AUUGCAC, either in the context of a hairpin loop
or internal loop [3]. Most protein-RNA complexes are formed by
some degree of mutual accommodation between the protein bind-
ing surfaces and RNA. A loop of the L11 RNA binding domain
is absolutely unstructured without the partner RNA, but becomes
ordered on binding [4]. In protein-RNA, protein-single(double)-
stranded DNA complexes, van der Waals contacts are more com-
monly used than hydrogen bond contacts. In protein-RNA in-
teractions, proteins prefer to contact the purine guanine and the
pyrimidine uracil using van der Waals contacts and hydrogen
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bonds, and prefer for the residues arginine, tyrosine and pheny-
lalanine presented in the RNA binding site [2].

In our previous work, we proposed a method for predict-
ing residue-residue contacts between proteins [5]. Also for in-
teractions between amino acid residues, several investigations
have been done to reveal detailed interactions between residues
[6], [7], [8], [9]. It can be considered that protein residues at im-
portant sites for interactions have been simultaneously mutated
to keep their interactions through evolutionary processes. Other-
wise, such mutated proteins might lose the interactions, and the
individual would disappear by the selection pressure. Thus, inter-
acting residues have been mutated at the same time. Mutual in-
formation (MI) between protein residues is useful for predicting
interacting residues, which is a quantity representing dependent
relationship between two residues, and is calculated from the dis-
tribution of amino acids in multiple sequence alignments for ho-
mologous proteins. For interactions between protein amino acid
residues and RNA bases as well as for those between residues, it
can be considered that interacting residues and bases have a ten-
dency to be mutated at the same time. Therefore, we make use of
mutual information for predicting residue-base contacts.

Several methods for predicting RNA binding sites in protein
sequences have been developed. Kim et al. performed computa-
tional analyses of tertiary structures of protein-RNA complexes,
and introduced the residue doublet interface propensity, which is
a measure of residue pairing preferences in the RNA interface
of a protein [10]. Kumar et al. proposed a prediction method
using support vector machine (SVM) and evolutionary informa-
tion, position-specific scoring matrix (PSSM) profiles of protein
sequences generated by PSI-BLAST [11]. Liu et al. proposed a
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new interaction propensity that represents a binding specificity of
a residue to the interacting RNA nucleotide by taking its two-side
neighborhood in a residue triplet into account, combined with
other sequence and structure-based features, and used the random
forest technique for the prediction [12].

In the fields of image processing and pattern recognition,
Markov random fields (MRFs) have been well studied. Ku-
mar and Hebert proposed discriminative random fields (DRFs)
to model spatial interactions in images based on conditional ran-
dom fields (CRFs) [13]. They claimed that DRFs have several
advantages compared to conventional MRFs. For example, DRFs
allow to relax the assumption of conditional independence of ob-
served data, and have higher discriminative ability than that of
MRFs. Also in the field of bioinformatics, MRFs and CRFs have
been used for protein function prediction from protein-protein in-
teraction networks [14], [15], for protein-protein interaction pre-
diction based on protein domain information [16], and for protein
residue contacts prediction [5]. However, DRFs have strong as-
sociations with images, and thus DRFs may not necessarily be
appropriate for predicting residue contacts. Therefore, we pro-
pose simple two-dimensional CRF models instead of DRFs [17].
As in the previous work, we give the matrix that consists of all
mutual information between two positions in multiple sequence
alignments as an input of CRFs. Furthermore, we introduce la-
bels of amino acids and bases as features to our CRF model. We
perform computational experiments, and the results suggest that
the CRF model with MI and labels is more useful than the CRF
model with only MI.

2. Method
In this section, we propose a prediction method based on sim-

ple conditional random fields (CRFs) for residue-base contacts
between protein-RNA pairs. A protein with an amino acid se-
quence and an RNA with a base sequence are given as input
data. Then, homologous sequences for each sequence are col-
lected, mutual information between two positions of the amino
acid and base sequences is calculated, and the probability that
a residue interacts with another base is estimated using our pro-
posed CRF models. For training parameters of the CRF model,
several pairs of protein and RNA sequences and the interacting
pairs of residues and bases are given.

2.1 Mutual Information
In our proposed method, mutual information for the distribu-

tion of amino acids and bases at two positions of protein and RNA
sequence alignments is one of important inputs as in our previous
work. In this section, we briefly review mutual information for
such distributions used in this report.

Fig. 1 shows an illustration on calculation of mutual informa-
tion between two positions in two multiple sequence alignments.
Suppose that protein amino acid sequence A, RNA base sequence
B and the information of residue-base contacts in a protein-RNA
complex are obtained. Then, several homologous sequences for
sequences A and B are collected, respectively, and a multiple
alignments for each set of sequences is calculated in some appro-
priate way. After that, gaps inserted to sequences A and B by the

ETLCGSELVDTLQFVCDDRGL

QHLCGSHLVDALY.LVCGP.V

..YCGRHLARTLA.NLCWEAY

Q.LCGSHLVDTLQFLC..RGL

UGUGUGGGAGAGUAGGUCGCC

--CGUGUGAAAGUAGGUCAUC

----UGGGAAUGUAGG--GCU

--CCUGUGAGAGUAGGACGUC

alignment for protein sequence A

i j

alignment for RNA sequence B

Fig. 1 Illustration on calculation of mutual information between position i
in a multiple sequence alignment for protein amino acid sequence A
and j in an alignment for RNA base sequence B, where sequences
belonging to the same species are connected by arrows. Sequences
A and B are shown at the first line of multiple sequence alignments,
respectively, and gaps inserted by alignment algorithms are removed.

calculation of the alignment are removed because only residues
contained in sequence A and bases in B are the target of our
contact prediction. Thus, the length of each multiple alignment
becomes the length of the target sequence. Fig. 1 shows such
multiple alignments, where the sequences at the first lines denote
sequence A and B, respectively. Let A be the set of 20 distinct
amino acids and 1 character that represents a gap, andB be the set
of 4 distinct bases and 1 gap character. Let pi(a), p j(b), pi j(a, b)
be the observed frequency of amino acid a ∈ A at position i,
that of base b ∈ B at position j, and that of amino acid a ∈ A
and base b ∈ B at positions i and j, respectively, where the fre-
quency is divided by the total number, that is, the number of se-
quences in an alignment. It should be noted that amino acid a
and base b are regarded to simultaneously appear in this report
if both a sequence including a and one including b belong to the
same species. Therefore, each sequence in a multiple alignment
is needed to be assigned to a sequence in another alignment (see
Fig. 1). Then, mutual information mi j between two positions i
in protein sequence A and j in RNA sequence B is calculated as
follows.

mi j =
∑
a∈A

∑
b∈B

pi j(a, b) log
pi j(a, b)

pi(a)p j(b)
(1)

= Hi + H′j − Hi j, (2)

where Hi and H′j denote the marginal entropies at positions i
and j, respectively, that is, Hi = −

∑
a∈A pi(a) log pi(a), H′j =

−∑b∈B p j(b) log p j(b), and Hi j denotes the joint entropy Hi j =

−∑a∈A
∑

b∈B pi j(a, b) log pi j(a, b).

2.2 Two-dimensional Conditional Random Field Models for
Residue-base Contacts

In this section, we propose simple two-dimensional CRF mod-
els for residue-base contacts.

Conditional random fields (CRFs) were proposed by Lafferty
et al. [18]. Let G(V, E) be a graph with a set of vertices V and a
set of edges E, where each vertex is related with a random vari-
able xv, and yv is observed from the corresponding vertex v ∈ V .
Then, (x,y) is a conditional random field if the random variables
xv follow the Markov property under the conditions yv according
to the graph G, that is, P(xv|x{v′∈V |v′,v},y) = P(xv|xNv ,y), where
Nv denotes the set of vertices adjacent to the vertex v in the graph
G. CRFs require P(x|y) > 0 for all x, and are represented as

P(xv|xNv ,y) =
1
Zv

exp {−Uv(x,y)} , (3)
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where Uv(x,y) is a potential function concerning the ver-
tex v, and Zv is the normalization constant defined by∑

xv exp {−Uv(x,y)}.
In our previous work, we used the discriminative random field

(DRF) proposed by Kumar and Hebert [13], which is a special
type of CRFs, and the potential function is defined as follows.

Uv(x,y) = A(xv,y) + β
∑
v′∈Nv

I(xv, xv′ ,y), (4)

where A(xv,y) and I(xv, xv′ ,y) are called the association and
interaction potentials, respectively, xv ∈ {1,−1}, and β is a
constant. The potential functions are defined as A(xv,y) =
− log

(
σ
(
xvwT

f fv(y)
))

, and I(xv, xv′ ,y) = Kxvxv′ + (1 −
K)
(
2σ
(
xvxv′wT

g gvv′ (y)
)
− 1
)
, respectively, where w f and wg are

parameter vectors, fv and gvv′ are vector-valued functions that
map observations y to feature vectors, σ(x) = 1

1+e−x , K (0 ≤
K ≤ 1) is a constant, and wT denotes the transpose of w. In
the field of image processing, the DRF is useful for extracting
specific characteristic regions from images. The association po-
tential A(xv,y) can be considered as a gain obtained only from
the vertex v and the observations y. The interaction potential
I(xv, xv′ ,y) can be considered as a gain obtained from the rela-
tionship between vertices v and v′, and plays a role of smoothing
the truth assignment for random variables x because neighboring
pixels in images tend to have similar values to each other. How-
ever, the smoothing property is not considered to be desirable for
predicting residue-residue and residue-base contacts. Therefore,
we propose the following potential function for random variables
ri j ∈ {0, 1} that represent whether or not the residue and base at
positions i and j interact with each other, where ri j = 1 means
there exists some contact between i and j, otherwise ri j = 0.

Ui j(r,y) = wT
f fi j(r,y) +wT

g

∑
(k,l)∈Ni j

gi jkl(r,y), (5)

where terms in the right-hand side are corresponding to the as-
sociation and interaction potentials in the DRF, respectively. It
should be noted that the set of parameters θ in our CRF model
consists of w f , and wg.

In order to determine a CRF model, we must design vector-
valued functions fi j and gi jkl and the set Ni j of vertices adjacent
with the vertex (i, j) corresponding to positions i and j. In this
report, we use Ni j = {(i − 1, j), (i, j − 1), (i, j + 1), (i + 1, j)} as
adjacent vertices to (i, j) (see Fig. 2). Furthermore, we use mu-
tual information mi j between positions i and j as observations y.
Then, we define vector-valued functions f (1)

i j and g(1)
i jkl that give

local features as follows.

f (1)
i j (r,m) =

ri j

r̄i j

 ⊗  1
mi j

 , (6)

g(1)
i jkl(r,m) =

ri j

r̄i j

 ⊗ rkl

r̄kl

 ⊗  1
mkl

 , (7)

where r̄ represents the negation of r, and ⊗ denotes the Kronecker

product, that is, A ⊗ B =
a1B
a2B

 for matrix A =
a1

a2

, for example,

f (1)
i j (r,m) = (ri j, ri jmi j, r̄i j, r̄i jmi j)T .

 j
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Fig. 2 Adjacent residue-base pairs for (i, j) in two-dimensional random
fields.

ri,j

mi,j mi,j+1mi,j-1

mi-1,j

mi+1,j

si-1 sj’

si sj-1’
si sj’ si sj+1’

si+1 sj’

Fig. 3 Relationship between random variable ri j and observations, mutual
information mi j, and the pair (si, s′j) of the i-th amino acid in protein
sequence A and the j-th base in RNA sequence B, in our CRF model.

In addition to mutual information, we use the protein and RNA
sequences as observations. Let si and s′j be the i-th amino acid in
protein sequence A and the j-th base in RNA sequence B, respec-
tively. Then, we define other functions f (2)

i j and g(2)
i jkl as follows.

f (2)
i j (r) =

ri j

r̄i j

 ⊗ δ(si ,s′j) ⊗
 1
mi j

 , (8)

g(2)
i jkl(r) =

ri j

r̄i j

 ⊗ rkl

r̄kl

 ⊗ δ(sk ,s′l ) ⊗
 1
mkl

 , (9)

where δ(a,b) (a ∈ A, b ∈ B) denotes a 0-1 vector with size
20 × 4 = 80, the element of which corresponds to (a, b) is 1
and the remaining is 0. The relationship between random vari-
able ri j and observations, mutual information mi j, amino acids si,
and bases s′j, is represented in our CRF model as Fig. 3, that is,
ri j is related with multiple observations mi j and (si, s′j).

2.3 Parameter Estimation of Two-dimensional CRFs
We estimate parameters θ = {w f ,wg} by maximizing pseudo-

likelihood function as in [5], [13]. Suppose that N pairs of multi-
ple alignments for protein and RNA sequences and residue-base
contacts r(n)(n = 1, . . . ,N) for each pair of proteins and RNAs
are given. We calculate mutual information m(n) for each pair.
Then, the logarithm of pseudo-likelihood function is given as

c© 2012 Information Processing Society of Japan 3

Vol.2012-BIO-30 No.4
2012/8/9



IPSJ SIG Technical Report

L(θ) = log
N∏

n=1

∏
i

∏
j

P(r(n)
i j |r

(n)
Ni j
,m(n), θ) (10)

=

N∑
n=1

∑
i

∑
j

{
−Ui j(r(n),m(n))

− log
∑

r(n)
i j ∈{0,1}

exp
{
−Ui j(r(n),m(n))

}}
. (11)

In order to find parameters maximizing L(θ), we use the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) method [19], which is one of
quasi-Newton methods, uses partial differentials, and approxi-
mates the Hessian matrix by some efficient method. To apply
the optimization method, by partially differentiating L(θ) with re-
spect to each parameter vector w, we have

∂L(θ)
∂w

=
∑

n

∑
i

∑
j

{
−
∂Ui j(r(n),m(n))

∂w

+
∑
r(n)

i j

P(r(n)
i j |r

(n)
Ni j
,m(n), θ)

∂Ui j(r(n),m(n))
∂w

}
, (12)

where

∂Ui j(r(n),m(n))
∂w f

= fi j(r,m), (13)

∂Ui j(r(n),m(n))
∂wg

=
∑

(k,l)∈Ni j

gi jkl(r,m). (14)

2.4 Contact Inference
After estimating parameters, for new pairs of residues and

bases, we decide whether or not each pair interacts with each
other. In our previous work, we used Iterated Conditional
Modes (ICM) [20], which repeatedly updates random variables
by maximizing conditional probabilities until each variable is not
changed. However, the ICM method often converges to local so-
lutions, for example, also for image processing benchmark prob-
lems drawn from energy functions used for stereo, image stitch-
ing, and denoising [21]. Therefore, in this report, we use the
sequential tree-reweighted message passing (TRW-S) algorithm
[22], which is an improved algorithm of the tree-reweighted mes-
sage passing (TRW) algorithm [23]. The TRW algorithms try to
minimize the upper bound of energy functions for maximization
problems by iteratively updating messages Mvv′;x, that vertex v
sends to its neighbor v′ with state x, and weights w for all de-
composed trees.

3. Computational Experiments
3.1 Data and Implementation

The number of protein-RNA complexes whose tertiary
structures have been determined by X-ray crystallographic
analysis or nuclear magnetic resonance (NMR) is not large
yet. We used seven protein-RNA pairs of chains included
in ribosomes, PDB code ’1yl4’, ’2hgu’, and ’3kcr’ from the
PDB databank [24], (RS12 THET8, M26923), (RS17 THET8,
M26923), (RS8 THET8, M26923), (RL33 THET8, X12612),
(RL18 THETH, X01554), (RL27 ECOLI, J01695), and
(RL35 ECOLI, J01695), to get residue-base contact data. Table
1 shows details of the dataset, for each protein-RNA pair, the

Fig. 4 Protein RS12 THET8, chain ’O’ of PDB code ’1yl4’, and the atoms
of RNA M26923, chain ’A’ of ’1yl4’, within 3 Å of the protein.

Table 2 Classification of amino acids by Murphy et al. [30]

# amino acid
2 {LVIMCAGSTPFYW},{EDNQKRH}
4 {LVIMC},{AGSTP},{FYW},{EDNQKRH}
8 {LVIMC},{AG},{ST},{P},{FYW},{EDNQ},{KR},{H}

10 {LVIM},{C},{A},{G},{ST},{P},{FYW},{EDNQ},{KR},{H}
15 {LVIM},{C},{A},{G},{S},{T},{P},{FY},{W},{E},{D},{N},{Q},{KR},{H}

’#’ denotes the number of groups in each classification.

PDB code, the identifiers of the chain, UniProt [25], and Pfam
[26], and the length of protein sequence A, the identifiers of the
chain, GenBank [27], and Rfam [28], and the length of RNA
sequence B, and the number of contacts. We supposed that there
exists a contact between a residue and a base if the Euclidean
distance between an atom of the residue and one of the base is
less than or equal to 3 Å. Figure 4 shows protein RS12 THET8
(chain ’O’ of ’1yl4’) and the atoms of RNA M26923 (chain ’A’
of ’1yl4’) within 3 Å of the protein.

For the calculation of mutual information between two po-
sitions of a residue and a base, we used multiple sequence
alignment data provided in the file ’Pfam-A.full’ from Pfam
database (release 26.0) [26] for protein sequences, and in the file
’Rfam.full’ from Rfam database (release 10.1) [28] for RNA se-
quences. For the calculation of marginal entropies and joint en-
tropies, we used amino acids and bases without classification, and
supposed 0 log 0 = 0 for pi(a) = 0, p j(b) = 0, or pi j(a, b) = 0
because p log p→ 0 for p→ 0.

We used libLBFGS (version 1.10) with default parameters
to estimate the parameters θ, which is a C implementation
of the limited memory BFGS method [29], and is available
on the web page, http://www.chokkan.org/software/liblbfgs/.
For inferring contacts, we used MRF energy minimiza-
tion software (version 2.1), which provides a C++ im-
plementation of the TRW-S method [22], available on
http://vision.middlebury.edu/MRF/code/, and modified it
depending on our energy function formulation.

3.2 Results
In order to evaluate the proposed CRF-based method, we per-
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Table 1 Dataset of seven interacting protein-RNA pairs.

protein sequence A RNA sequence B
PDB chain UniProt Pfam length chain GenBank Rfam length # contacts (≤ 3 Å)
1yl4 K RS8 THET8 PF00410 135 A M26923 RF00177 1515 34
1yl4 O RS12 THET8 PF00164 122 A M26923 RF00177 1515 45
1yl4 T RS17 THET8 PF00366 69 A M26923 RF00177 1515 43
2hgu R RL18 THETH PF00861 110 B X01554 RF00001 117 28
2hgu 5 RL33 THET8 PF00471 48 A X12612 RF01118 108 21
3kcr W RL27 ECOLI PF01016 77 8 J01695 RF01118 108 50
3kcr 3 RL35 ECOLI PF01016 61 8 J01695 RF01118 108 39

Table 3 Results on AUC scores for test datasets using mutual information,
labels of amino acids and bases, and the classification of amino
acids.

test pair MI MI+2
(RS8 THET8, M26923) 0.448519 0.637362

(RS12 THET8, M26923) 0.584414 0.434911
(RS17 THET8, M26923) 0.520389 0.422199
(RL18 THETH, X01554) 0.497109 0.372135
(RL33 THET8, X12612) 0.458122 0.634749
(RL27 ECOLI, J01695) 0.554078 0.414698
(RL35 ECOLI, J01695) 0.56244 0.683728

average 0.517867 0.514254

MI+4 MI+8 MI+10 MI+15 MI+20
0.639753 0.618562 0.655294 0.673612 0.611092
0.479028 0.511932 0.535143 0.555171 0.471759
0.465945 0.541198 0.564818 0.604454 0.577107
0.484518 0.520543 0.492414 0.445005 0.565814
0.598589 0.648907 0.678755 0.573224 0.750755
0.51501 0.610803 0.717221 0.614431 0.57308
0.559783 0.672034 0.670191 0.685277 0.745234
0.534660 0.589139 0.616262 0.593024 0.613548
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Fig. 5 Average ROC curves for test datasets using mutual information, la-
bels of amino acids and bases, and the classification of amino acids.
’MI’ denotes the CRF model with only features of mutual informa-
tion, f (1)

i j ,g
(1)
i jkl, and ’MI+d’ denotes the CRF model with mutual in-

formation and the amino acid classification by d groups, f (2)
i j ,g

(2)
i jkl.

formed computational experiments using two types of feature
vectors {f (1)

i j ,g
(1)
i jkl}, and {f (2)

i j ,g
(2)
i jkl}, and five types of classifica-

tion of amino acids of 2, 4, 8, 10, and 15 groups proposed by
Murphy et al. [30] (see Table 2). We performed cross-validation
procedures, where a procedure used one protein-RNA pair as test
data and the remaining six pairs as training data, this procedure
was repeated seven times. We calculated the conditional proba-
bilities P(ri j = 1|rNi j ,m, θ) and AUC (Area Under ROC Curve)
scores, and took the average.

Table 3 shows the results on the AUC scores for test datasets

using mutual information mi j, labels of amino acids and bases
(si, s′j), and the classification of amino acids. ’MI’ denotes the
CRF model with only features of mutual information, that is,
{f (1)

i j ,g
(1)
i jkl}, and ’MI+d’ denotes the CRF model with mutual in-

formation and labels of bases and amino acids classified in d
groups, that is, {f (2)

i j ,g
(2)
i jkl}. We can see from the table that the

average AUC score using both of mutual information and labels
without classification denoted by ’MI+20’ was better than that
using only mutual information denoted by ’MI’. Furthermore, the
average AUC scores of the classifications of 8, 10, and 15 groups
were better than those of 2 and 4 groups. It might be considered
that a classification of amino acids of a few groups is not able
to discriminate whether or not a residue and a base interact with
each other. The average ROC (Receiver Operating Characteristic)
curves for test datasets using MI and labels of bases and amino
acids classified in d groups are shown in Fig. 5. These results
suggest that the CRF model with MI and labels of amino acids
and bases is more useful than the CRF model with only MI.

4. Conclusion
We proposed a simple two-dimensional conditional random

field (CRF)-based method for predicting protein-RNA residue-
base contacts, and introduced labels of amino acids and bases as
features of the CRF in addition to mutual information. We per-
formed computational experiments for seven protein-RNA pairs
from PDB to evaluate our models, and calculated the average
AUC scores for test datasets. The results suggest that the CRF
model with MI and labels of amino acids and bases is more use-
ful than the CRF model with only MI. In our previous work, the
BFGS method for parameter estimation of the discriminative ran-
dom field (DRF) did not converge if the potential function in-
cludes interaction potentials, which represent relationships be-
tween neighbor vertices. Our simple CRF in this report improved
it, and we were able to deal with interaction potentials for pre-
dicting residue-base contacts. However, the problem of predict-
ing residue-base contacts is difficult, and the prediction accuracy
by our method was still not good. Although we supposed that a
residue and a base interact if the distance is at most 3 Å, we may
need to decide the contact condition according to more biological
meanings. However, there is room to improve our method. We
can use other correlation values between residues and bases than
mutual information, and modify the feature vectors and potential
functions of the CRF.
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